# Final Report Phase I RCRA Facility Investigation for Appendix I Sites

# VOLUME I

SWMU-8, Fire Training Area 2



Department of the Air Force Oklahoma City Air Logistics Center Tinker Air Force Base, Oklahoma

September 1994

# INDEX TO VOLUMES RFI REPORT

Volume I SWMU-8, Fire Training Area 2
Volume II-A/B SWMU-14, Sludge Drying Beds

Volume III-A/B/C/D/E/F SWMU-24/32, Industrial Wastewater Treatment

Plant/Sanitary Wastewater Treatment Plant

Volume IV SWMU-26, Ordnance Disposal Area

SWMU-40, AFFF Fire Control Pond

Volume V-A/B AOC, Fuel Truck Maintenance Area

Volume VI AOC, Spill Pond (Drainage Spillway Behind Building 1030)

AOC, Old Pesticide Storage Area

Volume VII SWMU-1, Landfill No. 6

SWMU-2, Landfill No. 5 SWMU-3, Landfill No. 1 SWMU-4, Landfill No. 2 SWMU-5, Landfill No. 3 SWMU-6, Landfill No. 4

Volume VIII SWMU-7, Fire Training Area 1

SWMU-11, Supernatant Pond

SWMU-12, Industrial Waste Pit No. 1 SWMU-13, Industrial Waste Pit No. 2

SWMU-23, Industrial Waste Treatment Plant, Abandoned

Waste Tanks

SWMU-54, Stained Drainage Ditch and Drums (near

Building 17)

Volume IX SWMU-19, Radioactive Waste Disposal Site 1030W

SWMU-20, Radioactive Waste Disposal Site 2018 SWMU-21, Radioactive Waste Disposal Site 62598 SWMU-22, Radioactive Waste Disposal Site 1022F

SWMU-22, Radioactive Waste Disposal Site 1022E

# Table of Contents\_\_\_\_\_

| List | of T              | 'ables iii                                  |  |  |  |  |  |
|------|-------------------|---------------------------------------------|--|--|--|--|--|
| List | of F              | igures                                      |  |  |  |  |  |
| List | of A              | cronyms                                     |  |  |  |  |  |
| Exe  | Executive Summary |                                             |  |  |  |  |  |
| 1.0  | Intro             | oduction 1-1                                |  |  |  |  |  |
|      | 1.1               | Purpose                                     |  |  |  |  |  |
|      | 1.2               | Scope of Investigation                      |  |  |  |  |  |
| 2.0  | Bac               | kground 2-1                                 |  |  |  |  |  |
|      | 2.1               | Tinker AFB Facility Description and History |  |  |  |  |  |
|      | 2.2               | Site Description and History                |  |  |  |  |  |
|      | 2.3               | Regulatory History and Status 2-2           |  |  |  |  |  |
|      | 2.4               | Summary of Previous Investigations          |  |  |  |  |  |
| 3.0  | Env               | ironmental Setting                          |  |  |  |  |  |
|      | 3.1               | Topography and Drainage 3-1                 |  |  |  |  |  |
|      |                   | 3.1.1 Topography 3-1                        |  |  |  |  |  |
|      |                   | 3.1.2 Drainage 3-1                          |  |  |  |  |  |
|      | 3.2               | Geology 3-3                                 |  |  |  |  |  |
|      |                   | 3.2.1 Regional/Tinker AFB Geology           |  |  |  |  |  |
|      |                   | 3.2.2 Site Geology 3-11                     |  |  |  |  |  |
|      | 3.3               | Hydrology                                   |  |  |  |  |  |
|      |                   | 3.3.1 Regional/Tinker AFB Hydrology         |  |  |  |  |  |
|      |                   | 3.3.2 Site Hydrology                        |  |  |  |  |  |
|      | 3.4               | Soils                                       |  |  |  |  |  |
| 4.0  | Desc              | cription of Investigative Methods           |  |  |  |  |  |
|      |                   | Shallow Monitoring Well Installation        |  |  |  |  |  |
|      | 4.2               | Deep Monitoring Well Installation           |  |  |  |  |  |
|      | 4.3               | Pilot Hole                                  |  |  |  |  |  |
|      | 4.4               | Surface Completion                          |  |  |  |  |  |
|      |                   | Well Development                            |  |  |  |  |  |
|      | 4.6               | Groundwater Sampling                        |  |  |  |  |  |
|      |                   | Elevation and Location Surveying            |  |  |  |  |  |

# Table of Contents (Continued)

# List of Tables\_\_\_\_\_

| Table | Title                                                           |      |
|-------|-----------------------------------------------------------------|------|
| 3-1   | Major Geologic Units in the Vicinity of Tinker AFB              |      |
|       | (Modified from Wood and Burton, 1968)                           | 3-5  |
| 3-2   | Tinker AFB Soil Associations (Source: USDA, 1969)               | 3-21 |
| 4-1   | Fire Training Area 2, Summary of RFI Field Activities           | 4-2  |
| 5-1   | Analytical Results for Fire Training Area 2 for Soil            | 5-13 |
| 5-2   | Soil Metals Background Comparison, SWMU-8, FTA2                 | 5-16 |
| 5-3   | Analytical Results for Fire Training Area 2 for USZ Groundwater | 5-18 |
| 5-4   | Analytical Results for Fire Training Area 2 for LSZ Groundwater | 5-20 |
| 7-1   | Action Level, SWMU-8 - FTA2, Tinker AFB                         | 7-2  |

# List of Figures\_\_\_\_\_

| Figure | Title                                                                                                    |      |
|--------|----------------------------------------------------------------------------------------------------------|------|
| 1-1    | Tinker Air Force Base, Oklahoma, State Index Map                                                         | 1-2  |
| 1-2    | Site Location Map                                                                                        | 1-3  |
| 3-1    | Topographic Map of Fire Training Area 2 With Locations of Monitoring Wells                               | 3-2  |
| 3-2    | Tinker AFB Geologic, Cross Section Location Map                                                          | 3-8  |
| 3-3    | Tinker AFB Geologic, Cross Section A-A'                                                                  | 3-9  |
| 3-4    | Tinker AFB Geologic, Cross Section B-B'                                                                  | 3-10 |
| 3-5    | Upper Saturated Zone Potentiometric Surface                                                              | 3-14 |
| 3-6    | Lower Saturated Zone Potentiometric Surface                                                              | 3-15 |
| 4-1    | Locations of Monitoring Wells, Fire Training Area 2                                                      | 4-3  |
| 5-1    | Cross Section Location Map, Fire Training Area 2                                                         | 5-6  |
| 5-2    | Cross Section C-C', Fire Training Area 2                                                                 | 5-7  |
| 5-3    | Local Potentiometric Surface, Upper Saturated Zone<br>Fire Training Area 2                               | 5-9  |
| 5-4    | Local Potentiometric Surface, Lower Saturated Zone<br>Fire Training Area 2                               | 5-10 |
| 5-5    | Isopleth Map of Trichloroethene Concentration of the Upper Saturated Zone at Fire Training Area 2        | 5-22 |
| 5-6    | Isopleth Map of Cis-1,2-Dichloroethene Concentration of the Upper Saturated Zone at Fire Training Area 2 | 5-23 |

### List of Acronyms

AFB Air Force Base
AOC area of concern

BAT best available technology

CAA Clean Air Act

CAL corrective action levels

CDM Federal Programs Corporation

CEC cation exchange capacity

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations

cm/s centimeters per second COD chemical oxygen demand

COE U.S. Army Corp of Engineers
CMS Corrective Measures Study
CPT cone penetrometer testing

DCA dichloroethane
DCE dichloroethene

DERP Defense Environmental Restoration Program

DNAPL dense nonaqueous-phase liquids
DOD U.S. Department of Defense
DWS drinking water standards

EC electric conductivity

EID Engineering Installation Division

EMO Environmental Management Operations EPA U.S. Environmental Protection Agency

ES Engineering Science

FID flame ionization detector

ft/ft foot per foot

FTA2 Fire Training Area 2 HCl hydrochloric acid

HRS Hazardous Ranking System

HSWA Hazardous and Solid Waste Amendments

IRP Installation Restoration Program

IT IT Corporation

IWTP industrial wastewater treatment plant

## List of Acronyms (Continued)\_

LSZ lower saturated zone

μg/kg micrograms per kilogram

μg/L micrograms per liter

MCL maximum contaminant level

MCLG maximum contaminant level goal

mg/kg milligrams per kilogram

mg/L milligrams per liter

m<sup>3</sup> cubic meters
msl mean sea level
MW monitoring well

NAAQS National Ambient Air Quality Standards

NCP National Oil and Hazardous Substances Pollution Contingency Plan

NPL National Priorities List

O.D. outside diameter
OU operable unit

PA/SI preliminary assessment/site investigation

PCE tetrachloroethene

PID photoionization detector

PVC polyvinyl chloride QC quality control

RCRA Resource Conservation and Recovery Act

RFI RCRA Facility Investigation

RI/FS remedial investigation/feasibility study

ROD record of decision

SARA Superfund Amendments and Reauthorization Act

SOP standard operating procedure

SP self potential

SVOC semivolatile organic compound SWMU solid waste management unit

TCA trichloroethane
TCE trichloroethene

TDS total dissolved solids

TSD treatment, storage, and disposal (facility)

TOC total organic carbon

# List of Acronyms (Continued)\_

TPH total petroleum hydrocarbons
USACE U.S. Army Corps of Engineers

USC U.S. Code

USDA U.S. Department of Agriculture

USGS U.S. Geological Survey USZ upper saturated zone

VOC volatile organic compounds

WQS Water Quality Standards

yd<sup>3</sup> cubic yards

# Executive Summary

This report provides a summary of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted at solid waste management unit (SWMU)-8, Fire Training Area 2 (FTA2), Tinker Air Force Base (AFB), Oklahoma. The report has been prepared to determine whether hazardous constituents as defined by federal regulations have been released into the environment from the FTA2. The RFI for this unit has been conducted in accordance with the Work Plan prepared by CDM Federal Programs Corporation (CDM) (1992). This RFI Report presents the following information:

- Site characterization (Environmental Setting)
- Source definition (Source Characterization), if any
- Degree of contamination (Contamination Characterization)
- Identification of actual or potential receptors
- Analytical results and analysis (data analysis)
- Identification of groundwater protection standards and action levels for the protection of human health and the environment (protection standards)
- Conclusions and recommendations for future work.

Tinker AFB is located in central Oklahoma, in the southeast portion of the Oklahoma City metropolitan area, in Oklahoma County. The Base is bounded by Sooner Road to the west, Douglas Boulevard to the east, Interstate 40 to the north, and Southeast 74th Street to the south. The Base encompasses 5,000 acres.

Background. Tinker AFB began operations in 1942 and serves as a worldwide repair depot for a variety of aircraft, weapons, and engines. These activities require the use of hazardous materials and result in the generation of hazardous wastes. These wastes have included spent organic solvents, waste oils, waste paint strippers and sludges, electroplating wastewaters and sludges, alkaline cleaners, acids, Freon<sup>TM</sup>, jet fuels, and radium paints.

In 1984, Congress amended the RCRA with the Hazardous and Solid Waste Amendments (HSWA), which allow U.S. Environmental Protection Agency (EPA) to require, as a permit condition, a facility to undertake corrective action for any release of hazardous waste or

constituents from any SWMU at a treatment, storage, and disposal (TSD) facility. On January 12, 1989, Tinker AFB submitted its Part B permit application for renewal of its operating RCRA Hazardous Waste Storage facility permit. The final RCRA HSWA permit issued on July 1, 1991, requires Tinker AFB to investigate all SWMUs and areas of concern (AOC) and to perform corrective action at those identified as posing a threat to human health or the environment. The permit specifies that an RFI be conducted for 43 identified SWMUs and two AOCs on the Base. This document has been prepared to determine whether sufficient investigations have been conducted to meet the permit requirements for FTA2.

Source Description. FTA2 is located in the south-central portion of Tinker AFB. The site is located northwest of the control tower and north of Crutcho Creek. FTA2 was established as a temporary, unlined pit and was used infrequently between 1962 and 1966. Standard operating procedures (SOP) included adding water to the pit to saturate the soil and reduce infiltration. Fuel was then brought in by tank truck, placed on top of the water, ignited, and extinguished using water and a protein-based foam. Any residues were left in the pit to evaporate and infiltrate prior to the next fire training exercise. As a result, some residual fuels may have infiltrated into the subsurface. Records for construction, operation, or destruction do not exist, so data on composition, frequency, and quantity of fuel used are not available and it is assumed that the site was simply abandoned. The site now appears as a gently sloping grassy area with no visible signs of its past use as a fire training area. During an Installation Restoration Program (IRP) Response Action performed by the U.S. Army Corps of Engineers (USACE) (December 1988), soil beneath the site was analyzed for volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and total metals. Only very low concentrations of organic compounds were detected. This investigation revealed that more information was needed concerning background concentrations of metals in the soil in this portion of Tinker AFB.

**Site Investigations.** A total of 22 soil samples were collected from the eight monitoring wells installed at FTA2 for chemical analysis. The analyses included VOCs, SVOCs, and metals (aluminum, arsenic, barium, beryllium, cadmium, chromium, chromium VI, copper, iron, lead, mercury, nickel, silver, and zinc).

Relatively low concentrations of organic contaminants were detected within the unsaturated soils to a depth of 23 feet. The only organic constituent detected in soil samples at a concentration greater than the method detection limit was 1,1,1-trichloroethane (TCA). Metals concentrations were within the range of background soil concentrations reported in a

study of the four-county area surrounding Tinker AFB by the U.S. Geological Survey (USGS).

Four monitoring well clusters were installed around the approximate location of FTA2: four monitoring wells in the upper saturated zone (USZ) and four monitoring wells in the lower saturated zone (LSZ).

The VOCs detected in the four USZ wells and their maximum concentrations included: trichloroethene (TCE) (8,900 micrograms per liter [ $\mu$ g/L]), cis-1,2-dichloroethene (1,700  $\mu$ g/L), 1,2-dichloroethane (550  $\mu$ g/L), chlorobenzene (240  $\mu$ g/L), trans-1,2-dichloroethene (140  $\mu$ g/L), 1,1,2-trichloroethane (9.0  $\mu$ g/L), 1,2-dichloropropane (7.3  $\mu$ g/L), 1,1-dichloroethene (6.0  $\mu$ g/L), and benzene (5.7  $\mu$ g/L). Volatiles detected below the quantitation limit were toluene, tetrachloroethene, and chloroform. Concentrations in well 2-62B were generally two orders of magnitude higher than in the other USZ wells. The LSZ has not been impacted by the operations at FTA2.

Concentrations of several VOCs were above the corrective action levels (CAL) proposed in Title 40 Code of Federal Regulations (CFR) Part 264.521, primarily in samples from well 2-62B. These include, in well 2-62B, the concentrations of 1,1,2-TCA and tetrachloroethene. Other compounds, for which no CAL is available, were present in well 2-62B at concentrations which exceeded MCLs, including trichloroethene, cis-1,2-dichloroethene, 1,2-dichloroethene, 1,2-dichloroethene, 1,2-dichloroethene, 1,2-dichloroethene (DCA), benzene, and trans-1,2-dichloroethene. In addition, concentrations of TCE in USZ wells 2-63B, 2-64B, and 2-65B also exceeded CALs.

The SVOCs detected in the four USZ wells and their maximum concentrations included: 1,2-dichlorobenzene (1,900  $\mu$ g/L), 1,4-dichlorobenzene (290  $\mu$ g/L), and 1,3-dichlorobenzene (53  $\mu$ g/L). Bis(2-ethylhexyl)phthalate was detected below the quantitation limit in a sample from LSZ well 2-62A.

Concentrations of two SVOCS were above MCLs. This includes 1,2- dichlorobenzene and 1,4-dichlorobenzene in well 2-62B.

Metal concentrations within the groundwater (USZ and LSZ) are below maximum contaminant levels (MCL) for the detected metals.

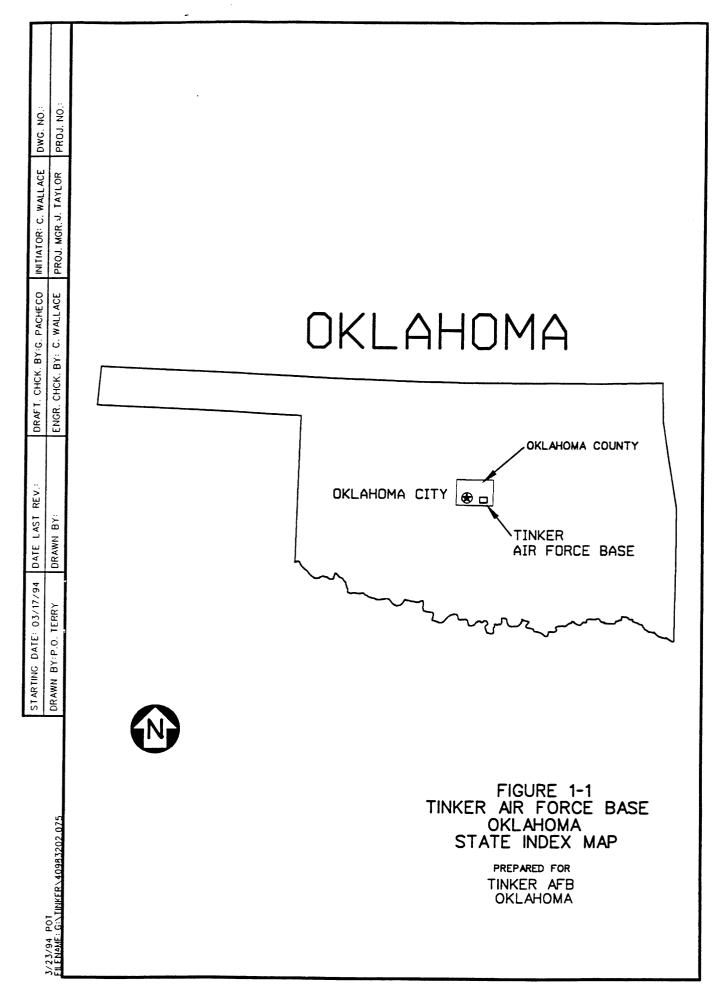
Conclusions. The USZ has been impacted at FTA2; however, the LSZ has not been impacted. Principal organic contaminants in the USZ include TCE, cis-1,2-dichloroethene, and 1,2-dichlorobenzene. The highest concentrations of the contaminants were found in well 2-62B. FTA2 is apparently not the source of the contaminants, and there is apparently not any significant ongoing release from the FTA2 SWMU. The extent and the source of groundwater contamination cannot be defined by the present wells.

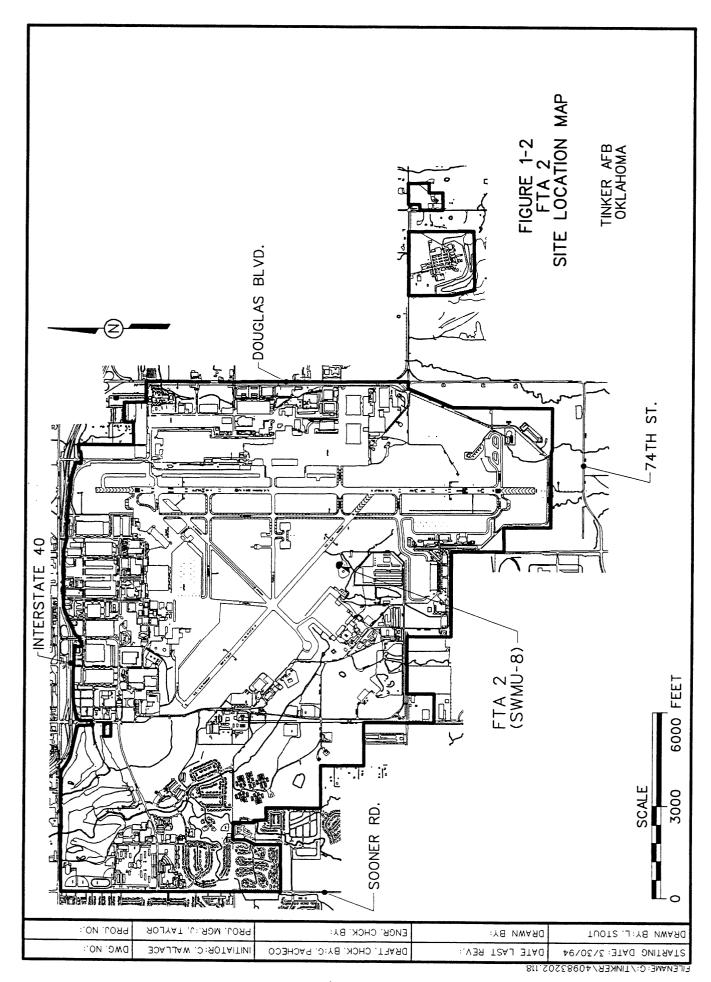
The source of the contaminants may be downward leakage of contaminated surface water from a nearby tributary to Crutcho Creek. The channel of the creek is deeply incised into the upper clay/silt unit. In addition, the water table is anomalously flat in this area, suggesting possible mounding due to localized recharge. This tributary drains an area occupied by industrial facilities on the east side of the airfield, and emerges from a culvert in the near vicinity of the SWMU.

**Recommendations for Additional Work.** Based on the results of the investigation of the FTA2, the following additional work is recommended:

- Interview Base personnel to determine if any previously unrecognized wastegenerating activities have been conducted in this area
- Examine aerial photographs to determine if locations of any potential wastegenerating activities are evident.
- Install temporary well points to collect samples from USZ to the north and east of well 2-62B and analyze samples for VOCs, SVOCs, total organic carbon (TOC), and total petroleum hydrocarbons (TPH).
- Install additional monitoring well(s) at location(s) selected based on results of analysis.
- Collect site-specific soil background samples to be used in addition to USGS soil data to distinguish site-related from background concentrations in a statistically significant manner during the Phase II investigation.
- Further define the extent of contamination by determining the location, number, and depth of soil borings/monitoring wells during the development of a Phase II RFI work plan.
- Submit Phase II work plan to EPA for approval before conducting any field activities.

#### 1.0 Introduction


The U.S. Department of the Air Force is conducting an Installation Restoration Program (IRP) at Tinker Air Force Base (AFB), Oklahoma (Figure 1-1). This program intends to identify sites through initial assessment, characterize each solid waste management unit (SWMU) or area of concern (AOC), study and select cleanup methods, if required, and implement a cleanup. In support of this effort, a Phase I Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) was conducted at Fire Training Area 2 (FTA2), SWMU-8, at Tinker AFB, Oklahoma (Figure 1-2). This Phase I investigation focuses its efforts on determining if there have been any releases of contamination to the soil and groundwater resulting from previously placing fuel within water-filled pits for fire training purposes.


Adequate information was gathered in this Phase I RFI to support a Phase II investigation, a Corrective Measures Study (CMS), or interim measures, if necessary. A phased approach has been taken by Tinker AFB for the FTA2 site investigation. This phasing of the RFI is in accordance with the U.S. Environmental Protection Agency (EPA) RFI guidance documents and is also the most practical approach for this site where little or no information is available on past practices.

Outlined below are the minimum tasks generally required by the EPA for a RCRA investigation of a SWMU or AOC:

- Task I Description of Current Conditions
- Task II Work Plan
- Task III Facility Investigation
- Task IV Investigative Analysis
- Task V Report.

The Task I requirements for FTA2 have been addressed in the *Description of Current Conditions* (Tinker, 1992), which outlines the geology, hydrogeology, and current conditions of the site. Task II requirements have been addressed in the *Final RFI Work Plan* (CDM Federal Programs Corporation [CDM], 1992), and the Final RFI Work Plan - Amendments (IT Corporation [IT], 1993). The *Final RFI Work Plan* and the Final RFI Work Plan - Amendments include a Data Management Plan, Project Management Plan, Data Collection Quality Assurance Plan, Health and Safety Plan, and amendments as necessary to perform a





Phase I RFI. Tasks III and IV requirements, which characterize the site, determine the presence of contamination, and identify actual and potential receptors have been addressed in this report. This report also satisfies the requirements of Task V.

#### 1.1 Purpose

This report has been prepared in response to the U.S. Department of the Air Force, Tinker AFB, Oklahoma request for a Phase I RFI and report for FTA2.

The purpose of this report is to document and present the findings of the RFI conducted at FTA2. The primary objective of the RFI was to determine if contaminant releases to the environment have occurred at the site and to determine if a more comprehensive Phase II RFI or a CMS is required. This RFI Report presents the following information:

- Site characterization (Environmental Setting)
- Source term definition (Source Characterization), if any
- Degree of contamination (Contamination Characterization)
- Identification of actual or potential receptors
- Analytical results and analysis (Data Analysis)
- Identification of groundwater protection standards and action levels for the protection of human health and the environment (Protection Standards)
- Conclusions and recommendations for future work.

This document will also describe the procedures and methods of field sampling and cite any previous investigations conducted at the site.

#### 1.2 Scope of Investigation

The soils and the groundwater below and around FTA2 were investigated. Soil samples were taken at various depths below the site to determine the presence of subsurface soil contamination. Groundwater samples were taken from shallow and deep monitoring wells both up- and downgradient from FTA2 to determine if contamination was present in either the upper or lower aquifers.

#### 2.0 Background

#### 2.1 Tinker AFB Facility Description and History

Tinker AFB is located in central Oklahoma, in the southeast portion of the Oklahoma City metropolitan area, in Oklahoma County (Figure 1-1) with its approximate geographic center located at 35° 25' latitude and 97° 24' longitude (U.S. Geological Survey [USGS], 1978). The Base is bounded by Sooner Road to the west, Douglas Boulevard to the east, Interstate 40 to the north, and Southeast 74th Street to the south. An additional area east of the main Base is used by the Engineering Installation Division (EID) and is known as Area D. The Base encompasses approximately 5,000 acres.

Tinker AFB was originally known as the Midwest Air Depot and began operations in July 1941. The site was activated March 1942 and during World War II the depot was responsible for reconditioning, modifying, and modernizing aircraft, vehicles, and equipment. Tinker AFB now serves as a worldwide repair depot for a variety of aircraft, weapons, and engines. These activities require the use of hazardous materials and result in the generation of hazardous wastes. These wastes have included spent organic solvents, waste oils, waste paint strippers and sludges, electroplating wastewaters and sludges, alkaline cleaners, acids, Freon<sup>TM</sup>, jet fuels, and radium paints. Wastes that are currently generated are managed at two permitted hazardous waste storage facilities. Prior to enactment of RCRA, however, industrial wastes were discharged into unlined landfills and waste pits, streams, sewers, and ponds. Releases from these areas as well as from underground tanks have occurred. As a result, there are numerous sites of soil, groundwater, and surface water contamination on Base.

#### 2.2 Site Description and History

FTA2 is located in the south-central portion of Tinker AFB (Figure 1-2). The site is located northwest of the control tower and north of Crutcho Creek. FTA2 was established as a temporary, unlined pit and was used infrequently between 1962 and 1966. Standard operating procedures (SOP) included adding water to the pit to saturate the soil and reduce infiltration. Fuel was then brought in by tank truck, placed on top of the water, ignited, and extinguished using water and a protein-based foam. Any residues were left in the pit to evaporate and infiltrate prior to the next fire training exercise. Records for construction, operation, or destruction do not exist, so data on composition, frequency, and quantity of fuel used is not available and it is assumed that the site was simply abandoned. The site now appears as a gently sloping grassy area with no visible signs of its past use as a fire training area. During

an IRP Response Action performed by the U.S. Army Corps of Engineers (USACE) (December 1988), soil beneath the site was analyzed for volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and total metals. This investigation revealed that more information was needed concerning background concentrations of metals in the soil in this portion of Tinker AFB.

#### 2.3 Regulatory History and Status

In 1980, Congress passed the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to address the cleanup of hazardous waste disposal sites across the country. CERCLA gave the president authority to require responsible parties to remediate the sites or to undertake response actions through use of a fund (the Superfund). The president, through Executive Order 12580, delegated the EPA with the responsibility to investigate and remediate private party hazardous waste disposal sites that created a threat to human health or the environment. The president delegated responsibility for investigation and cleanup of federal facility disposal sites to the various federal agency heads. The Defense Environmental Restoration Program (DERP) was formally established by Congress in Title 10 U.S. Code (USC) 2701-2707 and 2810. DERP provides centralized management for the cleanup of U.S. Department of Defense (DOD) hazardous waste sites consistent with the provisions of CERCLA, as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (40 Code of Federal Regulations [CFR] 300), and Executive Order 12580. To support the goals of the DERP, the IRP was developed to identify, investigate, and clean up contamination at installations.

Under the Air Force IRP, Tinker AFB began a Phase I study similar to a preliminary assessment/site investigation (PA/SI) in 1981 (Engineering Science [ES], 1982). This study helped locate 14 sites that needed further investigation. Phase II studies were performed in 1983 (Radian Corporation [Radian], 1985a).

In 1986, Congress amended CERCLA through the SARA, which waived sovereign immunity for federal facilities. SARA gave EPA authority to oversee the cleanup of federal facilities and to have the final authority for selecting the remedial action at federal facilities placed on the National Priorities List (NPL) if the EPA and the relevant federal agency cannot concur in the selection. Congress also codified the DERP (SARA Section 211), setting up a fund for the DOD to remediate its sites because the Superfund is not available for the cleanup of

federal facilities. DERP specifies the type of cleanup responses that the fund can be used to address.

In response to SARA, the DOD realigned its IRP to follow the investigation and cleanup stages of the EPA:

- PA/SI
- Remedial investigation/feasibility study (RI/FS)
- Record of Decision (ROD) for selection of a remedial action
- Remedial design/remedial action.

In 1984, Congress amended the RCRA with the Hazardous and Solid Waste Amendments (HSWA) which allow the EPA to require, as a permit condition, a facility to undertake corrective action for any release of hazardous waste or constituents from any SWMU at a treatment, storage, and disposal (TSD) facility. On January 12, 1989 Tinker AFB submitted its Part B permit application for renewal of its operating RCRA hazardous waste storage facility permit.

EPA, in the Hazardous Waste Management Permit for Tinker AFB dated July 1, 1991, identified 43 SWMUs and two AOCs on Tinker AFB that need to be addressed. This permit requires Tinker AFB to investigate all SWMUs and AOCs and to perform corrective action at those identified as posing a threat to human health or the environment. This RFI Report has been prepared to determine whether sufficient investigations have been conducted to meet the permit requirements for FTA2 and to document all findings.

#### 2.4 Summary of Previous Investigations

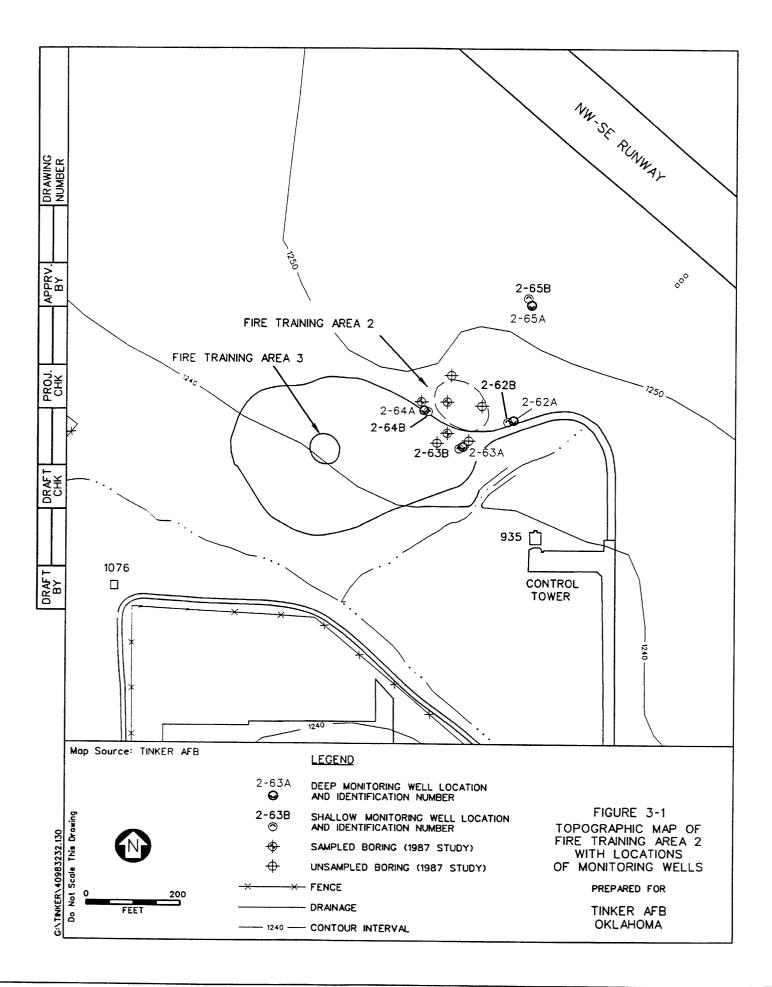
An IRP Response Action was performed by the USACE (December 1988) in which soil beneath the site was analyzed for VOCs, SVOCs, and total metals. Three soil borings were drilled and soil samples were collected from the following depths: 0 to 1 foot, 1 to 4 feet, and 4 to 7 feet (total depth due to auger refusal). VOCs included the detection of methylene chloride in 8 of 11 samples and acetone in 3 of 11 samples. The only SVOC detected in 4 of 11 samples was bis(2-ethylhexyl)phthalate. Six metals including barium, cadmium, mercury, nickel, lead, and selenium were detected in samples at or above background level averages established by analyzing a total of 16 samples from four Base perimeter borings.

The investigation performed at FTA2 identified that no contamination exists at the site, but revealed that more information was needed concerning background concentrations of metals in the soil in this portion of Tinker AFB.

#### 3.0 Environmental Setting

#### 3.1 Topography and Drainage

#### 3.1.1 Topography


Regional/Tinker AFB. The topography of Oklahoma City and surrounding area varies from generally level to gently rolling in appearance. Local relief is primarily the result of dissection by erosional activity or stream channel development. At Oklahoma City, surface elevations are typically in the range of 1,070 to 1,400 feet mean sea level (msl). At Tinker AFB ground surface elevations vary from 1,190 feet msl near the northwest corner where Crutcho Creek intersects the Base boundary to approximately 1,320 feet msl at Area D (EID), located on 59th Street, east of the main installation.

**Site.** In the vicinity of FTA2 the topography slopes gently to the southwest, away from the air field runways and toward Crutcho Creek (Figure 3-1). The sloping topography is modified by the incised channel of a southwest-flowing tributary to Crutcho Creek. The channel of this tributary is approximately 5 to 10 feet below the grade of the surrounding terrain.

#### 3.1.2 Drainage

Regional/Tinker AFB. Drainage of Tinker AFB land areas is accomplished by overland flow of runoff to diversion structures and thence to area surface streams, which flow intermittently. The northeast portion of the Base is drained primarily by tributaries of Soldier Creek. The north and west sections of the Base including the main instrument runway, drain to Crutcho Creek, a tributary of the North Canadian River. Two small unnamed intermittent streams crossing installation boundaries south of the main instrument runway generally do not receive significant quantities of Base runoff due to site grading designed to preclude such drainage. These streams, when flowing, extend to Stanley Draper Lake, approximately one-half mile south of the Base.

**Site.** Surface waters in the area of FTA2 drain by overland flow to the southwest toward Crutcho Creek, which flows to the northwest. In a part of the area around SWMU-8, overland flow is toward a southwest-draining tributary to Crutcho Creek (Figrue 3-1). The



southwest-draining tributary emerges from a culvert located approximately 200 feet east of the SWMU. The tributary drains an area on the east side of the airfield occupied by industrial facilities.

#### 3.2 Geology

#### 3.2.1 Regional/Tinker AFB Geology

Tinker AFB is located within the Central Redbed Plain Section of the Central Lowland Physiographic Province, which is tectonically stable. No major fault or fracture zones have been mapped near Tinker AFB. The major lithologic units in the area of the Base are relatively flat-lying and have a regional westward dip of about 0.0076 foot per foot (ft/ft) (Bingham and Moore, 1975).

Geologic formations that underlie Tinker AFB include, from oldest to youngest, the Wellington Formation, Garber Sandstone, and the Hennessey Group; all are Permian in age.

All geologic units immediately underlying Tinker AFB are sedimentary in origin. The Garber Sandstone and Wellington Formation are commonly referred to as the Garber-Wellington Formation due to strong lithologic similarities. These formations are characterized by fine-grained, calcareously-cemented sandstones interbedded with shale. The Hennessey Group consists of the Fairmont Shale and the Kingman Siltstone. It overlies the Garber-Wellington Formation along the eastern portion of Cleveland and Oklahoma counties. Quaternary alluvium is found in many undisturbed streambeds and channels located within the area.

Stratigraphy. Tinker AFB lies atop a sedimentary rock column composed of strata that ranges in age from Cambrian to Permian above a Precambrian igneous basement. Quaternary alluvium and terrace deposits can be found overlying bedrock in and near present-day stream valleys. At Tinker AFB, Quaternary deposits consist of unconsolidated weathered bedrock, fill material, windblown sand, and interfingering lenses of sand, silt, clay, and gravel of fluvial origin. The terrace deposits are exposed where stream valleys have downcut through older strata and have left them topographically above present-day deposits. Alluvial sediments range in thickness from less than a foot to nearly 20 feet.

Subsurface (bedrock) geologic units that outcrop at Tinker AFB and are important to understanding groundwater and contaminant concerns at the Base consist of, in descending order: the Hennessey Group, the Garber Sandstone, and the Wellington Formation (Table 3-1). These bedrock units were deposited during the Permian age (230 to 280 million years ago) and are typical of redbed deposits formed during that period. The units are composed of a conformable sequence of sandstones, siltstones, and shales. Individual beds are lenticular and vary in thickness over short horizontal distances. Because lithologies are similar and because of a lack of fossils or key beds, the Garber Sandstone and the Wellington Formation are difficult to distinguish and are often informally lumped together as the Garber-Wellington Formation. Together, they are about 900 feet thick at Tinker AFB. The interconnected, lenticular nature of sandstones within the sequence forms complex pathways for groundwater movement.

The surficial geology of the north section of the Base is dominated by the Garber Sandstone, which outcrops across a broad area of Oklahoma County. Generally, the Garber outcrop is covered by a thin veneer of soil and/or alluvium up to 20 feet thick. To the south, the Garber Sandstone is overlain by outcropping strata of the Hennessey Group including the Kingman Siltstone and the Fairmont Shale (Bingham and Moore, 1975). Drilling information obtained as a result of geotechnical investigations and monitoring well installation confirms the presence of these units.

Depositional Environment. The Permian-age strata presently exposed at the surface in central Oklahoma were deposited along a low-lying north-south oriented coastline. Land features included meandering to braided sediment-loaded streams that flowed generally westward from highlands to the east (ancestral Ozarks). Sand dunes were common as were cut-off stream segments that rapidly evaporated. The climate was arid and vegetation sparse. Offshore the sea was shallow and deepened very gradually to the west. The shoreline's position varied over a wide range. Isolated evaporitic basins frequently formed as the shoreline shifted.

Across Oklahoma, this depositional environment resulted in an interfingering collage of fluviatile and windblown sands, clays, shallow marine shales, and evaporite deposits. The overloaded streams and evaporitic basins acted as sumps for heavy metals such as barium, chromium, iron, and lead. Oxidation of iron in the arid climate resulted in the reddish color

Table 3-1

# Major Geologic Units in the Vicinity of Tinker AFB (Modified from Wood and Burton, 1968) Tinker AFB

(Page 1 of 2)

| Water-Bearing Properties     | Moderately permeable. Yields small to moderate quantities of water in valleys of larger streams. Water is very hard, but suitable for most uses, unless contaminated by industrial wastes or oil field brines. | Moderately permeable. Locally above the water table and not saturated. Where deposits have sufficient saturated thickness, they are capable of yielding moderate quantities of water to wells. Water is moderately hard to very hard, but less mineralized than water in other aquifers. Suitable for most uses unless contaminated by oil field brines. |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description and Distribution | Unconsolidated and interfingering lenses of sand, silt, clay, and gravel in the flood plains and channels of stream                                                                                            | Unconsolidated and interfingering lenses of sand, silt, gravel, and clay that occur at one or more levels above the flood plains of the principal streams.                                                                                                                                                                                               |
| Thickness<br>(feet)          | 0-70                                                                                                                                                                                                           | 0-100                                                                                                                                                                                                                                                                                                                                                    |
| Stratigraphic<br>Unit        | Alluvium                                                                                                                                                                                                       | Terrace<br>deposits                                                                                                                                                                                                                                                                                                                                      |
| Series                       | d ¬ш− о ⊢ о о ш z ш                                                                                                                                                                                            | < Z ○                                                                                                                                                                                                                                                                                                                                                    |
| System                       | О⊃∢⊢шш                                                                                                                                                                                                         | Z∢α≻                                                                                                                                                                                                                                                                                                                                                     |

Table 3-1

(Page 2 of 2)

| ·                            | 1                                                                                                                                                                                       |                                                                                                                                                                                                                                    |                                                                                                                                                                                           |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water-Bearing Properties     | Poorly permeable. Yields meager quantities or very hard, moderately to highly mineralized water to shallow domestic and stock wells. In places water contains large amounts of sulfate. | Poorly to moderately permeable. Important source of groundwater in Cleveland and Oklahoma counties. Yields small to moderate quantities of water to deep wells; heavily pumped for industrial and municipal uses in the Norman and | Midwest City areas. Water from shallow wells hard to very hard; water from deep wells moderately hard to soft. Lower part contains water too salty for domestic and most industrial uses. |
| Description and Distribution | Deep-red clay shale containing thin beds of red sandstone and white or greenish bands of sandy or limey shale. Forms relatively flat to gently rolling grass-covered prairie.           | Deep-red clay to reddish-orange,<br>massive and cross-bedded fine-grained<br>sandstone interbedded and interfingered<br>with red shale and siltstone                                                                               | Deep-red to reddish-orange massive and cross-bedded fine-grained sandstone interbedded with red, purple, maroon, and gray shale. Base of formation not exposed in the area.               |
| Thickness<br>(feet)          | 700                                                                                                                                                                                     | 200 <del>1</del>                                                                                                                                                                                                                   | 500 <u>+</u>                                                                                                                                                                              |
| Stratigraphic<br>Unit        | Hennessey<br>Group (includes<br>Kingman<br>Siltstone and<br>Fairmont Shale)                                                                                                             | Garber<br>Sandstone                                                                                                                                                                                                                | Wellington<br>Formation                                                                                                                                                                   |
| Series                       | о≽шк сшк∑                                                                                                                                                                               | - ∢ Z                                                                                                                                                                                                                              |                                                                                                                                                                                           |
| System                       | υшα∑−∢z                                                                                                                                                                                 |                                                                                                                                                                                                                                    |                                                                                                                                                                                           |

of many of the sediments. Erosion and chemical breakdown of granitic rocks from the highlands result in extensive clay deposits. Evaporite minerals such as anhydrite (CaSO<sub>4</sub>), barite (BaSO<sub>4</sub>), and gypsum (CaSO<sub>4</sub>•2H<sub>2</sub>O) are common.

Around Tinker AFB, the Hennessey Group represents deposition in a tidal flat environment cut by shallow, narrow channels. The Hennessey Group comprises predominantly red shales, which contain thin beds of sandstone (less than 10 feet thick) and siltstone. In outcrops, "mudball" conglomerates, burrow surfaces, and desiccation cracks are recognized. These units outcrop over roughly the southern half of the Base, thickening to approximately 70 feet in the southwest from their erosional edge (zero thickness) across the central part of Tinker AFB.

In contrast, the Garber Sandstone and Wellington Formation around Tinker AFB consist of an irregularly interbedded system of lenticular sandstones, siltstones, and shales deposited either in meandering streams in the upper reaches of a delta or in a braided stream environment. Outcrop units north of Tinker AFB exhibit many small to medium channels with cut and fill geometries consistent with a stream setting. Sandstones are typically cross-bedded. Individual beds range in thickness from a few inches to about 50 feet and appear massive, but thicker units are often formed from a series of "stacked" thinner beds. Geophysical and lithologic well logs indicate that from 65 to 75 percent of the Garber Sandstone and the Wellington Formation are composed of sandstone at Tinker AFB. The percentage of sandstone in the section decreases to the north, south, and west of the Base. These sandstones are typically fine to very fine grained, friable, and poorly cemented. However, where sandstone is cemented by red muds or by secondary carbonate or iron cements, local thin "hard" intervals exist along disconformities at the base of sandstone beds. Shales are described as ranging from clayey to sandy, are generally discontinuous, and range in thickness from a few inches to about 40 feet.

Stratigraphic Correlation. Correlation of geologic units is difficult due to the discontinuous nature of the sandstone and shale beds. However, cross sections demonstrate that two stratigraphic intervals can be correlated over most of the Base in the conceptual model. The location of these cross sections is shown in Figure 3-2. These intervals are represented on geologic cross-sections A-A' and B-B' in Figures 3-3 and 3-4. Section A-A' is roughly a dip section and B-B' is approximately a strike section. The first correlatable interval is marked by the base of the Hennessey Group and the first sandstone at the top of the Garber Sandstone. This interval is mappable over the southern half of Tinker AFB. The second interval

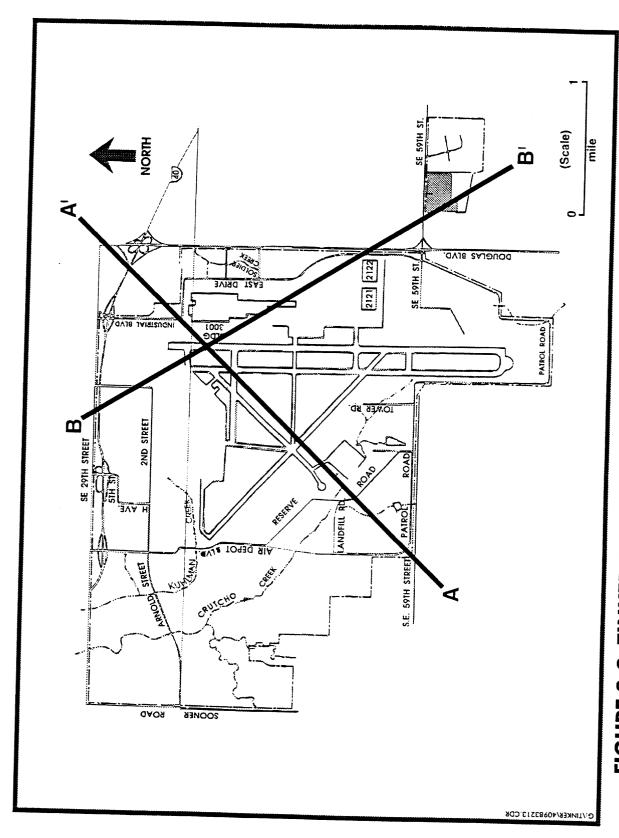



FIGURE 3-2 TINKER AFB GEOLOGIC CROSS SECTION LOCATION MAP

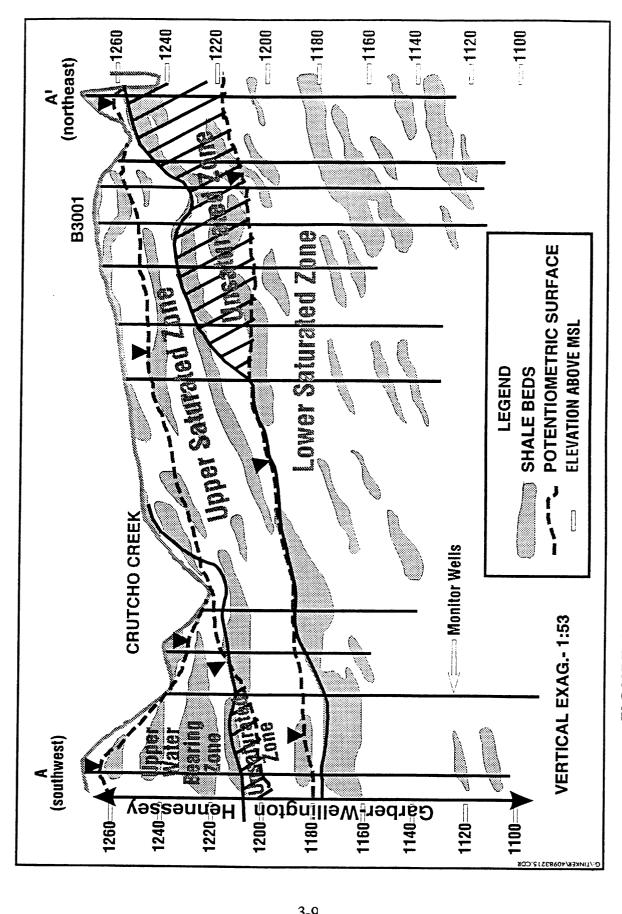
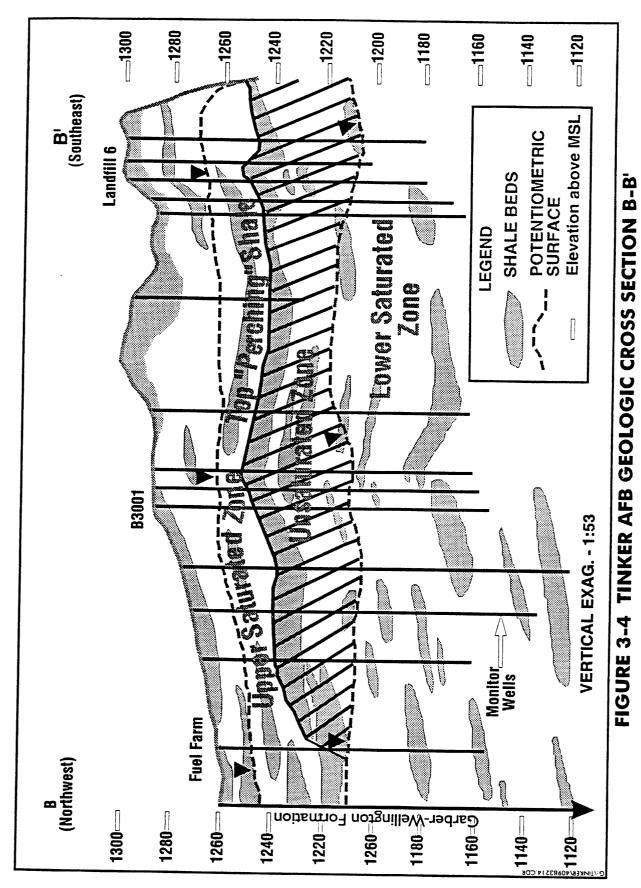




FIGURE 3-3 TINKER AFB GEOLOGIC CROSS SECTION A-A'



3-10

consists of a shale zone within the Garber Sandstone, which, in places, comprises a single shale layer and in other places multiple shale layers. This interval is more continuous than other shale intervals and in cross sections appears mappable over a large part of the Base. It is extrapolated under the central portion of Tinker AFB where little well control exists.

**Structure.** Tinker AFB lies within a tectonically stable area; no major near-surface faults or fracture zones have been mapped near the Base. Most of the consolidated rock units of the Oklahoma City area dip westward at a low angle. A regional dip of 0.0057 to 0.0076 ft/ft in a generally westward direction is supported by stratigraphic correlation on geologic cross sections at Tinker AFB. Bedrock units strike slightly west of north.

Although Tinker AFB lies in a tectonically stable area, regional dips are interrupted by buried structural features located west of the Base. A published east to west generalized geologic cross section, which includes Tinker AFB supports the existence of a northwest trending structural trough or syncline located near the western margin of the Base. The syncline is mapped adjacent to and just east of a faulted anticlinal structure located beneath the Oklahoma City Oil Field. The fault does not appear to offset Permian-age strata. There are indications that the syncline may act as a "sink" for some regional groundwater (southwest flow) at Tinker AFB before it continues to more distant discharge points.

#### 3.2.2 Site Geology

Soil borings were completed at four locations at FTA2. The borings extended to depths between 67 and 79 feet. Geophysical logs, natural gamma, self potential (SP), resistivity, and caliper logs were run in the borings. Monitoring wells were also installed at each of the soil boring locations. Figure 4-1 shows the soil boring locations. Figure 5-2 is a geologic cross section illustrating the subsurface stratigraphy at FTA2. FTA2 is located within the outcrop area of the Hennessey Group. The soil borings encountered the underlying Garber-Wellington Formation. Site geology is discussed further in Chapter 5.0.

#### 3.3 Hydrology

#### 3.3.1 Regional/Tinker AFB Hydrology

The most important source of potable groundwater in the Oklahoma City metropolitan area is the Central Oklahoma aquifer system. This aquifer extends under much of central Oklahoma and includes water in the Garber Sandstone and Wellington Formation, the overlying alluvium and terrace deposits, and the underlying Chase, Council Grove, and Admire Groups. The

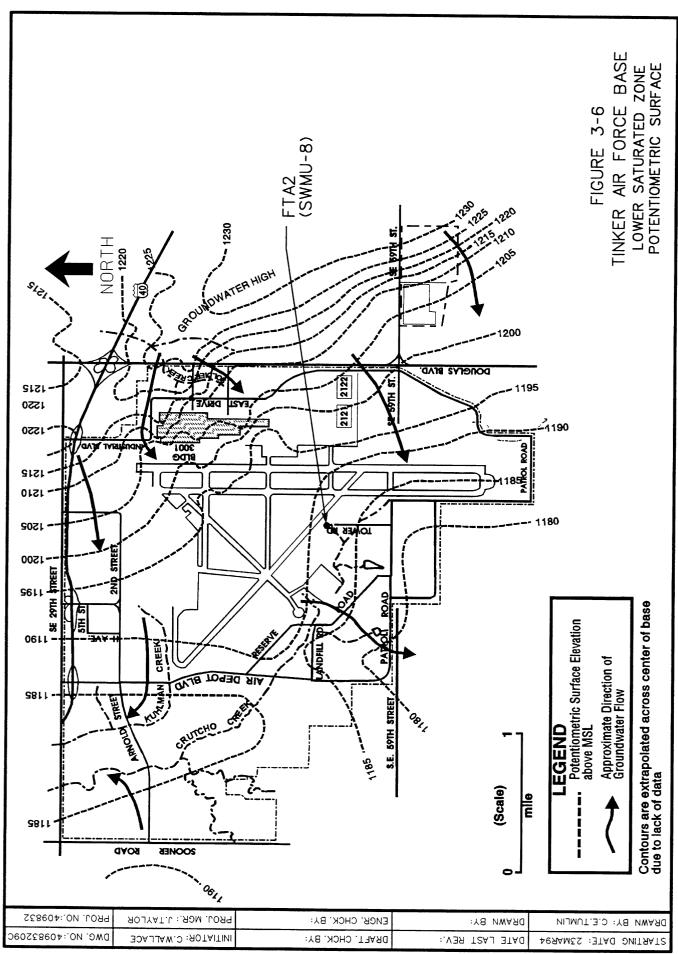
Garber Sandstone and the Wellington Formation portion of the Central Oklahoma aquifer system is commonly referred to as the "Garber-Wellington aquifer" and is considered to be a single aquifer because these units were deposited under similar conditions and because many of the best producing wells are completed in this zone. On a regional scale, the aquifer is confined above by the less permeable Hennessey Group and below by the Late Pennsylvanian Vanoss Group.

Tinker AFB lies within the limits of the Garber-Wellington groundwater basin. Presently, Tinker AFB derives most of its water supply from this aquifer and supplements the supply by purchasing water from the Oklahoma City Water Department. The nearby communities of Midwest City and Del City derive water supplies from both surface sources and wells tapping the aquifer. Industrial operations, individual homes, farm irrigation, and small communities not served by a municipal distribution system also depend on the Garber-Wellington aquifer. Communities presently depending upon surface supplies such as Oklahoma City also maintain a well system drilled into the Garber-Wellington aquifer as a standby source of water in the event of drought.

Recharge of the Garber-Wellington aquifer is accomplished principally by percolation of surface waters crossing the area of outcrop and by rainfall infiltration in this same area. Because most of Tinker AFB is located in an aquifer outcrop area, the Base is considered to be situated in a recharge zone.

According to Wood and Burton (1968) and Wickersham (1979), the quality of groundwater derived from the Garber-Wellington aquifer is generally good, although wide variations in the concentrations of some constituents are known to occur. Wells drilled to excessive depths may encounter a saline zone, generally greater than 900 feet below ground surface. Wells drilled to such depths or those accidentally encountering the saline zone are either grouted over the lowest screens or may be abandoned.

Tinker AFB presently obtains its water supplies from a distribution system comprised of 29 water wells constructed along the east and west Base boundaries and by purchase from the Oklahoma City Water Department. All Base wells are finished into the Garber-Wellington aquifer. Base wells range from 700 to 900 feet in finished depth, with yields ranging from 205 to 250 gallons per minute. The wells incorporate multiple screens, deriving water supplies from sand zones with a combined thickness from 103 to 184 feet (Wickersham, 1979).


Conceptual Hydrologic Model. The hydrologic conceptual model of Tinker AFB involves a comprehensive review of available data, including those from direct measurement sources (borings, water level measurements, pump/slug tests, stream studies) as well as indirect sources (aerial photographs, topographic maps, published reports). The hydrologic system at Tinker AFB is complex, but the model provides both an approximation of depth to water and an estimated direction of groundwater movement and is therefore useful as a basis for designing field investigations. As information is derived from investigations, the model is continually updated and refined.

Groundwater. As a result of ongoing environmental investigations and the approximately 450 groundwater monitoring wells installed on the Base during various investigations, a better understanding of the specific hydrological framework has emerged. The current conceptual model developed by Tinker AFB (Tinker, 1993), based on the increased understanding of the hydrological framework, has been revised from a previous model adopted by the U.S. Army Corps of Engineers (USACE). Previous studies reported that groundwater was divided into four water bearing zones: the perched aquifer, the top of regional aquifer, the regional aquifer, and the producing zone. In the current model, two principal water table aquifer zones and a third less extensive zone have been identified. The third is limited to the southwest quadrant. The third aquifer zone consisted of saturated siltstone and thin sandstone beds in the Hennessey Shale and equates to the upper water bearing zone (UWBZ) described by the USACE at Landfills 1 through 4 (SWMUs-3 through -6). In addition, numerous shallow, thin saturated beds of siltstone and sandstone exist throughout the Base. These beds are of limited areal extent and are often perched.

In the current conceptual hydrologic model by Tinker AFB, an upper saturated zone (USZ) and a lower saturated zone (LSZ) are recognized in the interval from ground surface to approximately 200 feet. Below this depth is found the producing zone from which the Base draws much of its water supply. Figure 3-5 shows the potentiometric surface for the USZ and Figure 3-6 shows the potentiometric surface for the LSZ. The USZ exists under water table (unconfined) conditions, but may be partially confined locally. Conditions in the LSZ are difficult to determine due to screen placement and overlie long sand packs below the screen interval.

The USZ is found at a depth of 5 to 70 feet below ground surface and has a saturated thickness ranging from less than 1 foot at its eastern boundary to more than 20 feet in places west of Building 3001. The USZ is erosionally truncated by Soldier Creek along the





northeastern margin of Tinker AFB. This aquifer zone is considered to be a perched aquifer over the eastern one-third of Tinker AFB, where it is separated from the LSZ by an underlying confining shale layer and a vadose zone. The confining interval extends across the entire Base, but the vadose zone exists over the eastern one-third of this area. The available hydrologic data indicate that the vadose zone does not exist west of a north-south line located approximately 500 to 1,000 feet west of the main runway; consequently, the USZ is not perched west of this line. However, based on potentiometric head data from wells screened above and below the confining shale layer, the USZ remains a discrete aquifer zone distinct from the LSZ even over the western part of the Base. In areas where several shales interfinger to form the lower confining interval rather than a single shale bed, "gaps" may occur. In general, these gaps are not holes in the shale but are places where multiple shales exist that are separated by slightly more permeable strata. Hydrologic data from monitoring wells indicate that these zones allow increased downward flow of groundwater above what normally leaks through the confining layer.

The LSZ is hydraulically interconnected and can be considered one aquifer zone down to approximately 200 feet. This area includes what was referred to by the USACE as the top of regional and regional zones. Hydrologic data from wells screened at different depths at the same location within this zone, however, provide evidence that locally a significant vertical (downward) component of groundwater flow exists in conjunction with lateral flow. The magnitude of the vertical component is highly variable over the Base. Preliminary evidence suggests that the LSZ is hydraulically discrete from the producing zone. Due to variations in topography the top of the lower zone is found at depths ranging from 50 to 100 feet below ground surface under the eastern parts of the Base and as shallow as 30 feet to the west. Differences in potentiometric head values found at successive depths are due to a vertical (downward) component of groundwater flow in addition to lateral flow and the presence or absence of shale layers that locally confine the aquifer system. The LSZ extends east of the Base (east of Soldier Creek) beyond the limits of the USZ where it becomes the first groundwater zone encountered in off-Base wells. Because of the regional dip of bedding, groundwater gradient, and topography, the LSZ just east of the Base is generally encountered at depths of less than 20 feet.

Across the central portion of Tinker AFB, the unsaturated zone separating the USZ and LSZ disappears where the intervening shale layer dips below the surface of the LSZ. The disappearance of the unsaturated zone is supported by data from recently completed wells just west of the north-south runway and near Base Operations and by data from wells in the southwest

portion of the Base. Measured water levels in two of the new wells show that the LSZ is confined at these locations by the shale separating the USZ and LSZ. No unsaturated interval is present.

To the southwest, measured water levels from wells screened in the Garber Sandstone at Landfills 2 and 4, SWMUs-4 and -6, which correspond in the conceptual model to the USZ under the east part of the Base, show that the USZ remains unconfined or is partially confined. This zone is essentially the first water level encountered in the Garber Sandstone on the Base. Potentiometric data from wells in the southwest screened in deeper intervals, that correspond roughly to the LSZ to the east indicate that the LSZ is confined in this area. Data from wells screened at various intervals to a depth of about 90 feet in this area also show that no vadose (unsaturated) zone separates the USZ from the rest of the aquifer. The upper and lower zones cannot be distinguished in this area except by correlating geologic units across Base.

Farther to the southwest of the landfills, near the edge of the Base, another unsaturated zone is found separating groundwater in the Hennessey Group from the Garber-Wellington aquifer. This unsaturated zone is not continuous with that encountered on the east side of the Base. The groundwater in the overlying Hennessey water bearing zone represents the third groundwater zone of more limited areal extent mentioned previously. This shallow unconfined aquifer system is located on a topographic high (groundwater divide) in the strata of the Hennessey Group. Radial flow of groundwater off the divide toward nearby tributaries of Crutcho Creek is suggested from limited water level measurements. Additional shallow perched saturated zones of limited areal extent are thought to exist in other sandstone and siltstone beds within the Hennessey water bearing zone. Along the western margin of Tinker AFB west of Crutcho Creek, the shallow groundwater in the Hennessey water bearing zone and probably groundwater in the most shallow saturated zones in the Garber-Wellington aquifer appears to flow toward stream tributaries, and therefore, does not follow regional flow patterns to the west/southwest.

The aquifer zones in the conceptual model are hydraulically connected, although sometimes only to a very local extent, either directly as in the west part of the Base or indirectly through leakage and/or recharge patterns related to local streams. Because Tinker AFB is located in a recharge zone for the Central Oklahoma aquifer both horizontal and vertical (downward) components of groundwater flow exist. Measured potentiometric levels from well clusters with screens and filter packs placed at varying depths within the LSZ show that hydraulic

heads decrease with depth and that the magnitude of the vertical component of flow varies with location. This finding is particularly important to recognize where data from these wells are being used to generate potentiometric contour maps.

Although the variability in the geology and the recharge system at Tinker AFB makes it difficult to predict local flow paths, Central Oklahoma aquifer water table data taken from the 1992 USGS Hydrologic Atlas show that regional groundwater flow under Tinker AFB varies from west/northwest to southwest depending on location. This finding is supported by contoured potentiometric data from Base monitoring wells, which show groundwater movement in the upper aquifer zones to generally follow regional dip. Measured normal to potentiometric contours, groundwater flow gradients range from 0.0019 to 0.0057 ft/ft. However, because flow in the near surface portions of the aquifer at Tinker AFB is strongly influenced by topography, local stream-based levels, complex subsurface geology and location in a recharge area, both direction and magnitude of groundwater movement is highly variable. The interaction of these factors not only influences regional flow, but gives rise to complicated local, often transient, flow patterns at individual sites.

Several examples demonstrate this variability. Historical water level data around Crutcho Creek indicate that groundwater flow in that area is predominantly to the southwest. However, during high flow conditions bank recharge occurs and shallow local flow patterns near the creek may be reversed. This pattern is probably in effect at other streams as well. In the northeast quadrant of the Base, several factors contribute to groundwater "mounding" in the USZ and to formation of a groundwater high in the LSZ. This mounding leads to radial or semiradial groundwater flow at shallow depths. Finally, in the northeast part of the Base where sufficient data exist, comparison of potentiometric contours from successively deeper levels in the LSZ suggests that groundwater flow directions change with depth, gradually turning from west/southwest to northwest. This change in regional flow is attributed either to effects of pumping from deep water supply wells in the area and/or to the presence of the Deep Fork River located to the north. This river, along with the Canadian River south of Tinker AFB, has been demonstrated by the USGS to act as a major discharge point for regional groundwater in Central Oklahoma.

**Surface Water.** The interaction of surface water with groundwater is an important factor in predicting local groundwater flow patterns at Tinker AFB. Although no technical stream study data are presently available to determine what degree of interaction occurs between streams and groundwater, some qualitative observations provide clues to the importance of

this system. The direction of stream flow on Tinker AFB appears to be controlled largely by a topographic divide that extends from southwest to northeast across the south part of the Base. Streams that originate on the north side of the divide flow to the north, including Soldier Creek, Crutcho Creek, and Kuhlman Creek. Elm Creek, which has its origin on the southeast side, flows to the south. Streams that flow northward become perennial before leaving the Base and with no other constant source of water available are considered to be recharged by the aquifer (gaining streams). Some data indicate, however, that these streams become dry north of the Base during periods of lower precipitation and lose water to the aquifer (losing streams). Information from wells and piezometers near the ponded section of Soldier Creek at the industrial wastewater treatment plant also suggests that the pond contributes to the groundwater (a losing stream) in the LSZ at that location. Portions of Soldier Creek tributaries (near their headwaters, off-Base) flow only intermittently and probably recharge the aquifer through infiltration during periods of higher precipitation. Finally, where groundwater and stream elevations are the same, the observed direction of groundwater flow may be affected by transient factors such as bank storage from periods of increased precipitation.

Man-Made Structures. In the conceptual model of Tinker AFB, it is recognized that man-made features such as buried utilities (storm drains, waste lines) may further complicate the shallow groundwater situation. An additional problem encountered in generating the model involves improper monitoring well construction practices, which not only may contribute preferred pathways for groundwater (and contaminant) movement where wells have multiple screens or overlie long filter packs, but also often provide nonrepresentative, biased groundwater, and sample data.

The complex groundwater system at Tinker AFB makes correct placement and construction of monitoring and extraction wells critical. A good understanding of the conceptual hydrologic framework is essential to obtain representative data and to minimize errors. An integrated hydrologic conceptual model provides an overview of the groundwater system and leads in turn to more effective site project management.

# 3.3.2 Site Hydrology

Wells were installed in both the USZ and the LSZ at FTA2. The elevations of the potentiometric surface of the USZ at the site range from 1231.64 feet above msl at monitoring well (MW) 2-63B to 1234.53 feet above msl at MW2-65B, the upgradient well (Figure 5-3). The

hydraulic gradient is approximately 0.0076 ft/ft. The general groundwater flow direction is approximately south-southwest towards Crutcho Creek.

Elevations of the potentiometric surface of the LSZ at the site range from 1187.94 feet above msl at MW2-64A to 1190.18 feet above msl at MW2-65A, the upgradient well (Figure 5-4). The hydraulic gradient is approximately 0.0078 ft/ft. The general groundwater flow direction is to the southwest. Site hydrology is discussed further in Chapter 5.0.

#### 3.4 Soils

The surface soils of Tinker AFB have been studied by the U.S. Department of Agriculture (USDA), Soil Conservation Service (1969) and by several soil boring projects conducted for geotechnical (foundation construction) investigations. Surface soils of the installation area are predominantly of two basic types: residual and alluvial. The three major soil associations (Table 3-2) mapped within installation limits are Darrell-Stephenville, Renfrow-Vernon-Bethany, and Dale-Canadian-Port. The residual soils associations, Darrell-Stephenville and Renfrow-Vernon-Bethany are the products of the weathering of underlying bedrock. The alluvial materials of the Dale-Canadian-Port association are stream-deposited silts and sands, which are typically restricted to floodplains of area streams.

Table 3-2

Tinker AFB Soil Associations
(Source: USDA, 1969)

| Association                                                             | Description                                                  | Thickness<br>(in.) | Unified<br>Classification <sup>a</sup> | Permeability<br>(in./hr) |
|-------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|----------------------------------------|--------------------------|
| Darrell-Stephenville: loamy soils of wooded uplands                     | Sandy loam Sandy clay loam Soft sandstone (Garber Sandstone) | 12-54              | SM,ML,SC                               | 2.0-6.30                 |
| Renfrow-Vernon-Bethany:<br>loamy and clayey soils on<br>prairie uplands | Silt loam - clay<br>Clay loam<br>Shale<br>(Fairmont Shale)   | 12-60              | ML,CL,MH,CH                            | <0.60-0.20               |
| Dale-Canadian-Port: loamy<br>soil on low benches near large<br>streams  | Fine sandy loam<br>Silty clay loam<br>Loam<br>Clay loam      | 12-60              | SM,ML,CL                               | 0.05-6.30                |

<sup>&</sup>lt;sup>a</sup>Unified classifications defined in U.S. Bureau of Reclamation, 5005-86.

# 4.0 Description of Investigative Methods

The Phase I field investigation of the subsurface conditions at FTA2 was conducted from October through December 1993. All activities conducted during the field investigation program were performed in accordance with the Work Plan, the Data Management Plan, the Data Collection Quality Assurance Plan, the Health and Safety Plan, and their Amendments (IT, 1993b). As a Phase I investigation, field activities were designed to provide information on subsurface lithologies and the existence and nature of contamination, if any, in the soils and/or groundwater beneath FTA2. Recommendations for further investigation are contained in Chapter 9.0. Field investigation activities described in the following sections included, but were not limited to, subsurface soil sampling followed by monitoring well installation and groundwater sampling (Table 4-1). A total of eight monitoring wells, four shallow and four deep, were installed at the site (Figure 4-1). In addition, a deep (100-foot) pilot hole was drilled at one of the sites.

# 4.1 Shallow Monitoring Well Installation

Four shallow monitoring wells were installed in the aquifer (USZ) to determine the existence and degree, if any, of groundwater contamination in the uppermost aquifer attributable to activities at this former fire training area. Groundwater flow at FTA2 was presumed to be toward the southwest based upon the Tinker AFB potentiometric surface maps for the USZ and LSZ (Figures 3-5 and 3-6). In addition, FTA2 lies north and northeast of Crutcho Creek and an unnamed tributary, respectively (Figure 4-1) which probably serve as discharge points for shallow groundwater intersecting the stream channels during low flow periods. However, during periods of high flow, this gradient could temporarily be reversed in the vicinity of the creeks due to bank recharge causing groundwater to flow in a northerly direction.

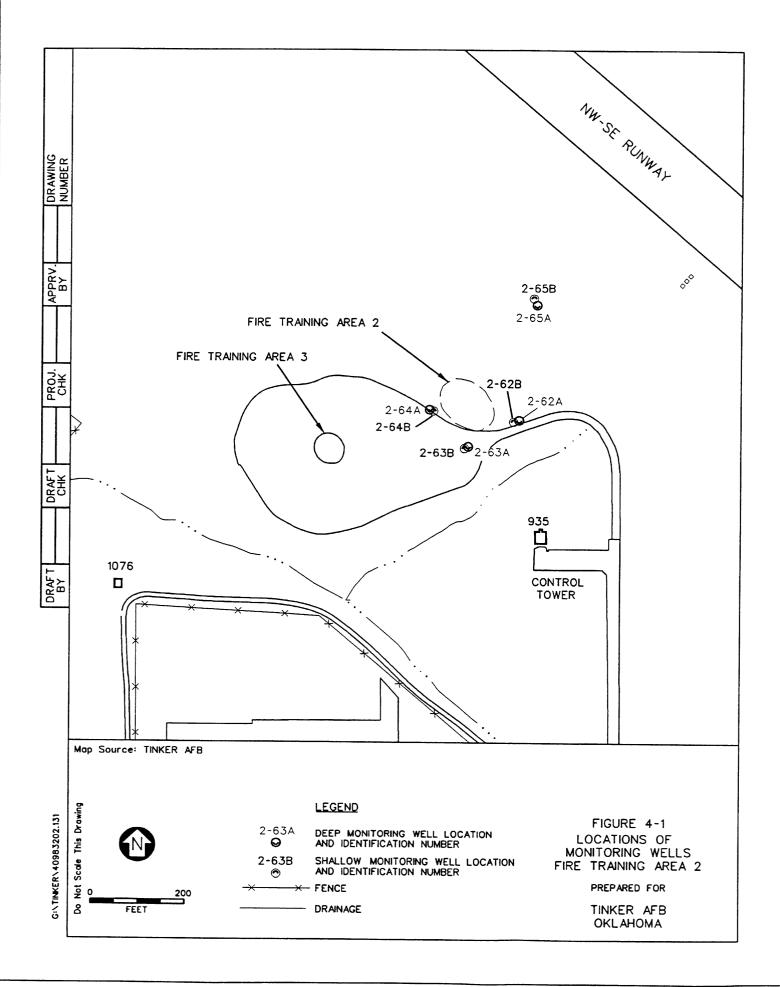
To establish background constituent levels shallow MW2-65B was placed upgradient, approximately 200 feet north-northeast of FTA2 (Figure 4-1). This upgradient location is a sufficient distance from the creek not to be affected by any localized shifts in groundwater flow due to bank recharge. Three shallow monitoring wells (MW2-62B, MW2-63B, and MW2-64B) were placed downgradient from FTA2 to the southeast, south, and southwest, respectively. Comparing analytical results from the upgradient well with results from the three downgradient wells makes it possible to determine whether constituents from this former fire training area are migrating into and adversely impacting the USZ.

H: DOCUMENTITINK ERA0983 2DOCSNIRE-TAB. 4: INCLC

Phenols - EPA Method 9066

Fire Training Area 2 Summary of RFI Field Activities Table 4-1

|                                         |                        | Cumulative               | Average                    | No. of Sa         | No. of Samples Collected for Chemical Analysis | sted for Ch | emical An       | alysis |                                                                             |                                      |
|-----------------------------------------|------------------------|--------------------------|----------------------------|-------------------|------------------------------------------------|-------------|-----------------|--------|-----------------------------------------------------------------------------|--------------------------------------|
| Type of Activity                        | Number of<br>Locations | Footage of Borings/Wells | Footage per<br>Boring/Well | Normal<br>Samples | Duplicates                                     | Rinsates    | Field<br>Blanks | Totals | Analyses Performed                                                          | Geotechnical <sup>1</sup><br>Samples |
| Shallow Monitoring<br>Well Installation | 4                      | 144                      | 36.0                       | 0                 | 0                                              | 0           | 0               | 0      | VOCs, SVOCs, Metals,                                                        | 0                                    |
| Deep Monitoring Well<br>Installation    | 4                      | 291                      | 72.8                       | 21                | -                                              | -           | 0               | 23     | VOCs, SVOCs, Metals                                                         | 2                                    |
| Stratigraphic Pilot<br>Boring           | -                      | 100                      | 100                        | 0                 | 0                                              | 0           | 0               | 0      | VOCs, SVOCs, Metals                                                         | 0                                    |
| TOTALS                                  | Ø.                     | 535                      | n/a                        | 21                | 1                                              | Ţ           | 0               | 23     |                                                                             | 2                                    |
| Shallow Well<br>Groundwater<br>Sampling | 4                      | n/a                      | n/a                        | 4                 | <del>-</del>                                   | 0           | -               | 9      | VOCs, SVOCs, TOCs,<br>TPH, Metals, Inorganic<br>Parameters, COD,<br>Phenols | n/a                                  |
| Deep Well<br>Groundwater<br>Sampling    | 4                      | n/a                      | n/a                        | 4                 | 0                                              | 0           | 0               | 4      | VOCs, SVOCs, TOCs,<br>TPH, Metals, Inorganic<br>Parameters, COD,<br>Phenols | n/a                                  |
| TOTALS                                  | 8                      | n/a                      | n/a                        | 8                 | _                                              | 0           | -               | 10     |                                                                             | n/a                                  |


Geotechnical analysis included grain size distribution, moisture content, cation exchange capacity, and vertical permeability. VOCs - Volatile Organic Compounds - EPA Method 8240

SVOCs - Semivolatile Organic Compounds - EPA Method 8270 Metals - EPA Method 6010-Al, Ag, As (EPA Method 7060), Ba, Be, Cd, Cr, hexavalent Cr (EPA Method 7196), Cu, Fe, Pb (EPA Method 7421), Ni, Zn, and Hg (EPA Method 7471)

TPH - Total Petroleum Hydrocarbon - EPA Method 418.1/9071

TOCs - Total Organic Carbon - EPA Method 415.1

Inorganic Parameters - PO4, SO4, CI, Si, Alkalinity, Total Dissolved Solids, Total Suspended Solids, Nitrate/Nitrite, Total Kjeldahl Nitrogen (TKN), Ca, Mg, Mn, Na, K COD - Chemical Oxygen Demand - EPA Method 410.1



Boreholes for the shallow monitoring wells were advanced with hollow-stem augers. Conditions permitting, boreholes were sampled continuously for lithologic purposes with 5-foot tube samplers. Upon encountering harder strata resulting in auger refusal, the continuous tube sampler was exchanged for a center bit making it possible to advance borings through less penetrable materials. Analytical samples were not collected from shallow monitoring well borings as they were drilled adjacent to the deep monitoring well borings which were analytically sampled.

Generally, once boreholes had been advanced to a target depth, augers were removed and geophysical logs run in the open hole to determine optimal well settings. The geophysical log suite included natural gamma, spontaneous-potential, and resistivity of the formation along with the caliper of the borehole. In some instances, borehole collapse prevented removal of the augers in which case only a natural gamma run could be made through the augers. Screen intervals were recommended based upon interpretation of geophysical and lithologic logs and were subject to final approval by the Tinker AFB project manager. Overdrilled boreholes were then replugged with bentonite chips or pellets to the depth at which well installation would begin.

After the borehole had been plugged back to the desired depth, the 2-inch stainless steel well string was lowered down hole. To prevent bowing of the casing, the well string was suspended from the surface rather than being allowed to rest at the bottom of the hole. With the well string centered in the borehole, the sand filter pack was poured from the surface to fill the annulus between the well string and the borehole wall to approximately 2 feet above the top of the well screen. On some wells the filter sand could not be poured from the surface due to bridging problems, in which case the filter sand was tremied in with fresh water through a polyvinyl chloride (PVC) tremie pipe. A 2- to 5-foot-thick seal of bentonite chips or pellets was poured in on top of the settled sand pack. When bentonite chips and/or pellets could not be poured into place due to bridging, they were replaced by a bentonite slurry which was tremied in above the filter pack. After the bentonite had been given sufficient time to hydrate, the remaining annular space was filled to the surface with a bentonite/cement grout completing well installation.

The shallow monitoring wells were completed in the first water bearing zone encountered. All wells were constructed with 10-foot screens placed at the base of the well (no sediment sumps), except well MW2-63B in which a 5-foot screen section was installed to avoid penetrating an upper confining layer. (See geophysical logs in Appendix B.) Total depths of

the three downgradient wells (MW2-62B, MW2-63B, and MW2-64B) ranged from 23 to 26 feet below ground surface. The upgradient well MW2-65B, however, was installed to a depth of 47 feet below ground surface since the first saturated section was observed at a depth of approximately 40 feet. This apparent shift in depth to water suggests that the uppermost saturated section screened by the downgradient wells may be pinching out to the north where the upgradient well is located.

### 4.2 Deep Monitoring Well Installation

Four deep, double cased monitoring wells were installed in the LSZ to determine the existence and degree, if any, of groundwater contamination in that zone. Deep wells were double cased to isolate the USZ in order to minimize cross contamination. The four deep wells (2-62A, 2-63A, 2-64A, and 2-65A) were installed adjacent to corresponding shallow wells forming four shallow-deep well pairs (Figure 4-1). In addition, soil samples collected from above the shallow aquifer water table in each monitoring well boring were chemically analyzed to determine the degree, if any, of subsurface soil contamination at the former fire training area.

As mentioned in the previous subsection, the gradient in the LSZ was presumed to be toward the southwest. Also, due to a confining layer separating the LSZ from the USZ, bank recharge has negligible potential for influencing the groundwater gradient in the LSZ, even for wells near the creeks. Therefore, similar to the shallow well set, 2-65A is the upgradient well while MW2-62A, MW2-63A, and MW2-64A are the downgradient wells. Well 2-65A is used to determine if any contamination is coming on site from upgradient.

Pilot borings for the deep wells were initially advanced down to the water table with 8-inch outside diameter (O.D.) hollow-stem augers. Conditions permitting, the 5-foot tube sampler was used to continuously sample the pilot borings for lithologic logging purposes. Based on odor, field screening with a photoionization detector/flame ionization detector (PID/FID), and visual inspection one sample was collected from each 5-foot section for chemical analysis. When forced to use the center bit to advance borings through harder strata, 2-foot split spoons were used to collect samples for chemical analysis and logging purposes. At each deep well boring, one soil sample was collected for analysis from each 5-foot interval down to the top of the water table where the final analytical sample was collected. At FTA2 this sampling scheme resulted in the collection of 21 total soil samples and one field duplicate, which were each analyzed for VOCs, SVOCs, and priority pollutant metals. A total of two additional samples were collected from the deep well borings for geotechnical analysis, including the

following parameters: grain-size distribution, moisture content, cation exchange capacity (CEC), and vertical permeability.

After the boring had been advanced to the projected confining layer between the USZ and LSZ, a geophysical log was run to determine the optimal depth at which to set the surface casing. After the casing set point was approved by the Tinker AFB project manager, the pilot hole was reamed with a 12-inch O.D. auger to the desired depth in order to set the 8-inch surface casing. The 8-inch carbon steel surface casing was lowered to the bottom of the reamed hole and centered with the drill rig. With the surface casing in place, bentonite/cement grout was tremied into the annular space between the surface casing and the borehole wall. A cement shoe at the bottom of the surface casing prevented any grout from entering the casing. Surface casings were allowed to set 24 hours prior to mud rotary drilling of the lower section for deep well installation. Casing depths in the three downgradient wells ranged between 25 and 30 feet. Surface casing in the upgradient well (2-65A) was set at 55 feet because saturation was encountered at a greater depth than in the other wells. The USZ appears confined at this location. The 55-foot depth was chosen based on drilling information to ensure isolation of the USZ.

After drilling through the cement shoe at the base of the surface casing, deep well installation proceeded as described in Section 4.1 on shallow well installation. Well settings were recommended based upon interpretation of geophysical logs and were subject to final approval by the Tinker AFB project manager prior to well installation. The deep, double cased monitoring wells were completed to depths ranging from 63 to 76 feet. All of the deep monitoring wells were constructed with 10 feet of screen at the base of the well (no sediment sumps).

#### 4.3 Pilot Hole

In addition to the installation of the eight wells at FTA2, one 100-foot deep stratigraphic pilot hole was drilled solely for geophysical logging purposes. This stratigraphic boring, placed between wells 2-65a and 2-65B, was advanced via mud rotary drilling without collecting any soil samples. Once completed and logged, the stratigraphic boring was grouted to the surface. The primary purpose of this pilot hole was to provide a tie point for Base-wide stratigraphic correlations.

#### 4.4 Surface Completion

As specified by the Tinker AFB project manager, all eight wells installed at FTA2 received flush-mount surface completions. Each of these flush completions consists of a 12-inch-diameter iron manhole cover set into a 4-foot by 4-foot square concrete pad centered on the well casing stick-up. To divert runoff away from the wells, the concrete pads are sloped away from the manhole covers (set no more than 4 inches above the ground) to the outer edges of the pads which are flush with the ground surface. To ensure the security of the wells, each well is fitted with a watertight and airtight, locking well cap. As requested, all the padlocks are keyed identically, and all bolts for the manhole covers are the same size.

#### 4.5 Well Development

Once the surface completions had been given sufficient time to cure, wells were developed through a combination of surging, bailing, and pumping. A nitrogen airlift technique was used to remove sediment from some wells in which surging and bailing could not remove excess sediment. A minimum of five well volumes of water was purged from each well during development. Purging and/or surging continued until the pH of the well had dropped and stabilized, indicating that any drilling mud, dissolved grout or other foreign material introduced during well installation had been sufficiently flushed out of the well. Well development was considered complete when the well was producing water that was clear to the unaided eye and met final approval by the Tinker AFB project manager.

#### 4.6 Groundwater Sampling

To provide the wells with adequate time to recover and stabilize after development, the newly installed wells at FTA2 were allowed to sit for 3 days prior to the first groundwater sampling event. Static groundwater levels and total depth measurements were recorded prior to purging for sampling. The water level data were later used to contour potentiometric surface maps of the USZ and the LSZ. All wells were then purged to ensure that water samples representative of aquifer conditions would be obtained during sampling. Wells were considered sufficiently purged once three well volumes of water had been removed from a well or the well had been purged to dryness. While purging, pH, temperature, and conductivity readings were collected and monitored for unusual variations that would indicate that additional well volumes should be evacuated before sampling.

A total of eight groundwater samples and one field duplicate were collected from the wells at FTA2. To prevent cross contamination between the wells and to eliminate decontamination time, each well was sampled with a disposable bailer and rope, which were discarded with

project waste after use. A final round of field pH, temperature, and conductivity readings was recorded as the samples were being collected. Groundwater samples were each analyzed for the following parameters: VOCs, SVOCs, total organic carbon (TOC), total petroleum hydrocarbon (TPH), priority pollutant metals, standard inorganic groundwater parameters, chemical oxygen demand (COD), and phenols.

# 4.7 Elevation and Location Surveying

After completion, the elevations and locations of the monitoring wells and the stratigraphic pilot hole at FTA2 were determined by a State of Oklahoma licensed surveyor. For each well, the ground surface, the top of the well casing, and the top of the concrete pad were surveyed relative to Base datum information provided by Tinker AFB. For the stratigraphic boring, only the ground surface directly adjacent to the grouted hole was surveyed. Elevations and locations of any pre-existing monitoring wells and piezometers at FTA2 were also determined. All locations are provided in the Base coordinate system and all elevations are relative to msl.

# 5.0 Investigation Results

#### 5.1 Data Quality Evaluation

The following sections provide an evaluation of the data quality and the results of the RFI performed at the FTA2. Section 5.1 discusses the methods and procedures used to ensure data quality and useability. Section 5.2 provides a discussion of the source characterization and the potential of the FTA2 as a contributing source of contamination. Section 5.3 discusses the hydrology of FTA2. Section 5.4 provides details regarding the contaminant characterization via analysis of the results of the soils and groundwater investigation.

The quality of the analytical data used for the RFI must be sufficient to support the associated risk management decisions. Data quality is ensured through adherence to Data Quality Objectives (DQO) and the sampling and analysis program outlined in the Data Collection Quality Assurance Plan (DCQAP) (IT, 1993b). The DCQAP identifies sampling locations, sampling methods, DQOs, field and laboratory quality control testing, analytical methods and reporting, and data evaluation and verification. The quality control of field and laboratory activities; the assessment of precision, accuracy, and comparability of the data; and the verification of the data are the most significant activities designed to ensure compliance with the DQOs.

#### 5.1.1 Field Quality Control

Field quality control testing involved the collection of control samples to aid in evaluating inaccuracies which may be induced by field activities. These control samples include:

- **Field Blanks.** A field blank is an amount of water, gas, or solid that is provided to demonstrate the absence of contamination during sampling. Field blanks were only collected for groundwater and waste samples.
- **Trip Blanks.** Volatile organics samples are susceptible to contamination by diffusion of organic contaminants into the sample container. Therefore, trip blanks were analyzed to monitor for sample contamination during shipment and storage. No trip blanks were obtained for soil samples, due to the dissimilarity in matrix between the blanks and the actual samples.
- **Rinsate Blanks.** A rinsate blank is a volume of rinse solution (e.g., deionized distilled laboratory water or organic solvent) used to rinse a sampling tool which contacts more than one sample. The rinse solution was collected after the sampling tool was used and cleaned, to demonstrate that no residual contamination remained on the tool to carry over to the next sample.

• **Field Duplicates.** Duplicate analyses were performed to evaluate the precision of analysis. Both field and laboratory duplicates were taken and analyzed. Results of these analyses were used to determine the relative percent difference (RPD) between replicate samples.

#### 5.1.2 Laboratory Quality Control

Laboratory quality control testing involved the use of control samples to aid in evaluating quality control errors which may be induced by laboratory activities. The control samples include:

- **Method Blanks.** A method blank is a volume of deionized and distilled laboratory water for liquid samples, or a purified solid matrix for soil/sediment samples, carried through the entire analytical procedure to identify contaminants introduced during the procedure.
- **Bottle Blanks.** At a frequency of 1 percent or greater, laboratory-prepared sample containers were tested to verify that the container cleaning procedure is performed acceptable. Parameters of concern for the particular container were tested (e.g., metals for plastic containers).
- Laboratory Blanks. Distilled water-filled volatile organic analysis (VOA) vials were stored in the laboratory using the same method of storage used for field samples. If the field and trip blanks contained high concentrations of contaminants, the laboratory blank was analyzed to identify the source of contamination.
- **Matrix Spikes.** To evaluate the effect of sample matrix on analytical methodology accuracy, a separate sample aliquot was spiked with the analyte of interest and analyzed with approximately ten samples or, if a smaller number of samples are associated with a test series, for each group of samples.
- **Surrogate Standards.** Surrogate standards are compounds added to gas chromatography/mass spectrometry (GC/MS) standards, blanks, and samples prior to extraction or purging to monitor the recovery efficiencies of the sample preparation and analytical procedures on a sample-by-sample basis.

# 5.1.3 Evaluation of Precision and Accuracy

As part of the analytical quality control testing program, quality control sample results were used to apply precision and accuracy criteria for each parameter that was analyzed. When the analysis of a sample set was completed, the quality control data generated were evaluated based on the following criteria:

• **Method Blank Evaluation.** The method blank results were evaluated for high readings characteristic of background contamination. If high blank values were

- observed, laboratory glassware and reagents were checked for contamination and the analysis of future samples halted until the system could be evaluated.
- Trip, Field, Laboratory, and Rinsate Blank Evaluation. Trip, field, laboratory, and rinsate blank results were evaluated for high readings similar to the method blanks described above. If high blank readings were encountered, the procedure for sample collection, shipment, and laboratory analysis would be reviewed.
- **Duplicate Sample Evaluation.** Duplicate sample analysis was used to determine the precision of the analytical method for the sample matrix. The duplicate results will be used to calculate the precision as defined by the RPD.
- **Matrix Spike Evaluation.** The observed recovery of the spike versus the theoretical spike recovery was used to calculate accuracy as defined by the percent recovery (%R).
- **Surrogate Standard Evaluation.** The results of surrogate standard determinations were compared with the true values spiked into the sample matrix prior to purging or extraction and analysis, and the percent recoveries of the surrogate standards were determined.
- Comparability Between Data Sets. Comparability is a qualitative parameter
  expressing the confidence with which one data set can be compared with another.
  Comparability for sampling and analysis was achieved by specifying and using only
  well-recognized techniques and accepted standard EPA methods and procedures for
  sampling and analysis reporting of representative samples.

#### 5.1.4 Data Verification

Data packages and parameters were evaluated against the following criteria to ensure data validity prior to use:

- Sampling documentation (e.g., sample collection log, Chain-of-Custody Form, and Request for Analysis Form) matches samples submitted to samples analyzed.
- Chain-of-Custody Forms are complete.
- Sample identification summary for each sample is present.
- Analytical results for each sample include correct units, detection limits, method used, date sampled, date extracted, date analyzed, dilutions noted.
- Holding times were met.
- Data on field and laboratory duplicate samples for RPDs were within QC limits.

- Matrix spike/matrix spike duplicate (MS/MSD) recoveries were within QC limits.
- Method blanks were within control limits.

#### 5.1.5 Data Useability

The data verification did not identify any reoccurring problems with analytical procedures or analytical reporting. Precision and accuracy for each analytical method as demonstrated by the evaluation or surrogate recoveries, laboratory control samples, MS, and MSD recoveries were satisfactory. The sample identification summaries for all samples and methods were present and complete. No data were found to be invalid. All deficiencies encountered were minor and did not affect the overall quality of the data, since other DQOs were met. Deficiencies were generally the result of matrix interference.

The analytical data generated from the RFI are of sufficient quality to make evaluations and support recommendations.

#### 5.2 Source Characterization Results

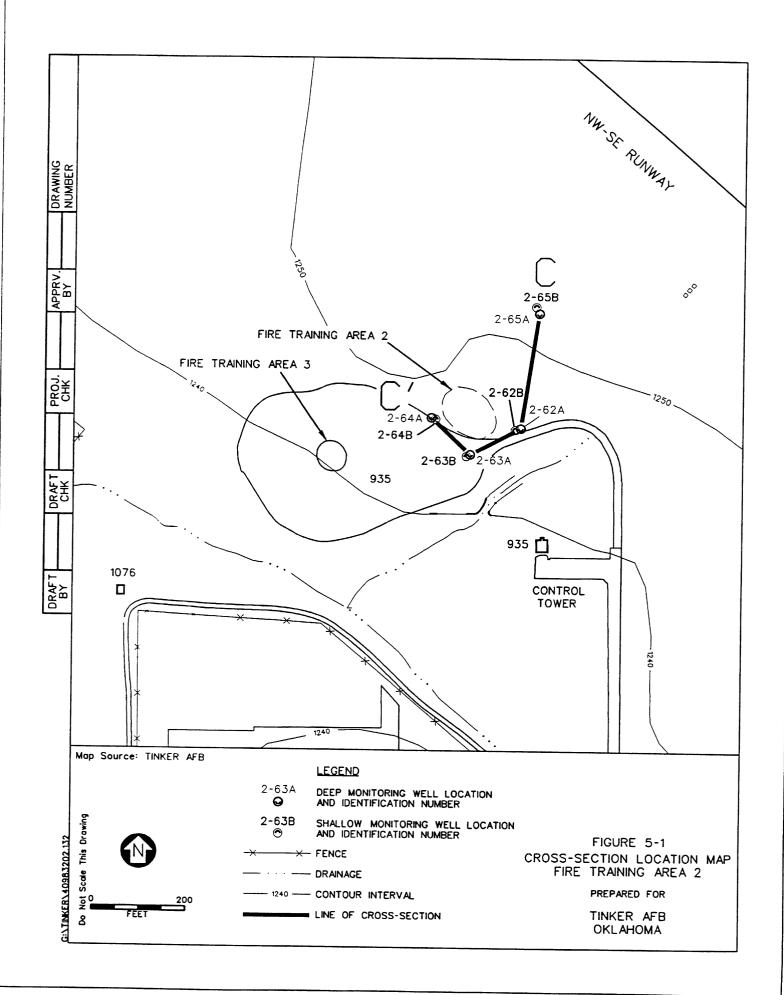
FTA2 was used infrequently from 1962 to 1966 for training fire response personnel. The area was an unlined shallow depression or pit in which water and then flammable fuels, waste oils, and waste solvents were placed and ignited. Site characterization for this RFI has been designed to investigate whether any of the hazardous fuel materials, or any other hazardous constituents, have been released to the subsurface.

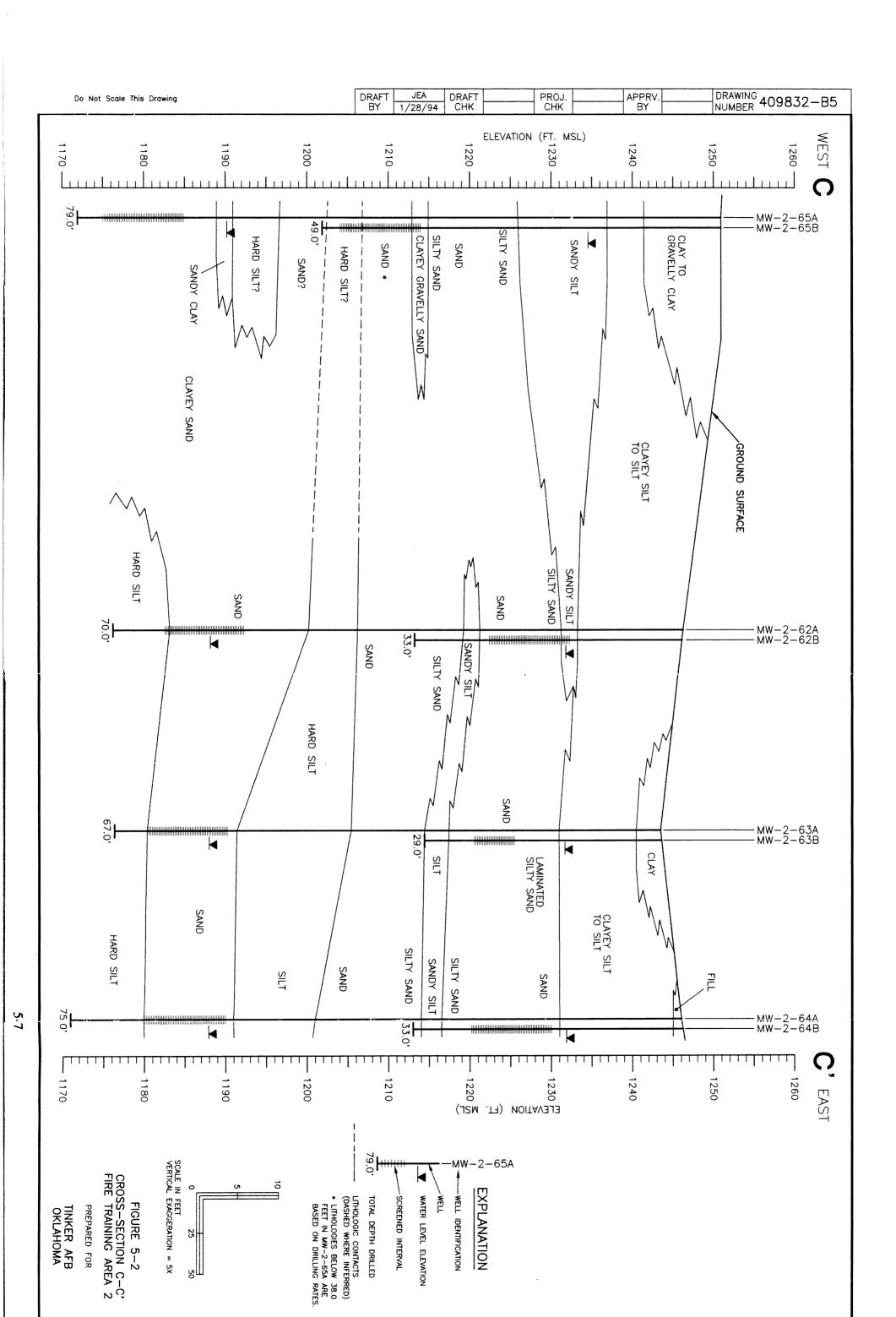
In a 1987 investigation by the USACE (described in Section 2.4), seven soil borings were made to characterize this potential contaminant source (USACE, 1988). Three borings were placed within the SWMU area and soil samples were collected for chemical analysis. Since at that time there was no visible aboveground trace of the former training area, four additional borings were made in the area to help verify that the first three borings had not been wrongly located outside of the SWMU. Samples from the second group of borings were examined for odors and visual appearance. These latter samples had no discoloration or odor, and appeared to be undisturbed soils. All seven borings penetrated approximately 4 feet of unconsolidated soils and 1 to 3 feet of the underlying shale, where auger refusal occurred. None of these borings extended deep enough to encounter a zone of groundwater saturation.

Chemical analysis of soil samples from the first three borings of the previous investigation indicated that four hazardous organic compounds (methylene chloride, acetone, bis[2-ethyl-

hexyl]phthalate, and tetrahydrofuran) were sporadically detected. While these compounds were also detected in several laboratory blanks, elevated concentrations in some samples suggested that methylene chloride and bis(2-ethylhexyl)phthalate were also present in the soil at the site. However, concentrations of the compounds were below toxicological levels (USACE, 1988).

Other compounds were also detected in the 1987 investigation. Relatively low (<70 milligrams per kilogram [mg/kg]) levels of several fuel-related but nonhazardous organic compounds were measured in the samples. However, none of the common volatile compounds usually associated with fuels were detected. Finally, concentrations of metals in these samples were found to be within the range measured in background samples. The details of this study are described in the IRP Response Action, Final Report (USACE, 1988).


No samples were collected of the material burned in the pit.

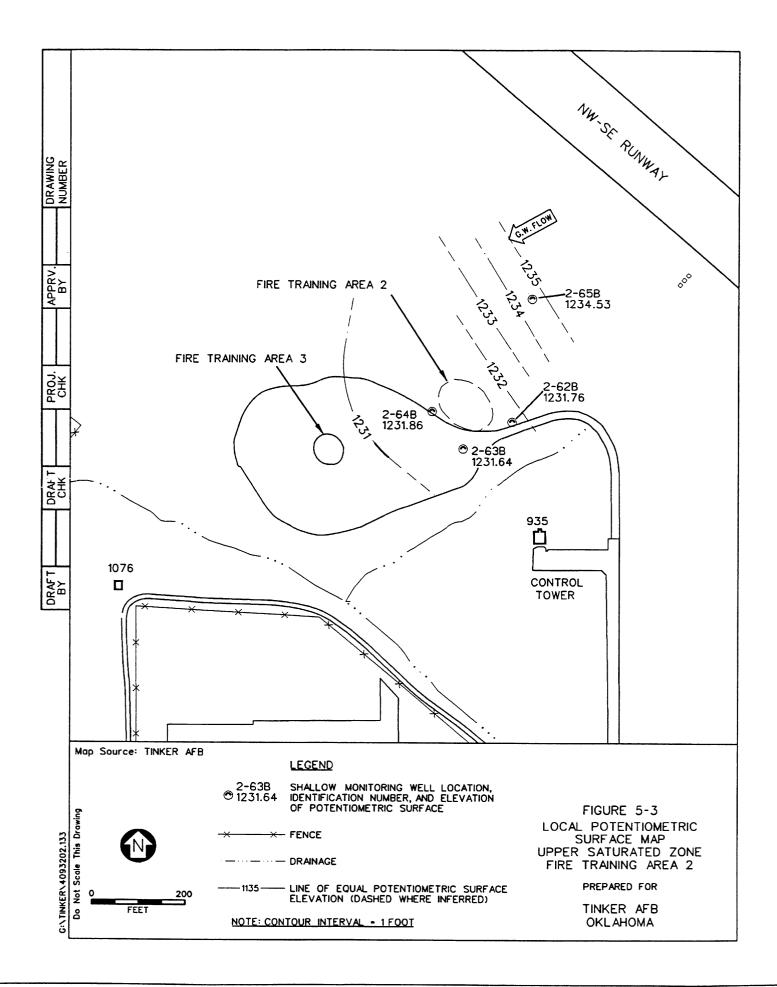

#### 5.3 Hydrology of FTA2

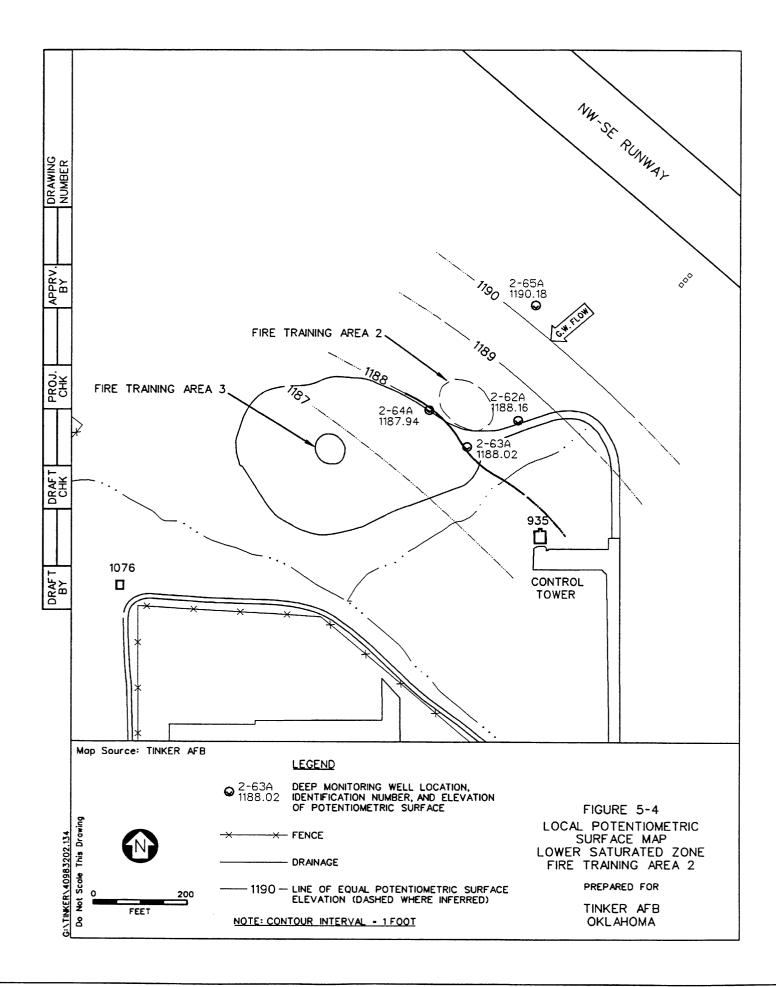
Hydrologic conditions in the vicinity of FTA2 have been interpreted based on logs of the four pairs of monitoring wells drilled for the RFI (Figure 5-1). Each well pair consists of a shallow well completed in the USZ and a deeper well complete in the LSZ. Installation of these wells is described in Chapter 4.0. The boring logs and well construction diagrams are included in Appendix A.

The geology of FTA2 is illustrated by a cross section of the area, which also shows locations of the well screens (Figure 5-2). Approximately the upper 10 to 15 feet of the geologic section below the site consists of reddish silty clay or clayey silt of the Hennessey Group. Thin layers of anhydrite or gypsum occur near the base of this zone.

Underlying the Hennessey, are interbedded fine sandstone and siltstone of the Garber Sandstone, with occasional interbedded clayey layers. The sandstones range in hardness from loose (lightly cemented) to well indurated. The clay layers range from slightly plastic to moderately plastic and often contain significant quantities of silt and sand, with occasional gravel clasts. A layer of hard siltstone appears to be traceable across the area at a depth of approximately 40 to 45 feet. The maximum depth of exploration was 79 feet below grade in well 2-65A.







The water levels in the LSZ wells are approximately 45 feet below those measured in the USZ wells. The hard siltstone layer whose top occurs at the approximate depth of 45 feet (approximately 1,205 ft msl) appears to be the aquitard causing the separation in this area. The water levels in the USZ wells indicate that the water table is approximately 15 feet below grade. The LSZ wells are completed in the upper part of the Garber-Wellington aquifer and water levels are at a depth of approximately 60 feet below grade (approximately 1,188 to 1,190 ft msl).

Water levels in the USZ appear to be several feet lower than the bed of a nearby southwest-flowing tributary of Crutcho Creek. In addition, the water levels are projected to be several feet lower than the bed of the main stem of Crutcho Creek approximately 400 feet southwest of FTA2. It appears, therefore that these streams would not be discharge areas for groundwater (gaining streams) in this area unless water levels in the USZ rose significantly.

The water levels in the USZ suggest that the water table is relatively flat in the area of wells 2-62B, 2-63B, and 2-64B. Since field observations suggest that there is often flow in the southwest-flowing tributary of Crutcho Creek, the flat gradient may reflect a groundwater mounding effect from infiltration of surface water in the tributary stream as it emerges from the nearby culvert which passes beneath the NW-SE Runway (Figure 5-1). The upstream part of this tributary drains an area occupied by several industrial facilities and ramp areas on the east side of the airfield. Any contaminated water discharged in these areas would have the potential to percolate into the subsurface and affect water quality in the USZ near FTA2.

Potentiometric surface maps for the USZ and the LSZ are shown in Figures 5-3 and 5-4, respectively. The maps indicate that groundwater flow in both zones is toward the southwest. The water levels in both zones at FTA2 are generally consistent with the water levels shown on maps of the Base-wide conceptual model of the two principal water-bearing zones at Tinker AFB. Due to the relatively flat gradient in the vicinity of the three wells mentioned in the previous paragraph, several interpretations of the configuration of the USZ water table are possible. Figure 5-3 shows an interpretation based on the assumption that the tributary to the southeast of FTA2 is a losing stream and creates a small mound or "nose" on the sloping water table.





#### 5.4 Contaminant Characterization Results

This section describes the analytical of the samples of soil and groundwater collected during the RFI of FTA2. In addition, the establishment of background concentrations for metals in soils in this area is described.

#### 5.4.1 Establishment of Surficial Soil Background Concentrations

Background soil concentrations for trace metals were determined based on a study performed by the USGS (1991). The study area was confined to approximately four counties in central Oklahoma. Tinker AFB lies at the approximate center of this area. A total of 293 B-horizon soil samples were collected throughout this area. Soil samples were collected at the top of the B-horizon, which was usually 20 to 30 centimeters below the surface but ranged from 3 to 50 centimeters below the surface.

The use of B-horizon soil as selected by the USGS for metals background concentrations in soil is conservative in that the soil sampled does not reflect all possible anthropogenic influences. Most of the samples were obtained from hill crests and well drained areas in pasture and forested land, well away from roadways to minimize contamination from vehicular emissions (i.e., nearly "pristine" areas). Trace metal inputs to the study site soils on Base, however, will come from anthropogenic sources outside of the study area, in addition to those sources related to disposal activities or operations within the confines of the study site. Responsibility may thus be taken for more trace metal impacts than are actually attributable to a given site.

An additional level of conservatism was added in the manner in which the site-specific metals concentrations were compared to the background levels. Typically, the environmental concentrations of trace metals at study sites are represented by the arithmetic upper 95<sup>th</sup> confidence interval on the mean of a normal distribution. This upper 95<sup>th</sup> confidence interval value is then compared to the background values. The intent of this typical approach is to estimate a Reasonable Maximum Exposure (RME) case (i.e., well above the average case) that is still within the range of possible exposures.

To expedite this comparison and establish greater conservatism, the maximum concentration found at the site of concern, rather than the upper 95<sup>th</sup> confidence interval value, was compared to the USGS background values. If the environmental concentration of a particular analyte was below or within the minimum-maximum range of the USGS background concentrations, that analyte was considered to be naturally occurring and of no further

concern to this investigation. Given the conservative approach of the comparisons, site-specific metals concentrations would have to significantly exceed the USGS background levels and be attributable to operations at the site before they would be considered a contaminant of concern.

The numerical comparison of site-specific metals concentrations to the USGS background concentrations is presented in the following section.

#### 5.4.2 Soil Characterization

During this investigation of FTA2, chemical analyses were performed on a total of 21 soil samples and one duplicate soil sample collected from the four boreholes drilled for installation of "A"-series monitoring wells into the LSZ. A sample was selected for analysis from each 5-foot interval down to a depth of approximately 20 feet by using the field screening techniques described in Chapter 4.0. Chemical analyses included metals (aluminum, arsenic, barium, beryllium, cadmium, total chromium, chromium VI, copper, iron, lead, mercury, nickel, silver, and zinc) volatile organics, and semivolatile organics. A single sample was collected from the boring for well 2-63A for geotechnical analysis, as described at the end of this section.

The chemical analytical results indicate that the shallow soils have been impacted by organic compounds and possibly metals. Analytical results for the detected analytes are presented in Table 5-1. Appendix D contains a complete listing of analytical results.

Only 1,1,1-trichloroethane (TCA) was confirmed above the method detection limits at concentrations ranging from 5.2 to 6.7  $\mu$ g/kg. Several SVOCs were detected in the soil samples. These include 1,1,1-trichloroethane (TCA) (ranging from 5.2 to 6.7  $\mu$ g/kg), bis(2-ethylhexyl)phthalate (ranging from 1.3 to 2.1 mg/kg), di-n-butyl phthalate (ranging from 0.34 to 1.7 mg/kg), and butyl benzyl phthalate (ranging from 0.56 to 0.96 mg/kg). These concentrations are all below the Action Levels given in Chapter 7.0.

Several metals were detected in the soil samples, but all were within the background ranges reported by the USGS. The comparisons of metals to background are shown in Table 5-2.

During the installation of deep monitoring wells 2-62A and 2-63A, a soil sample from each well was collected for geotechnical analysis to determine vadose zone properties. A Shelby tube was used to collect a soil core from each of the two borings. The samples were

Analytical Results for Fire Training Area 2 for Soil Tinker Air Force Base, Oklahoma Table 5-1

| Well/Boring:               | 1g: 2-62A | 2-62A                                | 2-62A      | 2.62A      | 2-62A      | 2-63A        | 2-63A    | 2-63A   |
|----------------------------|-----------|--------------------------------------|------------|------------|------------|--------------|----------|---------|
| Sample ID:                 |           | A1562                                | A1563      | A1564      | A1565      | A1555        | A1556    | A1557   |
| Depth in Feet:             |           | 6-7                                  | 10 - 11    | 15 - 16    | 22 - 23    | 2-3          | 7-8      | 10 - 11 |
| Parameters                 | Result QF | OFR Result OFR Result OFR Result OFR | Result OFR | Result QFR | Result QFR | Result       | )FR      | Resi    |
| Metals (mg/kg)             |           |                                      |            |            |            |              |          |         |
| Aluminum                   | 11000 N   | 15000 N                              | N 00001    | Z 0021     | N 057      | N 00011      | 11000 N  | 1000C1  |
| Arsenic - Graphite Furnace | 1         | 3.4                                  | 5.4        | 1.2        |            | 2 × ×        | NI OWNIT |         |
| Barium                     | N 069     | 32 N                                 |            |            | N 09       | 2 006<br>006 | 22 N     | N 011   |
| Beryllium                  | 0.94      | 1.3                                  | 1.2        |            |            | 1.7          | 1.4.1    | 1.0     |
| Cadmium                    | 0.69      |                                      |            | 0.57       |            | 0.71         | į        | 7.70    |
| Chromium                   | 13        | 14                                   | 14         | 7.6        | e          | 13           | 11       | 20      |
| Copper                     | 8.6       | 22                                   | 21         | 1.7        | 1.1        | 6.6          | 15       | 18      |
| Iron                       | 11000 N   | 11000 N                              | 14000 N    | 7300 N     | 2400 N     | 15000 N      | 10000 N  | Z 0001  |
| Lead - Graphite Furnace    | z<br>Z    | S<br>N                               | 7.1 N      | 3.2 N      | 1.5 N      | 13 N         | 7.3 N    | Z       |
| Nickel                     | 17        | 25                                   | 21         | 7.3        |            | 10           | . «      |         |
| Silver                     | 0.41      |                                      |            |            |            | ì            | 2        | }       |
| Zinc                       | 22        | 29                                   | 22         | 7.1        | 3.1        | 81           | 74       | 7.0     |
| Semivolatiles (mg/kg)      |           |                                      |            | !          | <b>:</b>   | 2            | <b>S</b> | ì       |
| Butylbenzylphthalate       | I         |                                      |            |            |            |              |          |         |
| Di-n-butylphthalate        |           |                                      |            |            |            | 1.7          | 0.34     | 0.83    |
| bis(2-Ethylhexyl)phthalate |           |                                      |            |            |            | •            |          | 3       |
| 1,1,1-Trichloroethane      | 3.1 J     | 6.7                                  | 5.6        | 5.2        | 5.4        | 3.8 J        | 4.3 J    | 1       |

Analytical Results for Fire Training Area 2 for Soil Tinker Air Force Base, Oklahoma Table 5-1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well/Boring:   | 2-63A      | 2-63A   | 2-64A   | 2-64A   | 2-64A      | 2-64A   | 2-64A   | 2-65A     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|---------|---------|---------|------------|---------|---------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample ID:     | A1558      | A1559   | A1548   | A1549   | A1550      | A1551   | A1552   | A1540     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth in Feet: | 15 - 16    | 18 - 19 | 2-3     | 7-8     | 7-8        | 12 - 13 | 17 - 18 | 2.5 - 3.5 |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Result QFR | Resu    | Resu    | Resu    | Result QFR | Resu    | Resu    | Resn      |
| Metals (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |            |         |         |         |            |         |         |           |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 2 006      | N 0051  | N 00001 | Z 00091 | N 0001     | 2 0000  | N 0081  | N 0078    |
| Arsenic - Graphite Furnace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |            |         | 2.0     | 8 -     | 17         | 11      |         | 200       |
| Barinm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 7          |         | i 8     | 2:      |            | 1:1     |         | 0.7       |
| The state of the s |                | N 03       |         | 2 060   |         |            |         | Z 90    | 150 N     |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |            |         | 1.4     | 1.9     | 1.6        | 1.5     |         | 1.1       |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |            | 0.0     | 1.1     | 0.55    |            |         |         | 0.74      |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 3.9        | 4       | 15      | 19      | 14         | 11      | 8.5     | 9.4       |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |            |         | 8.5     | 22      | 20         | 19      |         | 5.2       |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 2800 N     |         | 13000 N | 13000 N | N 0086     | 11000 N | 3700 N  | 10000 N   |
| Lead - Graphite Furnace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | N 88.0     | 1.2 N   | 7.2 N   | 2.5 N   | 3<br>N     | 7.8 N   | 1,5 N   | 8.8<br>N  |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |            |         | 17      | 28      | 22         | 21      | 6.3     | 12        |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |            |         |         |         |            |         | !       |           |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 4.7        | 8.4     | 23      | 33      | 26         | 22      | 7.8     | 12        |
| Semivolatiles (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |            |         |         |         | }          | }       | 2       | 1         |
| Butylbenzylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 0.63       | 0.57    | 0.56    | 0.67    | 0.78       | 0.96    |         |           |
| Di-n-butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 0.76       | 0.65    | 1.4     | 1.2     | 1.2        | 1.4     | 0.061 J |           |
| bis(2-Ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 1.7        | 1.7     | 1.3     | 1.5     | 1.9        | 2.1     |         |           |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |            |         |         |         |            |         |         |           |

Analytical Results for Fire Training Area 2 for Soil Tinker Air Force Base, Oklahoma Table 5-1

| Well/Boring: | Sample ID: | Depth in Feet: |            | Metals (mg/kg) |         |     |      |      |    |     |                                         |         |       |     |   |     | Semivolatiles (mg/kg) |  |       | <br>in sample blank | instrument calibration range for that specific analysis | = Concentration is an estimated value | = Sample is outside of Matrix Spike QC Limit | • | Analytical data has not been validated |
|--------------|------------|----------------|------------|----------------|---------|-----|------|------|----|-----|-----------------------------------------|---------|-------|-----|---|-----|-----------------------|--|-------|---------------------|---------------------------------------------------------|---------------------------------------|----------------------------------------------|---|----------------------------------------|
| 2-65A        | A1541      | 6-7            | Result OFR |                | S900 N  | 3.3 | N 69 | 0.88 |    | 8.2 | 5.5                                     | 7200 N  | 5.5 N | 12  |   | 15  |                       |  |       |                     | ange for that spec                                      | •                                     |                                              |   |                                        |
| 2-65A        | A1542      | 12 - 13        | Result OFR |                | 19000 N | 1.2 | 27 N | 2    |    | 24  | 22                                      | 16000 N | 3.5 N | 56  |   | 35  |                       |  |       |                     | ific analysis                                           | •                                     |                                              |   |                                        |
| 2-65A        | A1543      | 16 - 17        | Result OFR |                | 9300 N  |     | 32 N |      |    | 11  | 9.2                                     | 11000 N | 9.1 N | 13  |   | 17  |                       |  |       |                     |                                                         |                                       |                                              |   |                                        |
| 2-65A        | A1544      | 20 - 21        | Resi       |                | N 0006  |     | S4 N |      | 11 | 37  | ======================================= | 22000 N |       | 22  |   | 26  | <b>;</b>              |  |       |                     |                                                         |                                       |                                              |   |                                        |
| 2-65A        | A1545      | 26 - 27        | Resu       |                | 2300 N  |     |      |      |    | 80  | }                                       | 6100 N  |       | 7.9 | } | 7.8 | !                     |  | 1 200 |                     |                                                         |                                       |                                              |   |                                        |
| 2-65A        | A1546      | 29-30          | Resi       |                | N 0021  | 2.3 | ì    |      |    | 6.7 | 3                                       | N 0094  |       |     | , | 50  | }                     |  |       |                     |                                                         |                                       |                                              |   |                                        |

Table 5-2
Soil Metals Background Comparison SWMU-8, FTA2, Tinker AFB

|           | Site                | USGS Background          | Concentration  |
|-----------|---------------------|--------------------------|----------------|
| Analyte   | Maximum Value (ppm) | Detection Limit<br>(ppm) | Range<br>(ppm) |
| Aluminum  | 19,000              | 50                       | 3,800-89,000   |
| Arsenic   | 5.4                 | 0.1                      | 0.6-21         |
| Barium    | 900                 | 1                        | 47-6,400       |
| Beryllium | 2.0                 | 1                        | <1-3           |
| Cadmium   | 1.1                 | 2                        | <2             |
| Chromium  | 37                  | 1                        | 5-110          |
| Copper    | 22                  | 1                        | <1-59          |
| Iron      | 22,000              | 50                       | 1800-58,000    |
| Lead .    | 13                  | 4                        | <4-27          |
| Nickel    | 28                  | 2                        | <2-61          |
| Silver    | 0.41                | 2                        | <2-61          |
| Zinc      | 35                  | 2                        | 3-79           |

submitted for geotechnical analysis of the following parameters: grain-size distribution, moisture content, cation exchange capacity (CEC), and vertical permeability. Certificates of analysis are provided as Appendix E. The analytical results are summarized as follows:

| Sample Location                | 2-63A                  | 2-62A                  |
|--------------------------------|------------------------|------------------------|
| Sample Depth (feet)            | -8 to -10              | -8 to -9.5             |
| Vertical Permeability (cm/sec) | 3.2 x 10 <sup>-9</sup> | 2.9 x 10 <sup>-9</sup> |
| Moisture Content (percent)     | 10.7                   | 9.4                    |
| CEC (MEQ/100 grams)            | 23.78                  | 16.50                  |
| Particle Size Distribution     | See Appen              | dix E graph            |

#### 5.4.3 Groundwater Characterization

Groundwater samples were collected from the eight monitoring wells installed in the vicinity of SWMU-8. Four of the samples are of groundwater from the USZ, and four samples were collected from the LSZ. The positions of the well screens are shown on the cross section in Figure 5-2. The samples were analyzed for VOCs, SVOCs, metals, and standard inorganic groundwater parameters. The analytical results are presented in Tables 5-3 and 5-4.

Organic compounds were detected in groundwater from several of the wells. The greatest number of compounds and highest concentrations were detected in well 2-62B, completed in the USZ. None of the samples from LSZ wells contained any of the organic compounds at concentrations above the method detection limits.

The VOCs detected in the four USZ wells and their maximum concentrations included: trichloroethene (TCE) (8,900  $\mu$ g/L), cis-1,2-dichloroethene (DCE) (1,700  $\mu$ g/L), 1,2-dichloroethane (DCA) (550  $\mu$ g/L), chlorobenzene (240  $\mu$ g/L), trans-1,2-dichloroethene (140  $\mu$ g/L), 1,1,2-TCA (9.0  $\mu$ g/L), 1,2-dichloropropane (7.3  $\mu$ g/L), 1,1-DCE (6.0  $\mu$ g/L), and benzene (5.7  $\mu$ g/L). Volatiles detected but which were below the quantitation limit were toluene, tetrachloroethene (TCE), and chloroform.

Concentrations of VOCs were above the corrective action level (CAL) proposed in 40 CFR 264.521, primarily in samples from well 2-62B. These VOCs include, in well 2-62B, the concentrations of 1,1,2-TCA and tetrachloroethene. Other compounds, for which no CAL is available, were present in well 2-62B at concentrations which exceeded MCLs, including TCE, cis-1,2-DCE, 1,2-dichloropropane, 1,2-DCA, benzene, and trans-1,2-dichloroethene. In addition, concentrations of TCE in USZ wells 2-63B, 2-64B, and 2-65B also exceeded CALs.

Analytical Results for Fire Training Area 2 For USZ Groundwater Tinker Air Force Base, Oklahoma Table 5-3

| Sample ID:  Parameters  Depth in Feet:  Aluminum  Barium  Calcium  Chromium  Copper  Iron  Lead - Graphite Furnace  Magnesium  Selenium  Selenium  Sodium  Zinc  Semivolatile (up/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1601        | A 1602            | A1666  | 1          | )          |         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|--------|------------|------------|---------|--|
| Depth in Feet:  Metals (mg/L)  Im  Im  Stabilite Furnace  In  In  In  Semivolatile (10/L)  Semivolatile (10/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |        | A1600      | A1603      | A1604   |  |
| Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-0          | 0-0               | 0-0    | 0-0        | 0-0        | 0-0     |  |
| Metals (mg/L)  Im  Im  Samivolatile (ng/L)  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t QFR Result | Result QFR Result | OFR    | Result QFR | Result OFR | Resu    |  |
| im im im im im im in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                   |        |            |            |         |  |
| im<br>fraphite Furnace<br>fum<br>ese<br>m<br>n<br>Semivolatile (no I.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.2          | 5.1               |        | 5.9        | 1.4        | 0.95    |  |
| im<br>Fraphite Furnace<br>fum<br>ese<br>m<br>n<br>Semivolatile (no I.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.21         | 0.19              |        | 0.35       | 0.23       | 0.24    |  |
| im<br>Fraphite Furnace<br>fum<br>ese<br>m<br>n<br>Semivolatile (no II.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48 N         |                   |        | 61 N       | S9 N       | N 08    |  |
| Traphite Furnace fum see ese min see no see | 0.04<br>N    | 0.029 N           |        | 0.014 N    |            |         |  |
| Fraphite Furnace lum ese m n Semivolarile (no/L.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.043 N      | 0.049 N           |        |            |            |         |  |
| - Graphite Furnace esium anese sium ium m Semivolatile (110/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11           | 5.5               |        | 13         | 2          | 1.1     |  |
| anese sium sium Semivolatile (119/1.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.004        | 0.0031            |        |            |            |         |  |
| anese sium ium m Semivolatije (119/1.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43           | 52                |        | 45         | 33         | 52      |  |
| sium<br>ium<br>m<br>Semivolatile (119/1.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.14 N       | 0.1 N             |        | 0.23 N     | 0.048 N    | 0.065 N |  |
| m<br>Semivolatile (119/1.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |        |            |            | 1.7     |  |
| m<br>Semivolatile (119/13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |        | 0.1 N      |            |         |  |
| Semivolatile (119/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110          | 130               |        | 59         | 46         | 43      |  |
| Semivolatile (119/1.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.024 N      | 0.021 N           |        | 0.022 N    |            |         |  |
| [7 dn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                   |        |            |            |         |  |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53           | 46                |        |            |            |         |  |
| Volatile (ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                   |        |            |            |         |  |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6            | 7.3               |        |            |            |         |  |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.7          | 9                 |        |            |            |         |  |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1900 D       | 1700 D            |        |            |            |         |  |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500          | 550               | 430    | 1.2 J      | 2 J        |         |  |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7            | 7.3               |        |            |            |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 290 D        | 250 D             |        |            |            |         |  |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.4          | 5.7               |        |            |            |         |  |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 220          | 240               | 220    |            | 1.2 J      |         |  |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8300 D       | 8900 D            | 7900 D | 33         | 96         | 66      |  |
| cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1600 D       | 1700 D            | 1300   | 45         | 39         | 24      |  |
| trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130          | 140               |        |            | 3.5 J      |         |  |

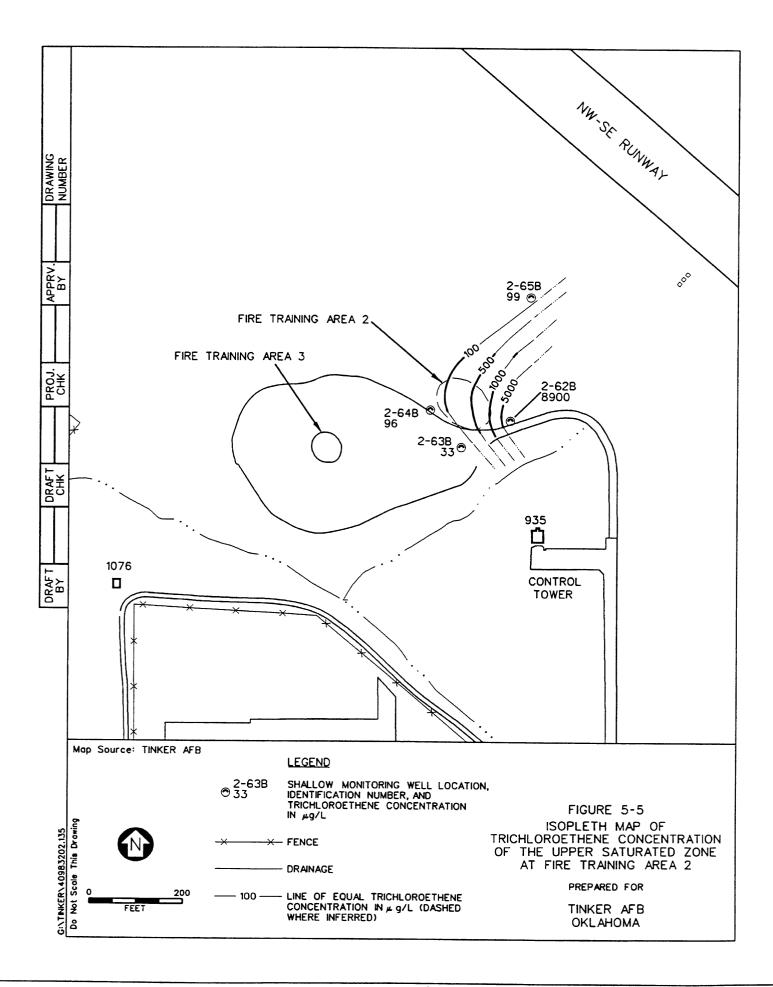
# Analytical Results for Fire Training Area 2 For USZ Groundwater Tinker Air Force Base, Oklahoma Table 5-3

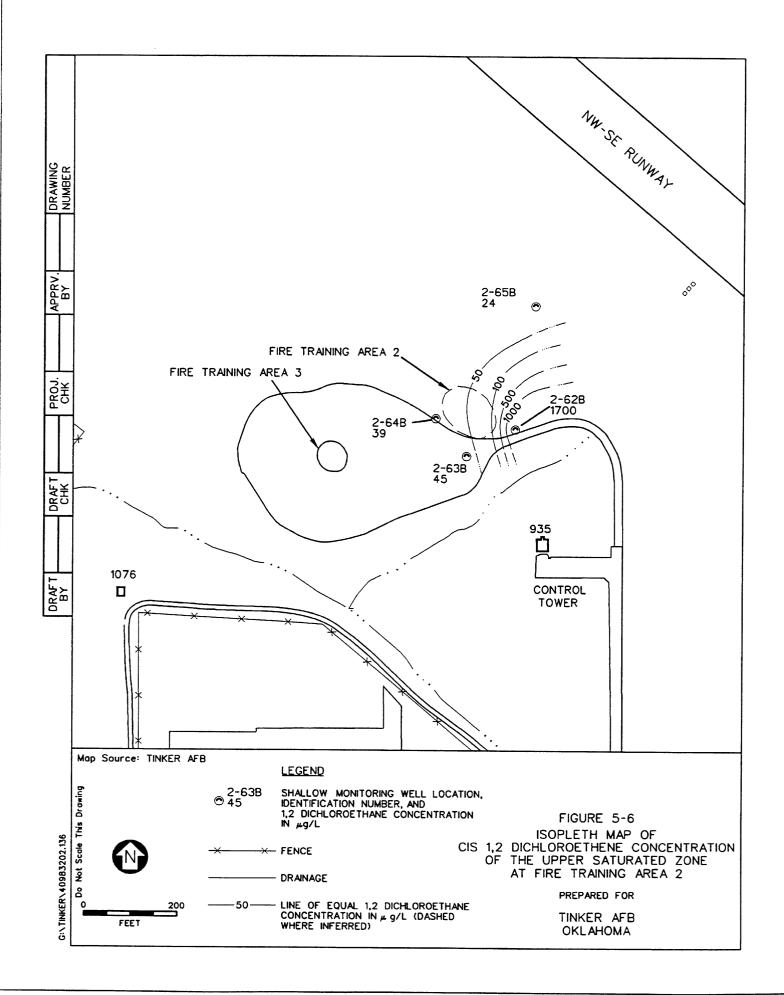
| Well/Boring:                                                                      | : 2-62B                 | 2-62B          | 2-62B          | 2-63B          | 2-64B          | 2-65B      |
|-----------------------------------------------------------------------------------|-------------------------|----------------|----------------|----------------|----------------|------------|
| Sample ID:                                                                        | : A1601                 | A1602          | A1665          | A1600          | A1603          | A1604      |
| Depth in Feet:                                                                    | 0-0                     | 0-0            | 0-0            | 0-0            | 0-0            | 0-0        |
| Parameters                                                                        | Result QFR              | QFR Result QFR | OFR Result OFR | QFR Result QFR | QFR Result QFR | Result QFR |
| Miscellaneous (mg/L)                                                              |                         |                |                |                |                |            |
| Alkalinity, Titrimetric                                                           | 520                     | 330            |                | 470            | 380            | 500        |
| Chemical Oxygen Demand                                                            | 35                      |                |                |                |                |            |
| Chloride by Ion Chrom.                                                            | 87                      | 89             |                | 39             | 34             | 57         |
| Nitrate and Nitrite                                                               | 2.9                     | 2.7            |                | 3.8            | 3.8            | 2.6        |
| Silica                                                                            | 7.3                     | 6.9            |                | 8.9            | 4.3            | 11         |
| Sulfate by Ion Chrom.                                                             | 110                     | 230            |                | 36             | 22             | 37         |
| Total Phosphorus                                                                  | 0.15                    |                |                |                |                |            |
| Total Dissolved Solids                                                            | 630                     | 099            |                | 510            | 450            | 650        |
| Total Kjeldahl Nitrogen                                                           | 0.38                    |                |                |                |                |            |
| Total Organic Carbon                                                              | 3                       | 3              |                | 2.2            | 1.2            | 1.6        |
| Total Suspended Solids                                                            | 190                     | 250            |                | 750            | 160            | 42         |
| B = Analyte was also found in sample blank                                        |                         |                |                |                |                |            |
| D = Compound identified at a secondary dilution factor.                           | on factor.              |                |                |                |                |            |
| E = Concentration exceeds instrument calibration range for that specific analysis | on range for that speci | fic analysis   |                |                |                |            |
| J = Concentration is an estimated value                                           |                         |                |                |                |                |            |
| N = Sample is outside of Matrix Spike QC Limit                                    | •                       |                |                |                |                |            |
| < = Not detected                                                                  |                         |                |                |                |                |            |
| QFR = Qualifier                                                                   |                         |                |                |                |                |            |
| Analytical data has not been validated                                            |                         |                |                |                |                |            |
|                                                                                   |                         |                |                |                |                |            |

Analytical Results for Fire Training Area 2 For LSZ Groundwater Tinker Air Force Base, Oklahoma Table 5-4

| 2-65A<br>A1609             | 0.0            | QFR               |               | 2.8 N    |                            |        |         | 91      | 53 N          |        | 4.3  |                         | 6)        | N 22 N       |        |           | 54     | N 83          |                      |                        | 0.26 N                  |                        | Q                       | ***                    | 18                  | <del>, ,</del> |                       | 3.9 N            |                                            |                                                                                   |                                         |                                                |  |
|----------------------------|----------------|-------------------|---------------|----------|----------------------------|--------|---------|---------|---------------|--------|------|-------------------------|-----------|--------------|--------|-----------|--------|---------------|----------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|---------------------|----------------|-----------------------|------------------|--------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|--|
| 2.64A 2.6                  | 0.0            | Result QFR Result |               | 2.9 N 2. |                            | 0.56   |         |         | 0.075 N 0.053 |        |      | 0.0042                  |           | 0.12 N 0.067 | z      |           | 23 22  | 0.021 N 0.028 |                      | 388 25                 | 0.2                     |                        | 350 19                  |                        | 1.1 0.78            |                | 14 N 2                | .9.              |                                            |                                                                                   |                                         |                                                |  |
| 2:63A<br>A1607             | 0.0            | Result QFR        |               | 32 N     | 0.018                      | 3.7    | 0.0066  | 100     | 0.12 N        | 0.1    | 57   | 0.025                   | 57        | 1.2 N        | N 6200 | 7.3       | 25     | 0.1 N         |                      | 190                    |                         | 1900                   | 380                     | 17                     | 3.3                 | 8.8            | 17 N                  | 0.19 N           |                                            | fic analysis                                                                      |                                         |                                                |  |
| 2-62A<br>A1648             | 0.0            | Result QFR        |               | 1.5      |                            | 0.56   |         | 89      | 0.021         |        | 1.1  |                         | 42        | 0.016        |        |           | 45     |               |                      | 450                    |                         | 45                     | 390                     | 6.6                    | 5.3                 | 11             | 17                    |                  |                                            | range for that speci-                                                             |                                         |                                                |  |
| Well/Boring:<br>Sample ID: | Depth in Feet: | Parameters        | Metals (mg/L) | Aluminum | Arsenic - Graphite Furnace | Barium | Cadmium | Calcium | Chromium      | Copper | Iron | Lead - Graphite Furnace | Magnesium | Manganese    | Nickel | Potassium | Sodium | Zinc          | Miscellaneous (mg/L) | Total Dissolved Solids | Total Kjeldahl Nitrogen | Total Suspended Solids | Alkalinity, Titrimetric | Chloride by Ion Chrom. | Nitrate and Nitrite | Silica         | Sulfate by Ion Chrom. | Total Phosphorus | B = Analyte was also found in sample blank | E = Concentration exceeds instrument calibration range for that specific analysis | J = Concentration is an estimated value | N = Sample is outside of Matrix Spike QC Limit |  |

The SVOCs detected in the four USZ wells and their maximum concentrations included: 1,2-dichlorobenzene (1,900  $\mu$ g/L), 1,4-dichlorobenzene (290  $\mu$ g/L), and 1,3-dichlorobenzene (53  $\mu$ g/L). Bis(2-ethylhexyl)phthalate was detected below the quantitation limit in a sample from LSZ well 2-62A.


Concentrations of two SVOCs were above MCLs. This includes 1,2-dichlorobenzene and 1,4-dichlorobenzene in well 2-62B.


Concentrations of metals in groundwater samples from the wells at FTA2 were generally below MCLs. Three metals concentrations in the sample from LSZ well 2-63A appeared to exceed MCLs, including barium, chromium, and lead. However, this sample also contained total suspended solids at 1,900 mg/L, a much higher concentration than that observed in the other seven wells. It appears that the elevated metals concentrations in this sample are probably due to acid digestion of aquifer sediments containing natural metals.

The results of the analysis of groundwater samples from the eight wells suggest that the groundwater has not been substantially affected by operations at the former FTA2. The compounds detected in the wells are not generally associated with fuels, with the exception of the very low levels of benzene and toluene that were detected. These results are consistent with the analytical results for soils samples reported in the 1987 study (USACE, 1988), which found only traces of fuel-related nonhazardous alkanes. However, the presence of elevated concentrations on solvents in well 2-62B suggests that another source of hazardous materials may be nearby. The absence of similar compounds in the soil samples collected above the water table in this study suggests that the source of the contaminants is not in the areas where the eight wells were drilled.

The areal pattern of concentrations of organic compounds in groundwater in the vicinity of FTA2 is shown in Figures 5-5 and 5-6, which depict TCE and cis-1,2- dichloroethene, respectively. The maps indicate maximum concentrations at well 2-62B and suggest that concentrations decline to the north, west, and southwest. The contours suggest a source to the east, though other interpretations are possible, including a source to the northeast or to the north, between wells 2-62B and 2-65B.

Other evidence suggests that the source of contaminants could be to the east, in the vicinity of the culvert where the southwest-flowing tributary to Crutcho Creek emerges. The concentration of sulfate in well 2-62B is elevated compared to the other seven wells. This





elevation is consistent with downward leakage of surface water from the tributary, which would contact the gypsum or anhydrite beds near the base of the silty clay unit which overlies the USZ water table. Also, as noted previously, water levels in the USZ suggest a mounding of the water table in the vicinity of the tributary. Much of the protective upper silty clay unit has been removed by erosion by the tributary, which would facilitate loss of surface waters into the subsurface. If contaminated waters were present in this tributary, it appears possible that they could leak into the subsurface and contaminate the USZ. Potential sources of contaminants exist in the area drained by this tributary, including industrial facilities and ramp areas on the east side of the airfield.

### 6.0 Potential Receptors

A specific potential human and ecological receptor search has not been performed for FTA2. Data are available in the form of chemical analysis of soils and groundwater; current and future uses of these media; and ecologic and demographic information necessary to initiate a potential receptors search. The following sections describe the data available to begin identification of potential receptors.

#### 6.1 Human Receptors

Tinker AFB is situated on a relatively flat expanse of grassland. Prior to the development of the Base, the area was characterized by large tracts of agricultural land. The Base currently occupies approximately 5,000 acres of semi-improved and unimproved grounds that are used for the airfield, golf course, housing area, offices, shops, and other uses characteristic of military installations.

The Garber-Wellington aquifer, which underlies Tinker AFB, is the single most important source of potable groundwater in the Oklahoma City area. The recharge area for the Garber-Wellington aquifer covers the eastern half of Oklahoma County, including Tinker AFB. Approximately 75 percent of the Base's water supply is obtained from production wells pumping from this aquifer. Industrial operations, individual homes, farm irrigation, and small communities not served by municipal distribution systems also depend on the Garber-Wellington aquifer. Communities, such as Oklahoma City, presently depending upon surface water supplies also maintain a well system drilled into this aquifer as a standby source of water in the event of drought. Lake Stanley Draper, a local surface water supply reservoir with a small portion of its drainage basin within the boundaries of Tinker AFB, serves a significant recreational function as well.

In 1989, approximately 26,000 military and civilian personnel worked at Tinker AFB. Of these, approximately 2,722 personnel occupied on-Base housing, which consisted of 530 family housing units and seven dormitories. At that time, 1,262 of these residents were children. Military personnel and their families who reside on Base represent the nearest receptors to releases from Tinker AFB.

The current land use at and near the Base is not expected to change because the facilities have decades of useful life remaining and the Base has an important and continuing mission.

However, other future land use scenarios and any human receptors associated with those scenarios may need to be considered.

#### 6.2 Ecological Receptors

Tinker AFB lies within a grassland ecosystem, which is typically composed of grasses, forbes, and riparian (i.e., trees, shrubs, and vines associated with water courses) vegetation. This ecosystem has generally experienced fragmentation and disturbances as result of urbanization and industrialization at and near the Base. While no threatened or endangered plant species occur on the Base, the Oklahoma penstemon (*Penstemon oklahomensis*), identified as a rare plant under the Oklahoma Natural Heritage Inventory Program, thrives in several locations on Base. Tinker AFB policy considers rare species as if they were threatened or endangered and provides the same level of protection for these species.

In general, wildlife on the Base is typically tolerant of human activities and urban environments. No federal threatened or endangered species have been reported at the Base. However, one specie found on the Base, the Texas horned lizard (*Phrynosoma cornutum*), is a Federal Category 2 candidate specie and under review for consideration to be listed as threatened or endangered. Air Force policy (AFR 126-1) considers candidate species as threatened or endangered and provides the same level of protection.

The Oklahoma Department of Wildlife Conservation also lists several species within the state as Species of Special Concern. Information on these species suggests declining populations but information is inadequate to support listing, and additional monitoring of populations is needed to determine the species status. These species also receive protection by Tinker AFB as threatened or endangered species. Of these species, the Swainson's hawk (Buteo swainsoni) and the burrowing owl (Athene cunicularia) have been sighted on Tinker AFB. The Swainson hawk, a summer visitor and prairie/meadow inhabitant has been encountered Basewide. The burrowing owl has been known to inhabit the Air Field at the Base.

#### 7.0 Action Levels

An "action level" is defined by EPA in proposed rule 40 CFR 264.521 (55 FR 30798; 7/27/90), "Corrective Action for Solid Waste Management Units (SWMU) at Hazardous Waste Management Facilities," as a health- and environment-based level, determined by EPA to be an indicator for protection of human health and the environment. In the preamble to this proposed rule, the focus of the RFI phase is defined as "characterizing the actual environmental problems at the facilities." As part of this characterization, a comparison of the contaminant concentrations to certain action levels should be made to determine if a significant release of hazardous constituents has occurred. This comparison is then used to determine if further action or corrective measures are required for a SWMU or an AOC. The preamble to the proposed rule states that the concept of action levels was introduced because of the need for "a trigger that will indicate the need for a Corrective Measures Study (CMS) and below which a CMS would not ordinarily be required" (55 FR 30798; 7/27/90). If constituent concentrations exceed certain action levels at a SWMU or an AOC, further action or a CMS may be warranted; if constituent concentrations are below action levels, a finding of no further action may be warranted. This chapter of the report presents the initial analytical data as compared to certain potential action levels.

Action levels are concentrations of constituents at or below which exposure to humans or the environment should not produce acute or chronic effects.

The action level information is presented in this chapter so that a constituent concentration at a sample location can be compared with its potential action level. Only constituents identified in the analysis are listed in the SWMU-8, FTA2 table. Table 7-1 shows the action levels for soil, water, and air as published in federal or state regulations, policies, guidance documents, or proposed rules.

The action levels listed in Table 7-1 are:

• **SWMU CAL** - The first set of action levels provided in the table are those taken from the proposed rule (40 CFR 264.521) and provided as Appendix A to the rule as "Examples of Concentrations Meeting Criteria for Action Levels." These levels are health-risk based and are provided as specific examples of levels below which corrective action would not be required.

KN/12565WMU8/5WMU8.7-1/08-26-94/F2 11:46em

Table 7-1 Action Level SWMU-8, FTA2, Tinker AFB

(Page 1 of 3)

|                            |                 | SWMU            |                | MCL             | USGS <sup>c</sup><br>Background | NAAOS          | 2-62A            | 2-63A        | 2-64A        | 2-65A        |
|----------------------------|-----------------|-----------------|----------------|-----------------|---------------------------------|----------------|------------------|--------------|--------------|--------------|
| Parameters                 | Soil<br>(mg/kg) | Water<br>(mg/L) | Air<br>(µg/m³) | Water<br>(mg/L) | Soil<br>(mg/kg)                 | Air<br>(µo/m³) | Range<br>(morks) | Range        | Range        | Range        |
| Organics                   |                 |                 |                |                 |                                 |                |                  | (8.4         | (Au Aun)     | (mg/kg)      |
| 1,1,1-Trichoroethane       | 7,000           | 3.0             | 1,000          | 0.2             |                                 |                | mat me7          |              |              |              |
| Bis(2-ethylhexyl)phthalate | S               | 0.003           |                | 9000            |                                 |                | 1900:-1900:      | 1.7          |              |              |
| Butyl benzyl phthalate     | 20,000          | 7.0             |                | 1.0             |                                 |                |                  | 067.0.63     | 1.3-2.1      |              |
| Di-n-butyl phthalate       | 8,000           | 4.0             |                |                 |                                 |                |                  | 0.07.00      | 98.0-96.0    |              |
| Inorganics                 |                 |                 |                |                 |                                 |                |                  | 11-800       | 0.061-1.4    |              |
| Aluminum                   |                 |                 |                |                 | 68 000                          |                | 750 15 000       | 000 00       |              |              |
| Arsenic                    | 8               |                 | 75.05          | 0 005           | 7                               |                | 00'sl.oc.        |              | 1,800-16,000 | 1,500-19,000 |
| Barium                     | 400             |                 |                |                 |                                 |                | 1.0-3.4          | 2            | 1.1-2.9      | 1.2-4.1      |
| :                          |                 |                 |                | 0.5             | 3,40                            |                | 32-630           | 20-900       | 26-690       | 27-150       |
| Beryllium                  | 0.2             | 8E-06           | 0.0004         | 0.004           | ၈                               |                | 0.94-1.3         | 1.4-1.9      | 14.19        | 0 000        |
| Cadmium                    | 8               |                 | 0.0006         | 0.005           | 2                               |                | 0.57.0.60        | 0 24 0 00    |              | 7-99-0       |
| Chromium                   |                 |                 |                |                 | 9                               |                | 500              | <b>3</b>     | 0.80-1.1     | 0.74-1.1     |
| Conner                     |                 |                 |                |                 | 2                               |                | 414              | 3.9-20       | 8.5-19       | 6.7.37       |
|                            |                 |                 |                | 1.3*            | 85                              |                | 1.1-22           | 9.9-18       | 8.5-22       | 5.2-22       |
| Ilon                       |                 |                 |                |                 | 58,000                          |                | 2,400-14,000     | 2,800-17,000 | 3,700-13,000 | 4,600-22,000 |
| Lead                       |                 |                 |                | 0.015           | 27                              | 1.5            | 1.5-7.1          | 0.88-13.0    | 1.5-7.8      | 2991         |
| Nickel                     | 2,000           | 0.7             |                | 0.1             | 61                              |                | 7.3-25           | 18-20        | 63-28        | 96.9         |
| Silver                     | 82              |                 |                |                 | 2                               |                | 0.41             |              |              | 835          |
| Zinc                       |                 |                 |                |                 | ۶                               |                | 31.20            | 47.97        |              |              |
|                            |                 |                 |                |                 |                                 |                |                  | 17.1.51      | 1.8-33       | 5.9-35       |

Table 7-1

(Page 2 of 3)

|                          |        | SWMU<br>CAL* |         | MCL    | USGS <sup>c</sup><br>Background | Site<br>Background <sup>d</sup> | NAAOS*              | 2-62A  | 2-628         | 2-63A  | 2.638  | 2.644  | 2.6.40 | 130 6  | 200    |
|--------------------------|--------|--------------|---------|--------|---------------------------------|---------------------------------|---------------------|--------|---------------|--------|--------|--------|--------|--------|--------|
| Parameters               | Soil   | Water        | Air     | Water  | Soil                            | 8                               | ₹.                  |        |               |        | 3      | V      | 900    | ¥607   | 2656   |
| - 11                     | (AuAm) | (וווומר)     | (maxil) | (mg/L) | (mg/kg)                         | (mg/kg)                         | (m&m <sub>2</sub> ) | (mg/L) | (mg/L)        | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) |
| Organics                 |        |              |         |        |                                 |                                 |                     |        |               |        |        |        |        |        |        |
| 1,1-Dichloroethene       | 5      |              | 0.03    | 0.007  |                                 |                                 |                     |        | 0.0057-0.006  |        |        |        |        |        |        |
| 1,1,2-Trichloroethane    | 5      | 9000         | 9.0     | 0.005  |                                 |                                 |                     |        | 0.0073-0.009  |        |        |        |        |        |        |
| 1,2-Dichlorobenzene      |        |              |         | 9.0    |                                 |                                 |                     |        | 17.19         |        |        |        |        |        |        |
| 1,2-Dichloroethane       | 8.0    |              | 0.04    | 0.005  |                                 |                                 |                     |        | 0.43-0.55     |        |        |        |        |        |        |
| 1,2-Dichloropropane      |        |              |         | 0.005  |                                 |                                 |                     |        | 0.007-0.0073  |        |        |        |        |        |        |
| 1,3-Dichlorobenzene      |        |              |         | 9.0    |                                 |                                 |                     |        | 0.048.0.083   |        |        |        |        |        |        |
| 1,4-Dichlorobenzene      |        |              |         | 0.075  |                                 |                                 |                     |        | 0.000         |        |        |        |        |        |        |
| Benzene                  |        |              |         | 0.005  |                                 |                                 |                     |        | 0.0054.0.0057 |        |        |        |        |        |        |
| Chlorobenzene            | 2,000  | 2.0          | 8       | 1.0    |                                 |                                 |                     |        | 0 22 0 24     |        |        |        |        |        |        |
| Chloroform               | 001    | 900.0        | 20.0    | 1.0    |                                 |                                 |                     |        | 0.0048        |        |        |        |        |        |        |
| Cis-1,2-dichloroethene   | 8.0    |              | 90.0    | 0.07   |                                 |                                 |                     |        | 12.17         |        | 100    |        |        |        |        |
| Tetrachloroethene        | 10     | 0.0007       | 0.1     | 0.005  |                                 |                                 |                     |        | 0 0044 0 0047 |        | 0.00   |        | 0.039  |        | 0.024  |
| Toluene                  | 20,000 | 0            | 7,000   | 0.     |                                 |                                 |                     |        | 2000          |        |        |        |        |        |        |
| Trans-1,2-dichloroethene | 6.0    |              | 20.0    | 1.0    |                                 |                                 |                     |        | 44 0 14       |        |        |        |        |        |        |
| Trichloroethene          | 9      |              |         | 0.005  |                                 |                                 |                     |        | 70.80         |        | 0000   |        |        |        |        |
| Inorganics               |        |              |         |        |                                 |                                 |                     |        | 6.0           |        | 230.0  |        | 960.0  |        | 6600   |
| Aluminum                 |        |              |         |        |                                 | on et                           |                     |        | 6 6 7 9       |        |        |        |        |        |        |
| Arsenic                  | 8E+01  |              | 7E-05   | 900    | 21                              |                                 |                     | 2      | 3.0-1.0       | 35     | 8.0    | 5.9    | 7      | 2.8    | 0.95   |
| Barium                   | 4,000  |              | 9.0     | 2.0    | 6.400                           |                                 |                     | S      |               | 910.0  | 1      |        |        |        |        |
| Cadmium                  | \$     |              | 90000   | 0 005  | ,                               |                                 |                     |        | 130.61        | /8     | 80     | 88     | 8      |        | 0.24   |
|                          |        |              |         |        | ,                               |                                 |                     |        |               | 9900   |        |        |        | -      |        |

KN/1256/SWMU8/SWMU8.7-1/08-26-94/F2 11:46em

Table 7-1

(Page 3 of 3)

2-65B (mg/L) = 2.6 (mg/L) 2-65A 0.053 0.028 6.3 **8**2.0 (mg/L) 9 9 3.8 (mg/L) 0.0042 2-64A 0.075 0.087 0.021 8 = (mg/L) 2-63B 0.014 0.022 0.0 3.8 5 (mg/L) 2-63A 0.12 0.10 0.025 0.079 0.10 27 3.3 0.0031-0.004 0.029-0.040 0.043-0.049 0.021-0.024 2.7-2.9 (mg/L) 5.5-11 2-62B **Jo** 2-62A 0.021 5.3 Ξ NAAOS At (μg/m³) <u>.</u>55 Site Background<sup>d</sup> Soil (mg/kg) 22,000 USGS<sup>c</sup> Background Soil (mg/kg) 5 ß 1.2 æ 27 5 MCL Water (mg/L) 0.015 <u>..</u> -0.7 9.08 2 Air (49/m³) Water (mg/L) SWMU CAL\* 0.7 Soil (mg/kg) 2,000 Inorganics (Continued) Parameters Nitrate/nitrite Chromium Selenium Copper Nickel Lead Zinc <u>ह</u>

\*CAL - Corrective Action Levels.

\*MCL - Maximum Contaminant Levels.

\*JUSGS Background - United States Geological Survey Background.

\*NAACOS - National Ambient Air Quality Standards.

\*Action Level at the Tap.

\*\*Month Average.

- **Maximum Contaminant Levels (MCL)** These values are provided from 40 CFR Subpart G, Sections 141.60 through 0.63 as promulgated under the Safe Drinking Water Act. These levels are designated for water media only.
- **USGS Background** These values are provided from the USGS report titled "Elemental Composition of Surficial Materials from Central Oklahoma" (USGS, 1991). These values represent the levels of metals which naturally occur in Central Oklahoma soils.
- **Background** These levels are provided where background could be determined. Where available, background concentrations are listed for metals in soil samples taken on site, which were thought to be unaffected by releases from a unit.
- National Ambient Air Quality Standards (NAAQS) These standards are published in 40 CFR Part 50 under the Clean Air Act and apply to point sources that emit a limited number of constituents to the air. The constituents regulated are nitrogen dioxide, sulphur dioxide, carbon monoxide, lead, ozone, and particulate matter. Currently, it is assumed that none of the SWMUs or AOCs emit these compounds in regulated quantities and no air samples have been taken which would allow for a valid comparison.
- Water Quality Standards (WQS) The WQS are the standards for surface water quality as established by the State of Oklahoma. These standards apply to point source discharges to surface waters and have been listed for those units adjacent to surface water.

Table 7-1 also gives a brief comparative evaluation of the data collected and the related action levels. The data for each detected compound are compared with the appropriate action level in order to identify those constituents (compounds) with concentrations exceeding the action levels. This identification of the compounds above the action levels provides an indication of a potential environmental problem at a specific site. In addition, this information indicates whether there is a need for conducting a CMS so that a corrective action can be implemented/undertaken at the site.

For constituents that have a SWMU CAL and an MCL for water, the MCL will be used for the comparison. Also, constituents that do not have a USGS background value will be compared to the site background value if available.

The data included in Table 7-1 is representative of the data presented in Chapter 5.0. For each soil boring, a range was identified and used in the comparison to the action levels. For

the groundwater samples, the results for the most recent sampling event were included in Table 7-1.

None of the constituents detected in the soil exceed the action levels or the existing background concentrations. Organics that were detected in the groundwater at FTA2 above MCLs include 1,1,2-TCE, 1,2-dichloropropane, 1,2-dichloroethane, benzene, chlorobenzene, trans-1,2-dichloroethane, 1,2-dichlorobenzene, 1,4-dichlorobenzene, cis-1,2-dichloroethene, and TCE. Barium, cadmium, chromium, lead, and selenium were also detected above MCLs.

## 8.0 Summary and Conclusions

#### 8.1 Summary

The RFI was conducted to determine if the soils and groundwater in the vicinity of FTA2 have been impacted by organic or metals contaminants as a result of former operations at FTA2. Eight monitoring wells were installed in the vicinity of FTA2, consisting of four well pairs. Four wells were installed in the USZ and four wells were installed in the LSZ. Soil samples were collected from the borings drilled for the LSZ wells. Soil samples were not collected from within the perimeter of the SWMU, since a previous investigation had a characterization of this potential source area.

The previous investigation was performed in 1987 by the USACE (1988) found that soils directly beneath the former facility were impacted by low levels of hazardous constituents, including acetone, methylene chloride, bis(2-ethylhexyl)phthalate, although in some cases it was uncertain if some of the samples had been contaminated by field or laboratory sample handling procedures, since several blanks also contained the constituents. Low levels (<70 mg/kg) of several fuel-related but nonhazardous organic compounds were also detected. Concentrations of metals were found to be within the range measured in background samples.

Undisturbed soil samples recovered from the borings made for the RFI monitoring wells indicate that approximately the upper 10 to 15 feet of the geologic section below the site consists of reddish silty clay or clayey silt of the Hennessey Group. Thin layers of anhydrite or gypsum occur near the base of this zone. Underlying the Hennessey are interbedded fine sandstone and siltstone of the Garber Sandstone. A layer of hard siltstone appears to be traceable across the area at a depth of approximately 40 to 45 feet.

The water levels in the USZ wells indicate that the water table is approximately 15 feet below grade. The LSZ wells are completed in the upper part of the Garber-Wellington aquifer and water levels are at a depth of approximately 60 feet below grade. Water levels in the USZ appear to be several feet lower than the bed of a nearby southwest-flowing tributary of Crutcho Creek.

The RFI results indicated that the soils and groundwater in the vicinity of the SWMU contain little if any trace of fuels-related contaminants. The soils samples contained low levels of VOCs. Only 1,1,1-TCA was detected above the method detection limits, at a maximum

concentration of 6.7  $\mu$ g/kg, well below the CAL proposed in 40 CFR 264.521 (Chapter 7.0). In addition, three phthalate compounds were sporadically detected, all at concentrations below 3 mg/kg, and well below proposed CALs. Metals concentrations were within the range of background soil concentrations reported in a study of the four-county area around Tinker AFB by the USGS.

The groundwater samples collected from the eight monitoring wells indicate that the LSZ has not been affected. However, samples from the USZ indicate that the groundwater has been affected by several VOCs and SVOCs. The compounds do not appear to be related to operations at the former FTA2, as they are not fuel-related and were generally not detected in the soil samples analyzed in either this RFI or the 1987 investigation (USACE, 1988).

The samples from well 2-62B, located southeast of the FTA2, contained the greatest number and highest concentrations of constituents. The predominant constituents were TCE (maximum concentration 8,900  $\mu$ g/L) and cis-1,2-dichloroethene (maximum 1,700  $\mu$ g/L). Seven other volatiles were present at lesser concentrations. Three additional volatiles were detected below quantitation limits. In addition, three semivolatile compounds were detected in 2-62B, including 1,2-dichlorobenzene (1,900  $\mu$ g/L), 1,4-dichlorobenzene (290  $\mu$ g/L), and 1,3-dichlorobenzene (53  $\mu$ g/L).

Volatile constituents detected above CALs in well 2-62B included 1,1,2-TCA and tetrachloroethene. Other compounds, for which no CAL is available, were present in well 2-62B at concentrations which exceeded MCLs, including TCE, cis-1,2-dichloroethene, 1,2-dichloropropane, 1,2-DCA, benzene, and trans-1,2-DCE. Concentrations of two SVOCs were above MCLs. This includes 1,2-dichlorobenzene and 1,4- dichlorobenzene in well 2-62B.

TCE was detected in USZ wells 2-63B, 2-64B, and 2-65B at concentrations which also exceeded CALs.

The source of the contaminants in the USZ in this area does not appear to be FTA2, since the compounds in the groundwater are different from those which have been identified in the soils. Geotechnical analyses of a soil sample from this area, as discussed in Section 5.4.2, suggests that in general, near surface soils are fine grained (primarily silt and clay) with relatively low vertical permeability. The low permeability would tend to limit infiltration of surface water, which inhibits transport of contaminants to the subsurface.

There are no obvious upgradient sources for the solvent materials detected in the groundwater in the USZ in this area. The water levels in the USZ in the vicinity of FTA2 suggest that locally the water table gradient is significantly reduced compared to the Base-wide gradient. The gradient is relatively flat in the vicinity of wells 2-62B, 2-63B, and 2-64B. This could indicate the presents of a groundwater mound, suggesting the possibility of a local source of recharge to the aquifer. The most likely source of recharge in this area would be the small southwest-flowing tributary to Crutcho Creek located south of the FTA2.

Other evidence suggests that the source of contaminants could be to the east, in the vicinity of the culvert where the southwest-flowing tributary to Crutcho Creek emerges (Figure 3-1). The concentration of sulfate in well 2-62B is elevated compared to the other seven wells. This elevation is consistent with downward leakage of surface water from the tributary, which would contact the gypsum or anhydrite beds near the base of the silty clay unit.

Much of the protective upper silty clay unit has been removed by erosion by the tributary, which would facilitate loss of surface waters into the subsurface. If contaminated waters were present in this tributary, it appears possible that they could leak into the subsurface and contaminate the USZ. Potential sources of contaminants exist in the area drained by this tributary, including industrial facilities and ramp areas on the east side of the airfield.

#### 8.2 Conclusions

Data collected for this RFI suggest that FTA2 is not the source of the hazardous constituents detected in samples from the monitoring wells installed in this area. There do not appear to be any significant ongoing releases from the FTA2. The specific VOCs and SVOCs detected in the groundwater samples suggest that these materials are more likely to have originated from other industrial processes, such as degreasing operations, rather than from activities in which only hydrocarbon fuels were involved. No such industrial operations exist or are known to have previously existed in the immediate area surrounding FTA2.

The gradient of the water table and the pattern of contaminant concentrations in the area around FTA2 suggests that the source of the contaminants would be northeast or east of well 2-62B. The only nearby potential source appears to be the southeast-flowing tributary which passes to the south of the SWMU and drains industrial areas located upstream. This tributary emerges from a culvert that passes beneath the airfield runways located to the east. Although the data are insufficient to definitely identify this area as the source of the contaminants, several factors suggest that this is a viable possibility:

- The water level in well 2-62B appears to be below the channel of the tributary.
- The anomalously high sulfate concentration in a groundwater sample from well 2-62B suggests leaching of gypsum or anhydrite, which was identified near the base of the silt/clay unit in soil samples from several of these wells.
- The water table appears to be anomalously flat in this area, suggesting a local source of recharge may exist.
- Much of the protective upper silt/clay unit has been removed by erosion of the tributary.
- Potential sources of the contaminants detected in the USZ in this area exist in upstream areas drained by this tributary.

Recommendations for additional work to determine the source of the contaminants detected in groundwater in the USZ in this area are discussed in Chapter 9.0.

#### 9.0 Recommendations

As presented in Chapter 8.0, the preponderance of data collected from the RFI at FTA2, indicates that it is not likely to be the source of the hazardous constituents detected in the groundwater. Groundwater samples in the USZ have detected several VOCs and SVOCs. Predominant constituents included TCE and cis-1,2-dichloroethene. Seven other volatiles were present at lesser concentrations. None of these compounds appear to be directly related to the operations at the former FTA2. Only traces of fuel-related contaminants, known to be associated with the waste handling activities and operating practices at this SWMU were found in the soils and the groundwater (USZ only). Groundwater samples from well 2-62B, located southeast of the SWMU, contained the greatest number and highest concentrations of these constituents. The source of these constituents is not evident from the information obtained during this RFI.

The constituents detected in the dissolved phase at the former FTA2 are among the chemical constituents known as dense nonaqueous-phase liquids (DNAPL). Recently, EPA has acknowledged that DNAPL contaminants present unique site characterization and remediation problems. Adequate site characterization, while difficult when dealing with constituents, is paramount for making sound remediation decisions.

As previously discussed in Chapter 8.0, there are no obvious apparent sources for the subject dissolved constituents detected in the USZ that are currently visible at this SWMU nor evident in the past, based on a review of aerial photographs of the area. One potential source that is suspected is the small tributary to Crutcho Creek, located south of the SWMU. This tributary, which emerges from a culvert in the vicinity of this SWMU, drains towards the southwest into Crutcho Creek, and may provide recharge to the USZ, could be a secondary migration pathway, carrying these constituents from an upstream, unknown remote source. Evidence in the groundwater data also suggest that another source unrelated to FTA2 could be located upgradient of well 2-62B.

Based on the data and results from this RFI, further investigation is warranted in order to identify, if practicable, the source(s) of the constituents, previously described, which have been detected in the USZ. It is recommended that a source assessment be conducted for the purpose of identifying whether or not another source exists in the vicinity of FTA2. The approach of the proposed assessment would consist of the following:

- Review of plant records and/or interviews with Base personnel familiar with historical operations in this area
- Review of aerial photographs of the area around FTA2 for the possible detection of previously unidentified activities in the vicinity immediately upgradient
- The collection of groundwater samples from a minimum of four and a maximum
  of six locations using either temporary well points or a best available technology
  (BAT) system sampling devices driven using a truck mounted cone penetrometer
  testing (CPT) system
- Installation of monitoring well(s), which will be screened in the USZ at a location selected based on the results of the groundwater samples provided from the use of the CPT system.

Site-specific soil background samples were not collected, nor were the soil background values available for inclusion in this Phase I RFI report. Therefore, it is recommended that site-specific soil samples from uncontaminated areas be collected for analysis during the Phase II RFI field work. This additional information along with the USGS background values should be used in the Phase II report to distinguish site-related from background concentrations in a statistically significant manner. During the development of the Phase II RFI work plan, the number of background samples to be collected, the location of the soil borings, and the soil analysis to be performed on the samples should be determined for EPA approval.

A review of plant records and interviews with Base personnel familiar with historical operations in this area can be conducted to help ascertain whether an unidentified source may exist in this vicinity. If warranted, the locations of the CPT groundwater samples may be adjusted in the field accordingly from the information obtained. Similarly, aerial photographs of the area around FTA2 can be reviewed for previously unidentified activities in the vicinity immediately upgradient to well 2-62B.

The LSZ groundwater was found to be clean during the investigation, indicating that the vertical extent of groundwater contamination is known. However, the lateral extent of contamination was not determined in the USZ of the groundwater. It is recommended that the location, number, and depth of soil borings/monitoring wells be determined during the development of the Phase II RFI work plan.

With the objective of further defining the source and/or extent of the impacts to the USZ, additional groundwater samples should be collected cost effectively from four to six locations.

These locations will be selected during the development of a Phase II work plan based on the two potential source areas, identified in Chapter 8.0. Each groundwater sample can be screened for volatile organics using a field gas chromatograph (e.g., Foxboro Organic Vapor Analyzer) to provide qualitative "real-time" results. This would allow for adjustments to the number or locations of groundwater collection points to be made in the field. Sufficient sample volumes may also be collected from each location to be analyzed at an off-site laboratory for more quantitative results. Recommended analyses would include VOCs, SVOCs, TOC, and TPH.

Using this approach, the location of additional permanent monitoring (USZ) well(s) can be selected, based on the results of the assessment described above, to further delineate the extent of impacts in this area or assess the probable source area for the contaminants detected.

The number, location, and analysis to be performed on soil samples should be determined during the development of a Phase II RFI work plan for the site. Additional soil samples will be collected if needed.

#### 10.0 References

Bingham, R. H. and R. L. Moore, 1975, Reconnaissance of the Water Resources of the Oklahoma City Quadrangle, Central Oklahoma, Oklahoma Geological Survey, Hydrologic Atlas 4.

CDM Federal Programs Corporation (CDM), 1992, Final RFI Work Plan, Tinker AFB, Oklahoma, December 1992.

Engineering Science (ES), 1982, Installation Restoration Program, Phase I - Records Search, Tinker AFB, Oklahoma.

FR, Vol. 55, No. 128, Tuesday, July 3, 1991. (SWMU-19 & 22)

IT Corporation, 1993, Final RFI Work Plan - Amendments

Radian Corporation, 1985a, Installation Restoration Program, Phase II, Stage 1, Confirmation/Quantification Report, Tinker AFB, Oklahoma, Final Report, September 1985.

Radian Corporation, 1985b, Installation Restoration Program, Phase II, Stage 2, Confirmation/Quantification Report, Tinker AFB, Oklahoma, Final Report, October 1985.

Tinker AFB, 1992, Description of Current Conditions, Tinker AFB, Oklahoma, December 1992.

- U.S. Army Corps of Engineers (USACE), 1988, Tinker Air Force Base, Installation Restoration Program, Fire Training Area No. 2, Tulsa District, December 1988.
- U.S. Department of Agriculture (USDA), 1969, Soil Survey of Oklahoma City, Oklahoma, U.S. Department of Agriculture Soil Conservation Survey.
- U.S. Geological Survey (USGS), 1992, Hydrologic Atlas.
- U.S. Geological Survey (USGS), 1991, Elemental Composition of Surficial Materials from Central Oklahoma, Denver, Colorado
- U.S. Geological Survey (USGS), 1978.

Wickersham, G., 1979, Groundwater Resources of the Southern Part of the Garber-Wellington Groundwater Basin in Cleveland and Southern Oklahoma Counties and Parts of Pottawatomie County, Oklahoma, Oklahoma Water Resources Board, Hydrologic Investigations Publication 86.

Wood, P. R. and L. C. Burton, 1968, *Ground-Water Resources: Cleveland and Oklahoma Counties*, Oklahoma Geological Survey, Circular 71, Norman, Oklahoma, 75 p.

## APPENDIX A BORING LOGS/WELL CONSTRUCTION DIAGRAMS

Client: TINKER AFB Project Name: TINKER 5001

Project Location: TINKER AFB, OKLAHOMA Project Number: 409832

SOIL BORING 2-65P

DRILLING AND SAMPLING INFORMATION

Boring Location: NORTH OF FIRE TRAINING SURFACE ELEV.(FT):

AREA

Logged By:

K. KIRSCHENMANN P. GUERREIN

TOTAL DEPTH(FT.): 100.0

Oote Storted: 11/2/ 11/2/93

Drilled By:

Date Completed: 11/3/93

GEOTECHNOLOGY, INC.

Drill Rig Type: CME-75

Drilling Method: 8" HOLLOW STEM AUGER AND

MUD ROTARY WITH 3-7/8" BIT

Sampling Method:

Notes: STRATIGRAPHIC TEST USED FOR GEOPHYSICAL LOGGING

| DESCRIPTION                                            | SAMPLE TYPE SAMPLE NO. IN. DRIVEN IN. RECOVERED PID, PPM USCS GRAPHIC LOG |
|--------------------------------------------------------|---------------------------------------------------------------------------|
| SILTY CLAY                                             | cl cl                                                                     |
| – stiff; nard, pulldown pressure approximately 300 psi | 0 10                                                                      |
| — sandy and gravelly zone                              | 25                                                                        |
|                                                        | 0 30                                                                      |
| DRAFT RPS DRAFT PROJ. BY 11/24/93 CHK CHK              | APPRV. DWG. 409832-A27 BY NO. Sheet 1 of 3                                |

Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Project Number: 409832

SOIL BORING 2-65P

#### DRILLING AND SAMPLING INFORMATION

Boring Location: NORTH OF FIRE TRAINING SURFACE ELEV.(FT):

AREA

TOTAL DEPTH(FT.): 100.0

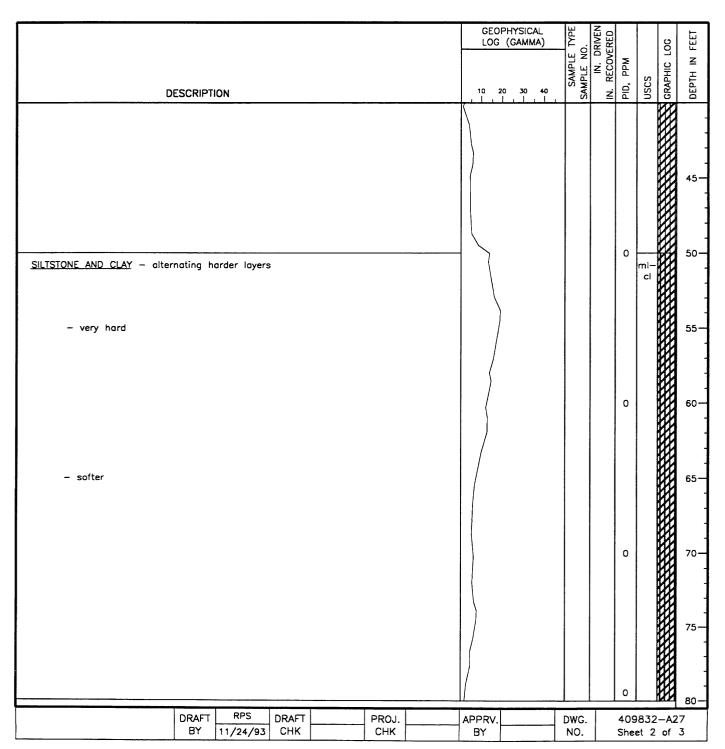
Logged By: Drilled By:

K. KIRSCHENMANN P. GUERREIN

Date Started: 11/2/93

Date Completed: 11/3/93

GEOTECHNOLOGY, INC.


Drill Rig Type: CME-75

Drilling Method: 8" HOLLOW STEM AUGER AND

MUD ROTARY WITH 3-7/8" BIT

Sampling Method:

Notes: STRATIGRAPHIC TEST USED FOR GEOPHYSICAL LOGGING



Client: TINKER AFB Project Location: TINKER AFB, OKLAHOMA SOIL BORING 2-65P Project Name: TINKER 5001 Project Number: 409832

#### DRILLING AND SAMPLING INFORMATION

Boring Location: NORTH OF FIRE TRAINING SURFACE ELEV.(FT):

AREA

TOTAL DEPTH(FT.): 100.0

Logged By:

K. KIRSCHENMANN Date Started: 11/2/93

P. GUERREIN Drilled By:

Date Completed: 11/3/93

GEOTECHNOLOGY, INC.

Drill Rig Type: CME-75

Drilling Method: 8" HOLLOW STEM AUGER AND

MUD ROTARY WITH 3-7/8" BIT

Sampling Method:

Notes: STRATIGRAPHIC TEST USED FOR GEOPHYSICAL LOGGING

| DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GEOPHYSICAL<br>LOG (GAMMA) | SAMPLE TYPE<br>SAMPLE NO. | IN. DRIVEN IN. RECOVERED PID, PPM | USCS<br>GRAPHIC LOG<br>DEPTH IN FEET | טברוח וא רכבו |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|-----------------------------------|--------------------------------------|---------------|
| SILTY CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                           |                                   | cl 85                                | 5             |
| — very hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                           | 0                                 | 90                                   | 1             |
| TOTAL DEPTH = 100.0 FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                           |                                   | 100                                  | -             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                           |                                   | 110                                  | 1             |
| DRAFT   RPS   DRAFT   PROJ.   PROJ. | APPRV.                     | DWG.                      | 409<br>She                        | 115<br>120<br>832–A27<br>et 3 of 3   | 1             |

Logged By:

Drilled By:

Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Project Number: 409832

MONITORING WELL 2-62A

#### DRILLING AND SAMPLING INFORMATION

Boring Location: EAST SIDE OF FIRE TRAINING AREA 2

**SURFACE ELEV.(FT): 1246.213** 

TOTAL DEPTH(FT.): 70

Date Started: 11/22/93 Date Completed: 11/29/93

D. MEYER GEOTECHNOLOGY. INC.

Drill Rig Type: CME-75

Drilling Method: 8" AND 12" HOLLOW STEM AUGERS AND MUD ROTORY WITH 5-5/8" TRICONE ROCK BIT

Sampling Method: 3"x5' CONTINUOUS SAMPLER

M. WILSON

Notes: N 150447.890, E 2182152.166

#### WELL COMPLETION DATA

Elev-Top of Casing(ft.):

1. Surf Casing-I.D.(in.):8 Centralizers-Type: S.Steel Depths(ft.): 13

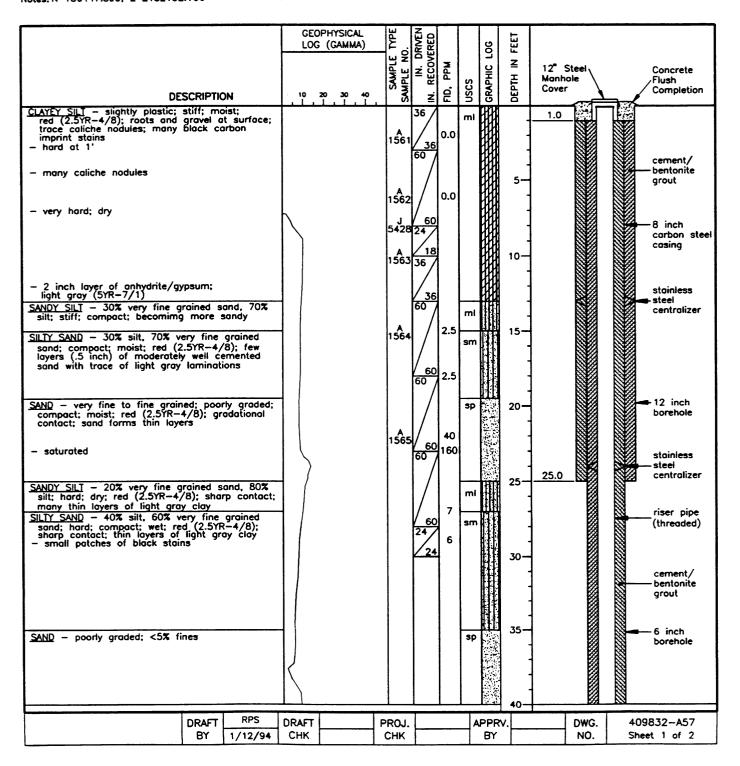
2. Riser Pipe-I.D.(in.); 2

Centralizers-Type: S.Steel Depths(ft.): 24, 53 3. Screen Dia.(in.): 2

Depth Interval(ft.):53.8-63.7 Slot Size(in.): .010 Centralizers-Type:

Conc. Pod Size: 4'x4'x6"

Ref. Datum: MSL


Depth(ft.): 25 Type: Carbon Steel

Depth(ft.): 53.8 Type: S.Steel

Type: S.Steel Wire Wound

Depths(ft.):

4. Filter Pock Type: Silica Sand Depth Interval(ft.): 52.0-65.0



Logged By:

Drilled By:

Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Project Number: 409832

MONITORING WELL 2-62A

#### DRILLING AND SAMPLING INFORMATION

Boring Location: EAST SIDE OF FIRE TRAINING AREA 2

**SURFACE ELEV.(FT): 1246.213** TOTAL DEPTH(FT.): 70

M. WILSON Date Started: D. MEYER Date Completed:

11/22/93 11/29/93

GEOTECHNOLOGY. INC.

Drill Rig Type: CME-75

Drilling Method: 8" AND 12" HOLLOW STEM AUGERS AND MUD ROTORY WITH 5-5/8" TRICONE ROCK BIT Sampling Method: 3"x5' CONTINUOUS SAMPLER

Notes: N 150447.890, E 2182152.166

#### WELL COMPLETION DATA

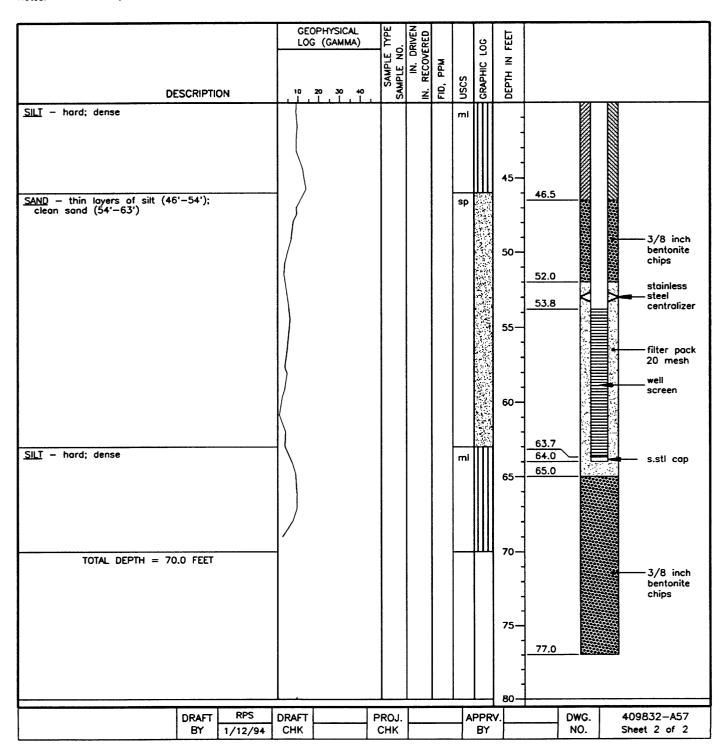
Elev-Top of Casing(ft.):

1. Surf Casing-I.D.(in.):8 Centralizers-Type: S.Steel Depths(ft.): 13

2. Riser Pipe-I.D.(in.): 2

Centralizers-Type: S.Steel Depths(ft.): 24, 53
3. Screen Dia.(in.): 2 Type: S.Steel Wire V Depth Interval(ft.):53.8-63.7 Slot Size(in.): .010 Centralizers-Type:

4. Filter Pack Type: Silica Sand Depth Interval(ft.): 52.0-65.0 Conc. Pad Size: 4'x4'x6"


Ref. Datum: MSL

Depth(ft.): 25 Type: Carbon Steel

Depth(ft.): 53.8 Type: S.Steel

Type: S.Steel Wire Wound

Depths(ft.):



Logged By:

Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Project Number: 409832

MONITORING WELL 2-63A

#### DRILLING AND SAMPLING INFORMATION

Boring Location: EAST SIDE OF FIRE TRAINING AREA 2

SURFACE ELEV.(FT): 1243.387 TOTAL DEPTH(FT.): 67

Drilled By: D. MEYER

11/19/93 Date Started: Date Completed: 11/23/93

GEOTECHNOLOGY. INC.

Drill Rig Type: CME-75

Drilling Method: 8" AND 12" HOLLOW STEM AUGERS AND MUD ROTORY WITH 5-5/8" TRICONE ROCK BIT

Sampling Method: 3"x5' CONTINUOUS SAMPLER

M. WILSON

AND 1-1/2"x2' SPLIT SPOON Notes: N 150389.964, E 2182043.019

#### WELL COMPLETION DATA

Elev-Top of Casing(ft.):

1. Surf Casing-I.D.(in.):8 Centralizers-Type: S.Steel

2. Riser Pipe-I.D.(in.): 2

Centralizers-Type: S.Steel
3. Screen Dia.(in.): 2 Depth Interval(ft.):53.0-63.0 Slot Size(in.): .010 Centralizers-Type:

4. Filter Pack Type: Silica Sand Depth Interval(ft.): 51-64

Conc. Pad Size: 4'x4'x6"

Ref. Datum: MSL

Depth(ft.): 28 Type: Carbon Steel

Depths(ft.): 15

Depth(ft.): 53 Type: S.Steel

Depths(ft.): 21, 51 Type: S.Steel Wire Wound

Depths(ft.):



Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Project Number: 409832

MONITORING WELL 2-63A

#### DRILLING AND SAMPLING INFORMATION

Boring Location: EAST SIDE OF FIRE TRAINING AREA 2

SURFACE ELEV.(FT): 1243.387 TOTAL DEPTH(FT.): 67

11/19/93 M. WILSON Logged By: Date Started: D. MEYER Date Completed: Drilled By: 11/23/93

GEOTECHNOLOGY. INC.

Drill Rig Type: CME-75

Drilling Method: 8" AND 12" HOLLOW STEM AUGERS AND MUD ROTORY WITH 5-5/8" TRICONE ROCK BIT

Sampling Method: 3"x5' CONTINUOUS SAMPLER AND 1-1/2"x2' SPLIT SPOON

Notes: N 150389.964, E 2182043.019

#### WELL COMPLETION DATA

Elev-Top of Casing(ft.):

1. Surf Casing-I.D.(in.):8 Centralizers-Type: S.Steel

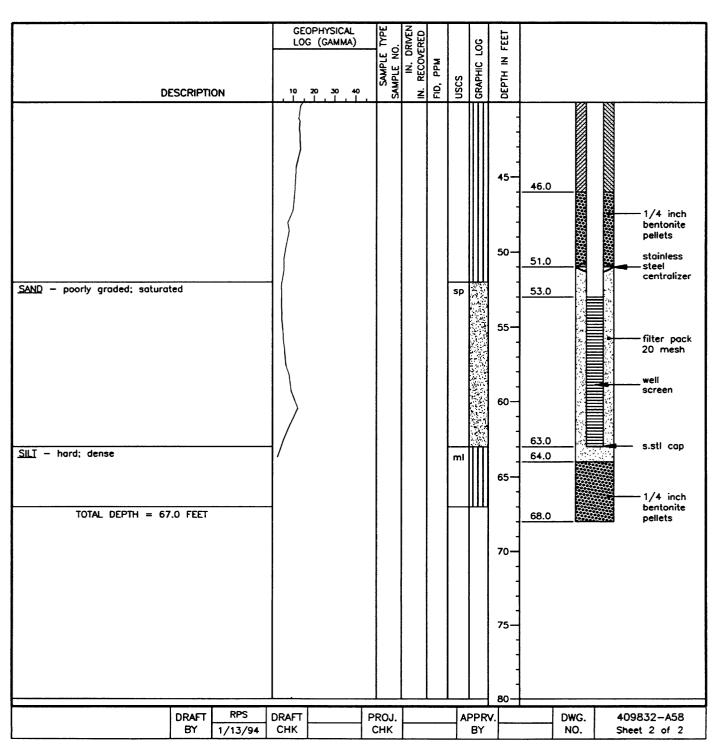
2. Riser Pipe-I.D.(in.): 2 Centralizers-Type: S.Steel

3. Screen Dia.(in.): Depth Interval(ft.):53.0-63.0 Slot Size(in.): .010 Centralizers-Type:

Conc. Pad Size: 4'x4'x6"

Ref. Datum: MSL

Depth(ft.): 28 Type: Carbon Steel


Depths(ft.): 15

Depth(ft.): 53 Type: S.Steel

Depths(ft.): 21, 51 Type: S.Steel Wire Wound

Depths(ft.):

4. Filter Pack Type: Silica Sand Depth Interval(ft.): 51-64



Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Project Number: 409832

MONITORING WELL 2-64A

WELL COMPLETION DATA

#### DRILLING AND SAMPLING INFORMATION

Boring Location: NORTH SIDE OF FIRE TRAINING AREA 2

**SURFACE ELEV.(FT): 1246.052** TOTAL DEPTH(FT.): 75

Logged By: M. WILSON Drilled By:

Drill Rig Type: CME-75

Date Started: Date Completed:

1. Surf Casing-I.D.(in.):8 11/18/93 11/22/93

D. MEYER

AND MUD ROTORY WITH 5-5/8" TRICONE ROCK BIT

Drilling Method: 8" AND 12" HOLLOW STEM AUGERS

Sampling Method: 3"x5' CONTINUOUS SAMPLER

GEOTECHNOLOGY. INC.

2. Riser Pipe-I.D.(in.): 2 Centralizers-Type: S.Steel

3. Screen Dia.(in.): Depth Interval(ft.):56-66 Centralizers-Type:

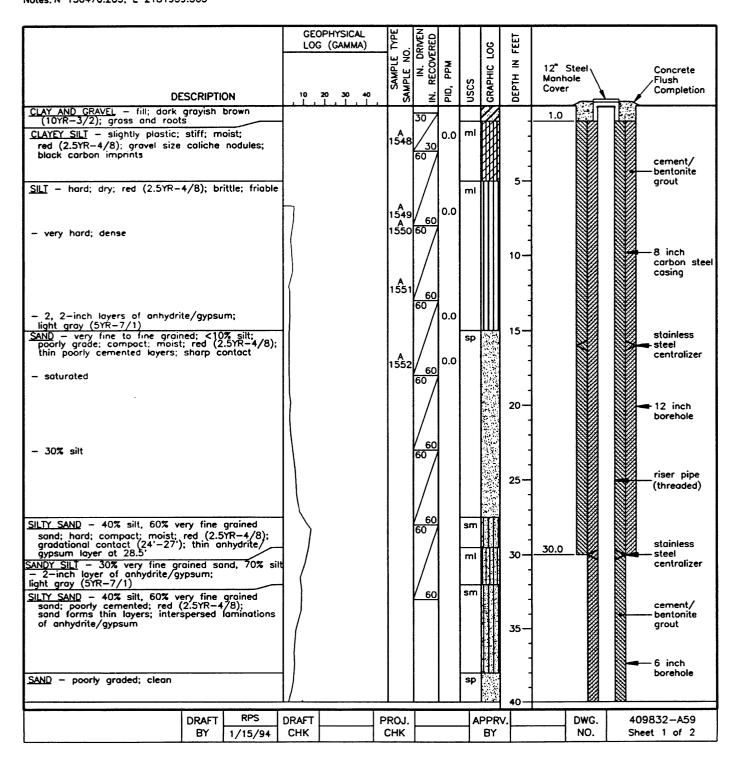
Elev-Top of Casing(ft.):

Conc. Pad Size: 4'x4'x6"

Ref. Datum: MSL

Depth(ft.): 30

Type: Carbon Steel Centralizers-Type: S.Steel Depths(ft.): 16


Type: S.Steel Depth(ft.): 56 Depths(ft.): 30, 54

Type: S.Steel Wire Wound Slot Size(in.): .010

Depths(ft.):

4. Filter Pack Type:Silica Sand Depth Interval(ft.): 54.5-67.0

Notes: N 150470.205, E 2181959.365



Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Project Number: 409832

MONITORING WELL 2-64A

#### DRILLING AND SAMPLING INFORMATION

Boring Location: NORTH SIDE OF FIRE TRAINING AREA 2

SURFACE ELEV.(FT): 1246.052 TOTAL DEPTH(FT.): 75

M. WILSON Logged By: Date Started: D. MEYER Drilled By:

11/18/93 Date Completed: 11/22/93

GEOTECHNOLOGY. INC.

Drill Rig Type: CME-75

Drilling Method: 8" AND 12" HOLLOW STEM AUGERS AND MUD ROTORY WITH 5-5/8" TRICONE ROCK BIT

Sampling Method: 3"x5' CONTINUOUS SAMPLER

Notes: N 150470.205, E 2181959.365

#### WELL COMPLETION DATA

Elev-Top of Casing(ft.):

1. Surf Casing-I.D.(in.):8 Centralizers-Type: S.Steel

2. Riser Pipe-I.D.(in.): 2 Centralizers-Type: S.Steel

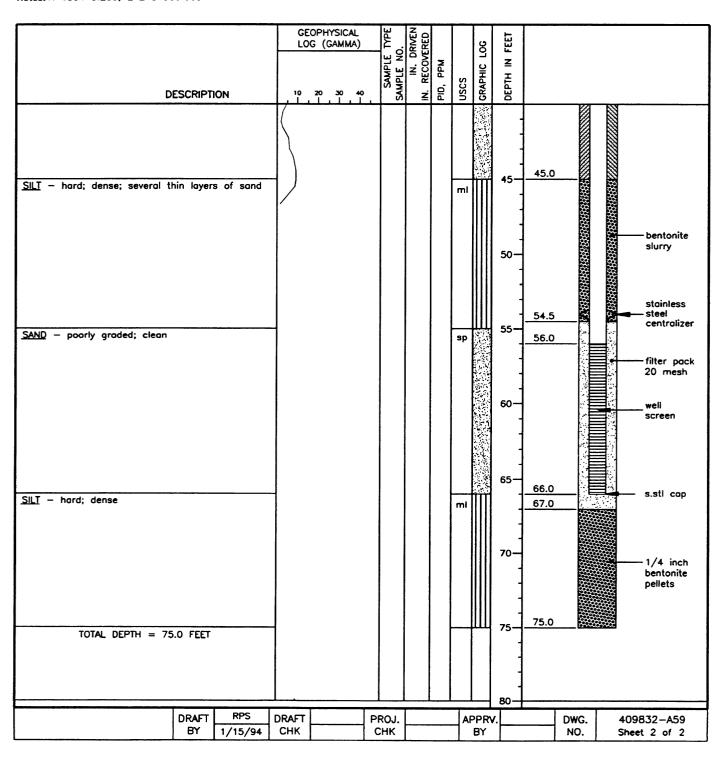
3. Screen Dia.(in.): Depth Interval(ft.):56-66

Centralizers-Type:

Conc. Pad Size: 4'x4'x6"

Ref. Datum: MSL

Depth(ft.): 30 Type: Carbon Steel


Depths(ft.): 16

Depth(ft.): 56 Type: S.Steel

Depths(ft.): 30, 54 Type: S.Steel Wire Wound Slot Size(in.): .010

Depths(ft.):

4. Filter Pack Type: Silica Sand Depth Interval(ft.): 54.5-67.0



Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Project Number: 409832

MONITORING WELL 2-65A

#### DRILLING AND SAMPLING INFORMATION

Boring Location: NORTHEAST OF FIRE TRAINING AREA 2

SURFACE ELEV.(FT): 1250.976 TOTAL DEPTH(FT.): 79

M. WILSON Logged By: Drilled By:

D. MEYER

11/15/93 Date Started: Date Completed:

11/19/93

GEOTECHNOLOGY. INC.

Drill Rig Type: CME-75

Drilling Method: 8" AND 12" HOLLOW STEM AUGERS

Sampling Method: 3"x5' CONTINUOUS SAMPLER

AND 1-1/2"x2' SPLIT SPOON Notes: N 150698.281, E 2182189.884 Elev-Top of Casing(ft.):

1. Surf Casing-I.D.(in.):8 Centralizers-Type:

2. Riser Pipe-I.D.(in.): 2 Centralizers-Type: S.Steel

3. Screen Dia.(in.): Depth Interval(ft.):66-76 Centralizers-Type:

4. Filter Pock Type:Silica Sand Conc. Pad Size: 4'x4'x6"

Ref. Datum: MSL

Depth(ft.): 55 Type: Carbon Steel

Depths(ft.):

WELL COMPLETION DATA

Depth(ft.): 66 Type: S.Steel

Depths(ft.): 61

Type: S.Steel Wire Wound Slot Size(in.): .010

Depths(ft.):

Depth Interval(ft.): 64-77

|                                                                                                                                                                                   |                  |       | 1                   | 1                           |           | <del>-</del> |             | r                             |                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|---------------------|-----------------------------|-----------|--------------|-------------|-------------------------------|---------------------------------|
|                                                                                                                                                                                   | GEOPHY<br>LOG (G |       | E TYPE<br>NO.       | DRIVEN                      |           |              | LOG<br>FEET |                               |                                 |
| DESCRIPTION                                                                                                                                                                       | 10 20            | 30 40 | SAMPLE<br>SAMPLE NO | IN. DRIVEN<br>IN. RECOVERED | FID, PPIM | SOSO         | GRAPHIC I   | 12" Steel<br>Manhole<br>Cover | Concrete<br>Flush<br>Completion |
| CLAY — moderately plastic; stiff; moist; grayish brown (5YR-4/2); grass and roots                                                                                                 |                  |       |                     | 48 /                        |           | cl           |             | 1.0                           |                                 |
| - gradational contact                                                                                                                                                             |                  |       | 1540                | /                           |           |              |             |                               |                                 |
| GRAYELLY CLAY — slightly plastic; 20% granule size gravel; firm; moist; red (2.5YR-4/8); rootlets; black carbon imprint — hard; dry; brittle — 50% light red caliche — 10% gravel | <u> </u>         |       | A<br>1541           | 48<br>60                    | 0.0       | cl           | 5-          |                               | cement/<br>bentonite<br>grout   |
| - 30%-40% sand  CLAYEY SILT - nonplastic; very hard; brittle; dry;                                                                                                                |                  |       |                     | 60<br>60                    | -         | E I          | 10-         |                               | 8 inch                          |
| red (2.5YR-4/8); sharp contact  - dense; compact                                                                                                                                  |                  |       | 1542                | <b>I</b> /                  | 0.0       |              |             |                               | casing                          |
| SANDY SILT - 25% very fine grained sand; 75% silt; loose; dry; red (2.57R-4/8); thin silt layers (0.1-0.5" thick)                                                                 |                  |       | 1543                | 60<br>60                    | 0.0       | ml           | 15-         |                               | 12 inch<br>borehole             |
| <ul> <li>few thin seams of very fine grained sand; gray</li> <li>hard</li> </ul>                                                                                                  |                  |       | 1544                | 36<br>30<br>30              |           |              | 20-         |                               |                                 |
| SILTY SAND — 30% silt, 70% very fine grained sand; compact; stiff; dry; red (2.5YR-4/8); hard to drill                                                                            |                  |       |                     | 9/9                         |           | sm           | 25-         |                               | riser pipe<br>(threaded)        |
| - saturated                                                                                                                                                                       |                  |       | 1546                | 24 /                        |           |              | 30-         |                               |                                 |
| SAND - fine grained; <10% fines; poorly graded; compact; saturated; red (2.5YR-4/8)                                                                                               | ])               |       |                     | 24                          |           | sp           | (A)         |                               | cement/<br>bentonite            |
| SILTY SAND - 30% silt, 70% very fine grained sand; compact; saturated; red (2.5YR-4/8)                                                                                            | ](               |       |                     | <b> </b>                    |           | sm (         | 35-         |                               | grout                           |
| CLAYEY GRAVELLY SAND - 30% clay, 40% gravel, 30% fine grained sand; loose; saturated; red (2.5YR-4/8)                                                                             | ]\               |       |                     | /                           |           | gc .         |             |                               |                                 |
| SAND — fine grained; poorly graded; compact; saturated; red (2.5YR-4/8)                                                                                                           | <u> </u>         |       |                     | 60                          |           | sp           | 40-         |                               |                                 |
| DRAFT RPS                                                                                                                                                                         | DRAFT            |       | ROJ.                |                             |           | <b>⊣</b>     | PRV.        | DWG.                          | 409832-A60                      |
| BY 1/15/94                                                                                                                                                                        | СНК              |       | CHK                 | <u> </u>                    |           | E            | BY          | NO.                           | Sheet 1 of 2                    |

Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Project Number: 409832

MONITORING WELL 2-65A

#### DRILLING AND SAMPLING INFORMATION

Boring Location: NORTHEAST OF FIRE TRAINING AREA 2

SURFACE ELEV.(FT): 1250.976 TOTAL DEPTH(FT.): 79

Logged By: Drilled By:

Drill Rig Type:

M. WILSON D. MEYER

Date Started: Date Completed:

11/15/93 11/19/93

GEOTECHNOLOGY. INC.

CME-75 Drilling Method: 8" AND 12" HOLLOW STEM AUGERS

Sampling Method: 3"x5' CONTINUOUS SAMPLER

AND 1-1/2"x2' SPLIT SPOON Notes: N 150698.281, E 2182189.884

#### WELL COMPLETION DATA

Elev-Top of Casing(ft.):

1. Surf Casing-I.D.(in.):8 Centralizers-Type:

2. Riser Pipe-I.D.(in.): 2 Centralizers-Type: S.Steel

3. Screen Dia.(in.): 2 Depth interval(ft.):66-76

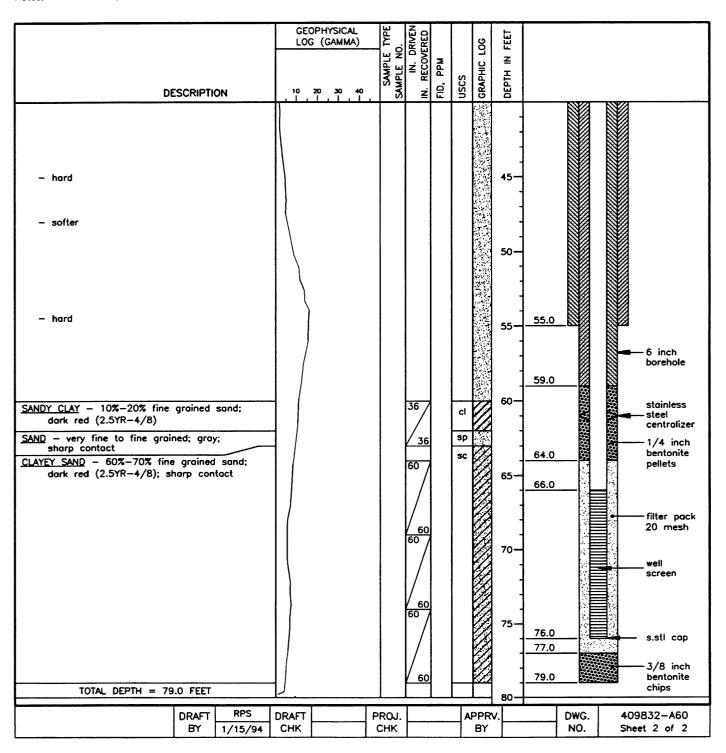
Centralizers-Type:

Conc. Pad Size: 4'x4'x6"

Ref. Datum: MSL

Depth(ft.): 55 Type: Carbon Steel

Depths(ft.):


Depth(ft.): 66 Type: S.Steel

Depths(ft.): 61

Type: S.Steel Wire Wound

Slot Size(in.): .010 Depths(ft.):

4. Filter Pack Type: Silica Sand Depth Interval(ft.): 64-77



Logged By:

Drilled By:

**SURFACE ELEV.(FT): 1245.940** 

Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Boring Location: EAST OF

Drill Rig Type: CME-75

Project Number: 409832

11/9/93

11/9/93

WELL COMPLETION DATA

Elev-Top of Casing(ft.):

1. Riser Pipe-I.D.(in.): 2

Centralizers-Type:

2. Screen Dia.(in.): Depth Interval(ft.):14-24 Centralizers-Type: S.Steel

Type: S.Steel Millslotted Slot Size(in.): .010 Depths(ft.):23

Ref. Datum: MSL

Type:S.Steel

MONITORING WELL 2-62B

Depth(ft.): 14

Depths(ft.):

3. Filter Pack Type: Silica Sand Depth Interval(ft.): 12-25

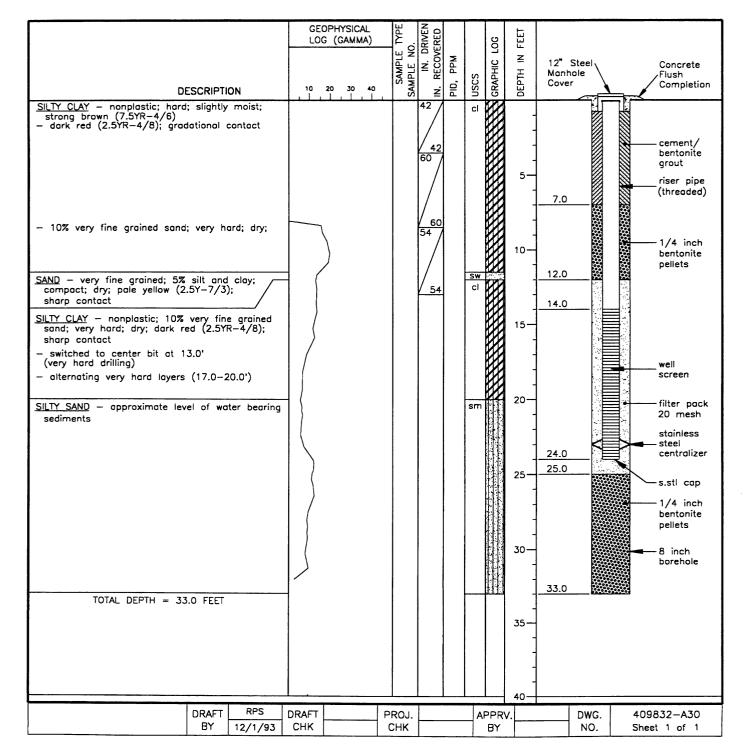
Conc. Pad Size: 4'x4'x6"

Drilling Method: 8" HOLLOW STEM AUGER

Sampling Method: 3"x5' CONTINUOUS SAMPLER

P. GUERREIN

GEOTECHNOLOGY. INC.


DRILLING AND SAMPLING INFORMATION

K. KIRSCHENMANN Date Started:

FIRE TRAINING AREA TOTAL DEPTH(FT.): 33.0

Date Completed:

Notes: N 150444.517, E 2182140.558



\_\_.

Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Project Number: 409832 MONITORING WELL 2-63B

WELL COMPLETION DATA

#### DRILLING AND SAMPLING INFORMATION

Boring Location: EAST OF

n: EAST OF SURFACE ELEV.(FT): 1243.284
FIRE TRAINING AREA TOTAL DEPTH(FT.): 29.0

.

K. KIRSCHENMANN Date Started:

Logged By:

Drill Rig Type:

P. GUERREIN Date Comple

11/8/93 11/8/93

Drilled By:

P. GUERREIN Da GEOTECHNOLOGY. INC.

Date Completed:

Centralizers-Type:

2. Screen Dia.(in.): 2

Elev-Top of Casing(ft.):

1. Riser Pipe-I.D.(in.): 2

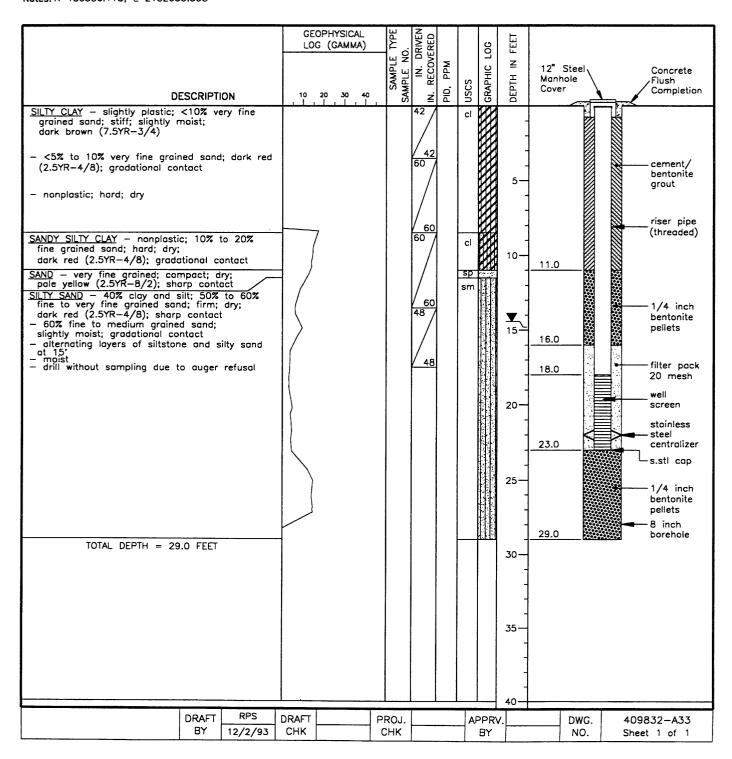
3. Filter Pack Type: Silica Sand Conc. Pad Size: 4'x4'x6"

Depth Interval(ft.):18-23 Slot Centralizers-Type: S.Steel Dep Ref. Datum: MSL

Depth(ft.): 18 Type:S.Steel

Depths(ft.):

Type: S.Steel Millslotted Slot Size(in.): .010 Depths(ft.): 22


Depth Interval(ft.): 16-23

Notes: N 150386.113, E 2182035.358

CME-75

Drilling Method: 8" HOLLOW STEM AUGER

Sampling Method: 3"x5' CONTINUOUS SAMPLER



Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Project Number: 409832

MONITORING WELL 2-64B

#### DRILLING AND SAMPLING INFORMATION

Boring Location: NORTHEAST OF

SURFACE ELEV.(FT): 1245.586

FIRE TRAINING AREA TOTAL DEPTH(FT.): 33.0

Logged By: Drilled By:

P. GUERREIN

K. KIRSCHENMANN Date Started: Date Completed: 11/9/93 11/9/93

GEOTECHNOLOGY. INC.

Drill Rig Type: CME-75

Drilling Method: 8" HOLLOW STEM AUGER

Sampling Method: 3"x5' CONTINUOUS SAMPLER

Notes: N 150467.403, E 2181967.757

#### WELL COMPLETION DATA

Elev-Top of Casing(ft.):

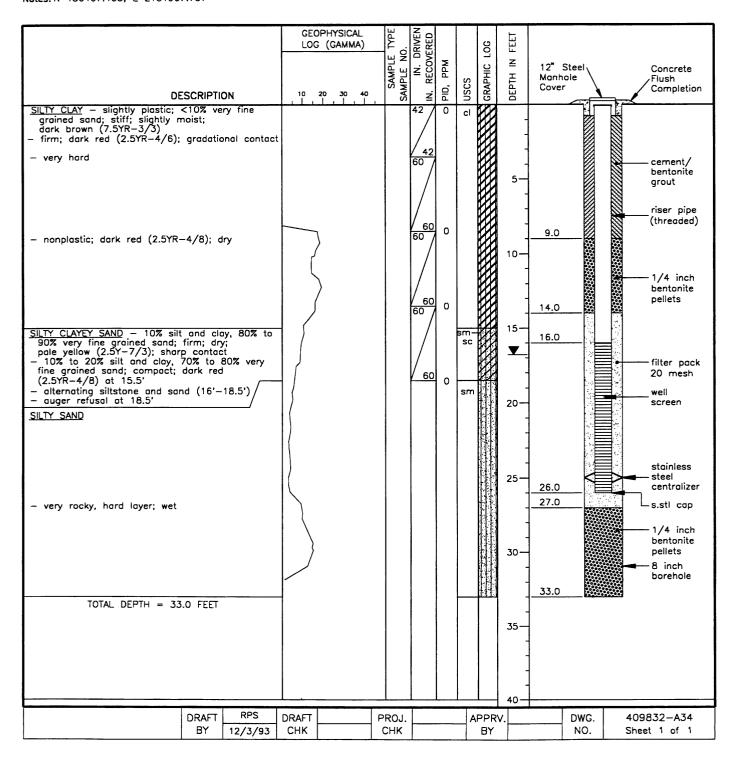
1. Riser Pipe-I.D.(in.): 2

Centralizers-Type:

2. Screen Dia.(in.): Depth Interval(ft.): 16-26

Centralizers-Type: S.Steel

3. Filter Pack Type: Silica Sand Depth Interval(ft.): 14-27


Conc. Pad Size: 4'x4'x6"

Ref. Datum: MSL

Depth(ft.): 16 Type:S.Steel

Depths(ft.):

Type: S.Steel Millslotted Slot Size(in.): .010 Depths(ft.): 25



Project Location: TINKER AFB, OKLAHOMA

11/5/93

11/5/93

Project Name: TINKER 5001

Project Number: 409832

MONITORING WELL

#### DRILLING AND SAMPLING INFORMATION

Boring Location: NORTHEAST OF

**SURFACE ELEV.(FT): 1250.812** FIRE TRAINING AREA TOTAL DEPTH(FT.): 49.0

Logged By: Drilled By:

P. GUERREIN

K. KIRSCHENMANN Date Started: Date Completed:

GEOTECHNOLOGY. INC.

Drill Rig Type: CME-75

Drilling Method: 8" HOLLOW STEM AUGER

Sampling Method:  $3^{\prime\prime}x5^{\prime}$  CONTINUOUS SAMPLER

Notes: NO ANALYTICAL SAMPLES TAKEN N 150712.875, E 2182183.201

#### WELL COMPLETION DATA

Elev-Top of Casing(ft.):

1. Riser Pipe-I.D.(in.): 2 Centralizers-Type: S.Steel

2. Screen Dia.(in.): 2 Depth Interval(ft.):37-47

Centralizers-Type: S.Steel

Conc. Pad Size: 4'x4'x6"

3. Filter Pack Type: Silica Sand

Ref. Datum: MSL

Depth(ft.): 37 Type:S.Steel

Depths(ft.): 25

Type: S.Steel Millslotted Slot Size(in.): .010

Depths(ft.): 46

Depth Interval(ft.): 35-49

|                                                                                 |                                       | 1 1-2                                        | T T     |                 |           | · · · · · · · · · · · · · · · · · · · |
|---------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|---------|-----------------|-----------|---------------------------------------|
|                                                                                 | GEOPHYSICAL                           | SAMPLE NO. IN. DRIVEN IN. RECOVERED PID, PPM | ΙΙ,     | FEET            |           |                                       |
|                                                                                 | LOG (GAMMA)                           | 니는 이불 뛰                                      |         |                 |           |                                       |
|                                                                                 |                                       | MPLE<br>IN I                                 |         | ا ≥             | 12" Steel | Concrete                              |
|                                                                                 |                                       | 불발목없도                                        | USCS    | DEPTH           | Manhole   | /Flush                                |
|                                                                                 |                                       | SAME SAME                                    | nscs    | 5 6             | Cover     | ✓ Completion                          |
| DESCRIPTION                                                                     | 10 20 30 40                           | S Z Z                                        | 5 2     | 5 0             |           |                                       |
| SILTY CLAY - slightly plastic; <5% very fine                                    |                                       | 42 /                                         | cl      | <b>2</b> 1      |           |                                       |
| grained sand; stiff; slightly moist; dark brown (7.5YR-3/4); organic rich       |                                       | /                                            | 1 12    | 71 -            |           |                                       |
| SILTY SANDY CLAY - stightly plastic; 10% fine                                   |                                       | /                                            | l R     |                 |           | 3                                     |
| grained sand; hard; slightly moist;                                             |                                       | 42                                           | cl      | <b>X</b> -      |           |                                       |
| dark red (2.5YR-4/6); gradational contact                                       |                                       | 60 /                                         |         | KA -            |           | 3                                     |
| <ul> <li>black nodules</li> </ul>                                               |                                       | /                                            |         | <b>X</b>        |           | 3                                     |
|                                                                                 |                                       | /                                            |         | 5-              |           |                                       |
| SILTY CLAY - nonplastic; hard; dry; dark red                                    |                                       | 1 1/1                                        |         | <b>7</b>        |           |                                       |
| (2.5YR-4/8); gradational contact                                                |                                       | 1 1/ 1                                       | l ci ka | <b>7</b> -      |           | riser pipe                            |
| •                                                                               |                                       | 60                                           | 1 1/1   | 21 -            |           | (threaded)                            |
|                                                                                 |                                       | 60                                           | 1 12    | <b>1</b> 1 .    |           | 3                                     |
|                                                                                 | /                                     |                                              |         |                 |           | 3                                     |
|                                                                                 |                                       | /                                            |         | 10-             |           | \$                                    |
|                                                                                 | (                                     | /                                            | 1 12    | 7               |           | 3                                     |
|                                                                                 | \                                     | /                                            |         | <b>X</b> 1 -    |           | \$                                    |
|                                                                                 | \                                     | 60                                           | 1 12    | <b>9</b> 1 -    |           | cement/                               |
|                                                                                 | /                                     | 60                                           | l Ma    |                 |           | bentonite                             |
|                                                                                 |                                       |                                              | 1 12    | <b>31</b>       |           | grout                                 |
|                                                                                 | \                                     | 1 1 /1                                       | l Ma    | 15-             |           | 3                                     |
|                                                                                 | ]                                     | 1 1/1                                        | 1 19    | 2 <b>1</b> 11 - |           | 3                                     |
|                                                                                 | /                                     | 1 1/ 1                                       | 1 1/2   | -               |           | 3                                     |
|                                                                                 |                                       | / 60                                         |         | <b>7</b> 0 -    |           | 3                                     |
|                                                                                 | \                                     | / 60<br>60 /                                 |         |                 |           | 8 inch                                |
| SAND - very fine to fine grained; compact;                                      | 1 )                                   |                                              | sw      | Val             |           | borehole                              |
| slightly moist; pale yellow (2.5Y-8/2);                                         | /                                     |                                              | cı      | 20-             |           | 3                                     |
| sharp contact                                                                   |                                       | /                                            |         | -               |           |                                       |
| SILTY CLAY — nonplastic; very hard; dry;<br>dark red (2.5YR-4/6); sharp contact | (                                     | 1 1/ 1                                       |         | <b>7</b> 1 -    |           | 3                                     |
| dark red (2.57K-4/6); sharp contact                                             | (                                     | /                                            |         |                 |           |                                       |
| 00 T/ 0410 70T (                                                                | \                                     | 60 /                                         | sm      | <b>14</b>       |           | 3                                     |
| SILTY SAND — 30% silt and clay, 70% fine grained sand; compact; dry; dark red   |                                       |                                              | ci d    | 7               |           | stainless                             |
| (2.5YR-4/6); gradational contact                                                |                                       |                                              |         | 25-             | i 🛭 🕅 🤻   | steel<br>centralizer                  |
| SANDY SILTY CLAY - nonplastic; 10% to 25%                                       |                                       | 1 1/1                                        |         |                 |           | Certifulizer                          |
| very fine to fine grained sand; stiff; dry;                                     | (                                     | 1 1/ 1                                       |         |                 |           |                                       |
| dark red (2.5YR-4/6); sharp contact                                             |                                       | /                                            |         | 80 .            |           |                                       |
|                                                                                 | - (                                   | V 60                                         |         |                 |           | 3                                     |
| SILTY SAND — 50% silt and clay, 50% fine grained sand; firm; dry; dark red      | )                                     |                                              | sm      |                 |           |                                       |
| (2.5YR-4/6); gradational contact                                                | /                                     | 1 1 /1                                       |         | 30-             | 1 🛭       | 3                                     |
| (=                                                                              |                                       | /                                            |         |                 |           | 3                                     |
|                                                                                 |                                       | /                                            |         | M .             |           | 3                                     |
|                                                                                 | }                                     | /                                            |         |                 | 33.0      | 3                                     |
|                                                                                 | (                                     | / 60<br>18 /                                 |         |                 |           | 1/4 inch                              |
|                                                                                 | )                                     | 18                                           |         |                 | 35.0      |                                       |
|                                                                                 | 1/                                    |                                              | 1 1     | 35-             |           | pellets                               |
|                                                                                 |                                       |                                              |         | [H] ·           | 1 [8] [   |                                       |
|                                                                                 |                                       |                                              |         | H .             | 37.0      | filter pack<br>20 mesh                |
|                                                                                 | [ ]                                   |                                              |         |                 |           | 20 mean                               |
|                                                                                 | 1/                                    |                                              |         |                 |           | well                                  |
|                                                                                 |                                       |                                              |         |                 |           | screen                                |
|                                                                                 | · · · · · · · · · · · · · · · · · · · |                                              |         | 40-             |           |                                       |
| DRAFT RPS                                                                       |                                       | PROJ.                                        |         | PRV             | DWG.      | 409832-A35                            |
| BY 12/9/93                                                                      | CHK                                   | CHK                                          | E       | 3Y              | NO.       | Sheet 1 of 2                          |

Project Location: TINKER AFB, OKLAHOMA

Project Name: TINKER 5001

Project Number: 409832

MONITORING WELL

#### DRILLING AND SAMPLING INFORMATION

Boring Location: NORTHEAST OF

**SURFACE ELEV.(FT): 1250.812** 

FIRE TRAINING AREA TOTAL DEPTH(FT.): 49.0

Logged By: Drilled By:

P. GUERREIN

K. KIRSCHENMANN Date Started: Date Completed: 11/5/93 11/5/93

GEOTECHNOLOGY. INC.

Drill Rig Type: CME-75

Drilling Method: 8" HOLLOW STEM AUGER

Sampling Method: 3"x5' CONTINUOUS SAMPLER

Notes: NO ANALYTICAL SAMPLES TAKEN N 150712.875, E 2182183.201

#### WELL COMPLETION DATA

Elev-Top of Casing(ft.):

1. Riser Pipe-I.D.(in.): 2

Centralizers-Type: S.Steel 2. Screen Dia.(in.): 2

Depth Interval(ft.):37-47

Centralizers-Type: S.Steel

3. Filter Pack Type: Silica Sand Depth Interval(ft.): 35-49

Conc. Pad Size: 4'x4'x6"

Ref. Datum: MSL

Depth(ft.): 37 Type:S.Steel

Depths(ft.): 25

Type: S.Steel Millslotted Slot Size(in.): .010

Depths(ft.): 46

| N 150712.875, E 2182183.201 |                                       |                                                 |                             |          |                        |
|-----------------------------|---------------------------------------|-------------------------------------------------|-----------------------------|----------|------------------------|
|                             | GEOPHYSICAL<br>LOG (GAMMA)            | SAMPLE TYPE SAMPLE NO. IN. DRIVEN IN. RECOVERED |                             | FEET     |                        |
|                             | LOG (GAMMA)                           | S S S                                           | 507                         |          |                        |
|                             |                                       | M 등 등 등                                         | A   일                       | <u> </u> |                        |
| a Francisco V               | 10 20 30 40                           | SAMP SA                                         | PID, PPM<br>USCS<br>GRAPHIC | DEPTH IN |                        |
| DESCRIPTION                 | 10 20 30 40                           | S                                               |                             |          |                        |
|                             |                                       |                                                 |                             | 1        | filter pack            |
|                             |                                       |                                                 |                             | 1        | filter pack<br>20 mesh |
|                             | 1                                     |                                                 |                             | 1        |                        |
|                             | 1                                     |                                                 |                             | 45—      | stainless              |
|                             |                                       |                                                 |                             | 4        | <b>∠</b> steel         |
|                             | }                                     |                                                 |                             | 47.0     |                        |
|                             | ,                                     |                                                 |                             | 1 1      | ∟s.stl cop             |
| TOTAL DEPTH = 49.0 FEET     |                                       |                                                 | 131.63                      | 49.0     | <u> </u>               |
| TOTAL DEPTH = 45.0 FEET     |                                       |                                                 |                             | 50—      |                        |
|                             |                                       |                                                 |                             |          |                        |
|                             |                                       |                                                 |                             | ]        |                        |
|                             |                                       |                                                 |                             |          |                        |
|                             |                                       |                                                 |                             | 55-      |                        |
|                             |                                       |                                                 |                             | -        |                        |
|                             |                                       |                                                 |                             | -        |                        |
|                             |                                       |                                                 |                             |          |                        |
|                             |                                       |                                                 |                             | _        |                        |
|                             |                                       |                                                 |                             | 60-      |                        |
|                             |                                       |                                                 |                             |          |                        |
|                             |                                       |                                                 |                             |          |                        |
|                             |                                       |                                                 |                             | 4        |                        |
|                             |                                       |                                                 |                             | 65—      |                        |
|                             |                                       |                                                 |                             | -        |                        |
|                             |                                       |                                                 |                             | -        |                        |
|                             |                                       |                                                 |                             |          |                        |
|                             |                                       |                                                 |                             | 70-      |                        |
|                             |                                       |                                                 |                             | ~~]      |                        |
|                             |                                       |                                                 |                             | ] ]      |                        |
|                             |                                       |                                                 |                             |          |                        |
|                             |                                       |                                                 |                             |          |                        |
|                             |                                       |                                                 |                             | 75—      |                        |
|                             |                                       |                                                 |                             |          |                        |
|                             |                                       |                                                 |                             | 1        |                        |
|                             |                                       |                                                 |                             |          |                        |
|                             | l                                     |                                                 |                             | 80-      |                        |
| DRAFT RPS                   | DRAFT                                 | PROJ.                                           | APPR                        |          | DWG. 409832-A35        |
| BY 12/9/93                  |                                       | СНК                                             | BY                          |          | NO. Sheet 2 of 2       |
|                             | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·           |                             |          |                        |

# APPENDIX B GEOPHYSICAL LOGS

## APPENDIX C DATA TABLES, CERTIFICATES OF ANALYSIS, CHAIN-OF-CUSTODY

ANALYTICAL RESULTS
SOIL

| Well/Boring:<br>Sample ID:<br>Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 <b>4</b> 2         | 2-62A<br>A1561<br>2 - 3 |       | 20 4 9         | 2-62A<br>A1562<br>6 - 7 |       | 1,45           | 2-62A<br>A1563<br>10 - 11 |       | 1045        | 2-62A<br>A1564<br>15 - 16 |       | 22 A 2      | 2-62A<br>A1565<br>22 - 23 |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|----------------|-------------------------|-------|----------------|---------------------------|-------|-------------|---------------------------|-------|-------------|---------------------------|-------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Resul t              | QFR                     | Units | Result         | QFR                     | Units | Result         | QFR                       | Units | Result      | QFR                       | Units | Result      | QFR                       | Units |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                         |       |                |                         |       |                |                           |       |             |                           |       |             |                           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11000                | z                       | mg/kg | 15000          | z                       | mg/kg | 10000          | 2                         | mg/kg | 1700        | z                         | mg/kg | 750         | z                         | mg/kg |
| Arsenic - Graphite Furnace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                  | :                       | mg/kg | 3.4            |                         | mg/kg | 5.4            |                           | mg/kg | 1.2         |                           | mg/kg | <b>~1.1</b> | >                         | mg/kg |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 650                  | z                       | mg/kg | 32             | z                       | mg/kg | <b>&lt;</b> 25 | 3                         | mg/kg | <b>4</b> 21 | 3                         | mg/kg | 09          | z                         | mg/kg |
| per ye rum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                  |                         | mg/kg | 1.5            |                         | mg/kg | 1.2            |                           | mg/kg | <0.53       | >                         | mg/kg | <0.54       | >                         | mg/kg |
| Cadmicm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.69                 |                         | mg/kg | <0.48          | >                       | mg/kg | <0.55          | _                         | mg/kg | 0.57        |                           | mg/kg | <0.54       | _                         | mg/kg |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 9                  | :                       | mg/kg | 4.             | :                       | mg/kg | 14             |                           | mg/kg | 9.7         |                           | mg/kg | 3.0         |                           | mg/kg |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , o                  | >                       | mg/kg | .0.50<br>33    | >                       | mg/kg | <0.50          | >                         | mg/kg | <0.50       | <b>¬</b>                  | mg/kg | <0.50       | >                         | mg/kg |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,7                  | •                       | mg/kg | 77             | :                       | mg/kg | 21             |                           | mg/kg | 1.7         |                           | mg/kg | 1.1         |                           | mg/kg |
| 11011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000                  | z:                      | mg/kg | 0001           | Z                       | mg/kg | 14000          | 2                         | mg/kg | 7300        | z                         | mg/kg | 2400        | z                         | mg/kg |
| Lead - uraphite rurnace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                  | <b>z</b> :              | mg/kg | 5.0            | <b>z</b> :              | mg/kg | 7.1            | Z                         | mg/kg | 3.2         | z                         | mg/kg | 1.5         | z                         | mg/kg |
| M: CC Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.022               | >                       | mg/kg | <0.022<br>25   | >                       | mg/kg | <0.024         | >                         | mg/kg | <0.023      | <b>-</b>                  | mg/kg | <0.023      | >                         | mg/kg |
| אוכאפו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · .                  |                         | mg/kg | ;<br>ئ         |                         | mg/kg |                |                           | mg/kg | 7.3         |                           | mg/kg | <4.3        | >                         | mg/kg |
| 31LVer<br>3:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.41                 |                         | mg/kg | 40.95<br>50.95 | >                       | mg/kg | <u>.</u>       | >                         | mg/kg | <b>1.</b> 1 | >                         | mg/kg | ۲.۲         | >                         | mg/kg |
| 4.3 / T=:-h:-h:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77                   |                         | mg/kg | 67             |                         | mg/kg | 22             |                           | mg/kg | 7.1         |                           | mg/kg | 3.1         |                           | mg/kg |
| 1, Z, 4-Irichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.550               | <b>-</b> :              | mg/kg | <0.330         | <b>-</b>                | mg/kg | <0.330         | >                         | mg/kg | <0.330      | ⊃                         | mg/kg | <0.330      | >                         | mg/kg |
| 1, Z-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.330<br>330        | <b>-</b> :              | mg/kg | <0.330         | >                       | mg/kg | <0.330         | >                         | mg/kg | <0.330      | _                         | mg/kg | <0.330      | >                         | mg/kg |
| 1,3-Uichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.330<br>6.330      | <b>-</b> :              | mg/kg | <0.330         | <b>&gt;</b> :           | mg/kg | <0.330         | >                         | mg/kg | <0.330      | >                         | mg/kg | <0.330      | >                         | mg/kg |
| 7,4-Ulchlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , 50.35U             | <b>&gt;</b> :           | mg/kg | <0.550         | <b>&gt;</b> :           | mg/kg | <0.330         | >                         | mg/kg | <0.330      | ⊃                         | mg/kg | <0.330      | <b>-</b>                  | mg/kg |
| 2,4,3-Irichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0.825<br>6.725     | <b>&gt;</b> :           | mg/kg | <0.825         | <b>&gt;</b> :           | mg/kg | <0.825         | >                         | mg/kg | <0.825      | _                         | mg/kg | <0.825      | <b>-</b>                  | mg/kg |
| 2,4,0-Irichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.330<br>220<br>220 | <b>&gt;</b> :           | mg/kg | <0.550         | <b>&gt;</b> :           | mg/kg | <0.330         | <b>&gt;</b> :             | mg/kg | <0.330      | <b>-</b>                  | mg/kg | <0.330      | <b>-</b>                  | mg/kg |
| 2 /- Dientel Ophenot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.330               | <b>&gt;</b> :           | mg/kg | 40.330         | <b>&gt;</b> :           | mg/kg | <0.350         | <b>&gt;</b> :             | mg/kg | <0.330      | >                         | mg/kg | <0.330      | >                         | mg/kg |
| 2 /- Dinitrophonol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.330                | <b>&gt;</b> =           | mg/kg | <0.33U         | <b>&gt;</b> :           | mg/kg | <0.330         | <b>&gt;</b> :             | mg/kg | <0.330      | <b>-</b>                  | mg/kg | <0.330      | <b>-</b>                  | mg/kg |
| 2 / - Dinitiople10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                 | <b>&gt;</b> :           | mg/kg | 620.0          | <b>&gt;</b> :           | mg/kg | 40.825<br>11.0 | >                         | mg/kg | <0.825      | _                         | mg/kg | <0.825      | >                         | mg/kg |
| 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.330<br>6.330      | <b>&gt;</b> :           | mg/kg | <0.550         | <b>&gt;</b> :           | mg/kg | <0.330         | >                         | mg/kg | <0.330      | <b>-</b>                  | mg/kg | <0.330      | <b>-</b>                  | mg/kg |
| 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.330               | <b>-</b>                | mg/kg | <0.330         | _                       | mg/kg | <0.330         | >                         | mg/kg | <0.330      | >                         | mg/kg | <0.330      | >                         | mg/kg |
| 2-chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.330               | <b>&gt;</b> :           | mg/kg | <0.330         | >                       | mg/kg | <0.330         | >                         | mg/kg | <0.330      | >                         | mg/kg | <0.330      | >                         | mg/kg |
| 2-Lulorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.350<br>0.550      | <b>&gt;</b> :           | mg/kg | <0.330         | _                       | mg/kg | <0.330         | >                         | mg/kg | <0.330      | ⊃                         | mg/kg | <0.330      | >                         | mg/kg |
| 2-Metnylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.330               | <b>&gt;</b> :           | mg/kg | <0.330         | <b>-</b>                | mg/kg | <0.330         | >                         | mg/kg | <0.330      | >                         | mg/kg | <0.330      | _                         | mg/kg |
| 2 With the contract of the con | <0.350               | <b>-</b> :              | mg/kg | <0.330         | <b>-</b>                | mg/kg | <0.330         | >                         | mg/kg | <0.330      | <b>-</b>                  | mg/kg | <0.330      | >                         | mg/kg |
| 2 Nitroanline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.825<br>0.325      | <b>&gt;</b> :           | mg/kg | <0.825         | <b>-</b> :              | mg/kg | <0.825         | >                         | mg/kg | <0.825      | >                         | mg/kg | <0.825      | _                         | mg/kg |
| Z-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.550               | <b>-</b>                | mg/kg | <0.330         | <b>&gt;</b>             | mg/kg | <0.330         | ⊃                         | mg/kg | <0.330      | <b>&gt;</b>               | mg/kg | <0.330      | ם                         | mg/kg |

| Well/Boring:<br>Sample 1D:<br>Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-62A<br>A1561<br>2 - 3                | 2A<br>3                       |       | 6 4 2                                 | 2-62A<br>A1562<br>6 - 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 2 A D                                | 2-62A<br>A1563<br>10 - 11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2<br>A<br>51                           | 2-62A<br>A1564<br>15 - 16 |                                       | 2-<br>A1<br>22                          | 2-62A<br>A1565<br>22 - 23               |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|-------|---------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|--------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result                                 | QFR                           | Units | Result                                | QFR                     | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Result                                 | QFR                       | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Result                                 | Q.F.R                     | Units                                 | Result                                  | QFR.                                    | Units  |
| 3,3'-Dichlorobenzidine 3,Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether 4-Chloroo-3-methylphenol 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether 4-Nitroaniline 4-Nitrophenol Acenaphthylene Acenaphthylene Acenaphthylene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(c)fluoranthene Benzo(s)hluoranthene Di-n-butylphthalate Dienzofuran Diethylphthalate Fluoranthene Fluoranthene | 00000000000000000000000000000000000000 | 22222222222222222222222222222 |       | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |                         | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90 | 00000000000000000000000000000000000000 |                           | 98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98/48<br>98 | 0,000,000,000,000,000,000,000,000,000, |                           | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )                                      | •                             | ה (A) |                                       | •                       | RV /A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                      | כ                         | 82 /A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200                                    | >                         | 84 /SIII                              | 00000                                   | >                                       | mg/ kg |

| Well/Boring:<br>Sample ID:<br>Depth: |                      | 2-62A<br>A1561<br>2 - 3 |                                         | 0 A 2            | 2-62A<br>A1562<br>6 - 7 |               | 2 A OT         | 2-62A<br>A1563<br>10 - 11 |                | 1,045            | 2-62A<br>A1564<br>15 - 16 |       | 28.2           | 2-62A<br>A1565<br>22 - 23 |                |
|--------------------------------------|----------------------|-------------------------|-----------------------------------------|------------------|-------------------------|---------------|----------------|---------------------------|----------------|------------------|---------------------------|-------|----------------|---------------------------|----------------|
| Parameters                           | Result               | A.                      | Units                                   | Result           | QFR                     | Units         | Result         | QFR                       | Units          | Result           | QFR                       | Units | Result         | QFR                       | Units          |
|                                      |                      |                         |                                         |                  |                         |               |                |                           |                |                  |                           |       |                |                           |                |
| Hexachlorobutadiene                  | <0.330               | <b>-</b> :              | mg/kg                                   | <0.330           | >                       | mg/kg         | <0.330         | <b>-</b>                  | mg/kg          | <0.330           | _                         | mg/kg | <0.330         | ר                         | mg/kg          |
| nexaction ocyclopentagiene           | <0.330<br>220<br>220 | ⊃:                      | mg/kg                                   | •                | <b>-</b> :              | mg/kg         | <0.330         | <b>&gt;</b>               | mg/kg          | <0.330           | _                         | mg/kg | <0.330         | >                         | mg/kg          |
| Indeno(1,2,3-cd)nyrene               | 20.330               | > =                     | щg/кg                                   | <0.350<br><0.220 | <b>&gt;</b> =           | mg/kg         | <0.330         | <b>&gt;</b> :             | mg/kg          | <0.330           | <b>-</b> :                | mg/kg | <0.330         | <b>¬</b>                  | mg/kg          |
| Isophorone                           | <0.330               | =                       | 100/kg                                  |                  | <b>&gt;</b> =           | mg/kg         | 0520           | <b>&gt;</b> =             | mg/kg          | <0.330           | <b>&gt;</b> :             | mg/kg | <0.330         | <b>ɔ</b> :                | mg/kg          |
| N-Nitroso-di-n-propylamine           | <0.330               | =                       | mg/kg                                   |                  | > =                     | 24/2E         | 0220           | <b>&gt;</b> =             | mg/kg          | 40.330<br>40.330 | <b>-</b> :                | mg/kg | <0.330         | <b>&gt;</b> :             | mg/kg          |
| N-Nitrosodiphenylamine               | <0.330               | · >                     | mg/kg                                   |                  | · =                     | mg/kg         | <0.330         | > =                       | מא/פש<br>מא/פש | 05.05            | <b>&gt;</b> =             | mg/kg | 0.550          | <b>&gt;</b> :             | mg/kg          |
| Naphthalene                          | <0.330               | >                       | mg/kg                                   |                  | _                       | mg/kg         | <0.330         | · >                       | ma/ka          | <0.330           | =                         | ma/ka | 0.55           | > =                       | 24/50<br>54/50 |
| Nitrobenzene                         | <0.330               | >                       | mg/kg                                   |                  | _                       | mg/kg         | <0.330         | >                         | mg/kg          | <0.330           | ) )                       | ma/ka | <0.330         | =                         | mg/kg          |
| Pentachlorophenol                    | <0.825               | <b>&gt;</b> :           | mg/kg                                   | <0.825           | <b>-</b>                | mg/kg         | <0.825         | <b>-</b>                  | mg/kg          | <0.825           | _                         | mg/kg | <0.825         | ) )                       | mg/kg          |
| Phenanthrene                         | <0.330               | <b>&gt;</b> :           | mg/kg                                   | •                | <b>-</b>                | mg/kg         | <0.330         | >                         | mg/kg          | <0.330           | >                         | mg/kg | <0.330         | _                         | mg/kg          |
| Priend                               | <0.350<br>0.720      | <b>&gt;</b> :           | mg/kg                                   | •                | <b>-</b> :              | mg/kg         | <0.330         | >                         | mg/kg          | <0.330           | _                         | mg/kg | <0.330         | >                         | mg/kg          |
| hic/2-chicacethous                   | <0.330<br>0.330      | <b>&gt;</b> :           | mg/kg                                   |                  | <b>-</b> :              | mg/kg         | <0.330         | >                         | mg/kg          | <0.330           | >                         | mg/kg | <0.330         | >                         | mg/kg          |
| bis/2-chiologomoxy/methane           | 40.330<br>40.330     | <b>&gt;</b> :           | mg/kg                                   | •                | <b>-</b> :              | mg/kg         | <0.330         | <b>-</b>                  | mg/kg          | <0.330           | >                         | mg/kg | <0.330         | >                         | mg/kg          |
| bis(2-chloroisopropyl)ethe           | 0520                 | <b>&gt;</b> :           | mg/ kg                                  |                  | <b>-</b> :              | mg/kg         | <0.330         | <b>&gt;</b> :             | mg/kg          | <0.330           | >                         | mg/kg | <0.330         | _                         | mg/kg          |
| bis(2-Ethylbeyy) obtablists          | 0.330                | <b>&gt;</b> :           | mg/kg                                   | •                | <b>&gt;</b> :           | mg/kg         | <0.330<br>     | <b>-</b>                  | mg/kg          | <0.330           | >                         | mg/kg | <0.330         | _                         | mg/kg          |
| 1.1.1-Trichloroethane                | × 1.330              | <b>-</b>                | mg/kg                                   |                  | >                       | mg/kg         | <0.330         | <b>-</b>                  | mg/kg          | <0.330           | >                         | mg/kg | <0.330         | >                         | mg/kg          |
| 1.1.2.2-Tetrachloroethane            |                      | · =                     | 19/kg                                   | ۰.۲.<br>۲.       | =                       | 09/kg         | ٠. بر<br>د د د | =                         | ug/kg          | 5.5              | :                         | ug/kg | 5.4            | :                         | ug/kg          |
| 1.1.2-Trichloroethane                | , ιζ                 | > =                     | 24/51<br>24/51                          | ) <b>(</b>       | > =                     | 9/kg          | ۶ <del>۱</del> | <b>&gt;</b> :             | ug/kg          | Ç,               | <b>ɔ</b> :                | ug/kg | ۰ ≎            | <b>-</b>                  | ug/kg          |
| 1.1-Dichloroethane                   | 'nζ                  | > =                     | 64/50<br>64/50                          | ) <b>'</b>       | > =                     | 09/kg         | Ç 4            | <b>&gt;</b> :             | ug/kg          | ۍ <i>ب</i>       | ⊃:                        | ug/kg | ιŷ             | <b>&gt;</b> :             | ug/kg          |
| 1.1-Dichloroethene                   | . برگ                | =                       | 24/27                                   | ) ત              | > =                     | 9 / SD        | ۶ ۲            | <b>&gt;</b> :             | ug/kg          | Ç 4              | <b>&gt;</b> :             | ug/kg | Φ'             | >                         | ug/kg          |
| 1.2-Dichloroethane                   | ) <b>.</b> Ç         | > =                     | 94/80<br>84/80                          | ۲<br>۲           | > =                     | 09/kg         | ۵ ہ            | <b>ɔ</b> :                | ug/kg          | ≎,               | <b>&gt;</b> :             | ug/kg | ť,             | >                         | ug/kg          |
| 1.2-Dichloropropane                  | 'nζ                  | =                       | 24/51                                   | ) <del>(</del>   | > =                     | 9/50<br>64/50 | ۶ ۲            | <b>&gt;</b> :             | ug/kg          | ٠<br>ن           | ⊃:                        | ug/kg | ۍ .            | <b>-</b>                  | ug/kg          |
| 2-Rutanone                           | 5,5                  | > =                     | 0 1 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N | 5                | <b>&gt;</b> :           | ug/kg         | Ç 5            | <b>&gt;</b> :             | ug/kg          | ٥.               | >                         | ug/kg | ۍ              | >                         | ug/kg          |
| 2-Chloroethylvinyl ether             | 35                   | <b>&gt;</b> =           | 09/kg                                   | 200              | <b>&gt;</b> :           | ug/kg         | 2100<br>2100   | <b>-</b> :                | ug/kg          | <100<br><100     | >                         | ug/kg | <b>~1</b> 00   | >                         | ug/kg          |
| 2-Hexanone                           |                      | <b>&gt;</b> :           | ug/kg                                   | 0 4              | <b>&gt;</b> :           | ng/kg         | 01 <b>.</b>    | >                         | ug/kg          | <b>~10</b>       | >                         | ug/kg | <b>1</b> 0     | >                         | ug/kg          |
| 6-Methyl -2-Dentanone                | 00.5                 | <b>&gt;</b> :           | ug/kg                                   | UC Ý             | <b>ɔ</b> :              | ug/kg         | \$50<br>100    | <b>&gt;</b> :             | ug/kg          | <b>~</b> 20      | >                         | ug/kg | <b>&lt;</b> 50 | >                         | ug/kg          |
| Apptons & relicatione                | 00.4                 | <b>&gt;</b> :           | ug/kg                                   | 00,              | >                       | ug/kg         | <b>\$</b>      | >                         | ug/kg          | <b>&lt;</b> 50   | >                         | ug/kg | <b>^</b> 50    | >                         | ug/kg          |
| Acetone                              | 0015                 | <b>-</b> :              | ug/kg                                   | 6.8              | <b>-</b> > :            | ug/kg         | ×100           | >                         | ug/kg          | 6.8              | 7                         | ug/kg | 5.8            | _                         | ug/kg          |
| Bromoform                            | Ç ŕ                  | <b>&gt;</b> :           | ug/kg                                   | ۰ ۍ              | <b>-</b> :              | ug/kg         | Ĉ,             | <b>-</b>                  | ug/kg          | ٠                | >                         | ug/kg | ئ              | >                         | ug/kg          |
|                                      | 0                    | >                       | ug/kg                                   | ₽                | <b>&gt;</b>             | ug/kg         | £              | >                         | ug/kg          | \$               | >                         | ug/kg | \$             | <b>-</b>                  | ug/kg          |

|                                                                                                                                                                                                                                                                               | Well/Boring:<br>Sample ID:<br>Depth: | N & W        | 2-62A<br>A1561<br>2 - 3 |                                                                                                                                     | 0 × 0  | 2-62A<br>41562<br>5 - 7 |                                                                                                                                              | 7 A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-62A<br>A1563<br>10 - 11 |                                                                                                                                                    | 2 A 2                                          | 2-62A<br>A1564<br>I5 - 16               |                                                                                                                                     | 22<br>22               | 2-62A<br>A1565<br>22 - 23 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters                                                                                                                                                                                                                                                                    |                                      | Result       | QFR                     | Units                                                                                                                               | Result | QFR                     | Units                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QFR                       | Units                                                                                                                                              | Result                                         | QFR                                     | Units                                                                                                                               | Result                 | QFR                       | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bromomethane Carbon Disulfide Carbon Disulfide Chlorobenzene Chlorodibromomethane Chloromethane Chloromethane Chloromethane Dichloromethane Ethylbenzene Methylene Chloride Styrene Toluene Tichloroethene Vinyl Acetate Vinyl Chloride Xylenes (total) Cis. 1,3 Dichloropene | ව<br>ව                               |              |                         | 19/46<br>19/46<br>19/46<br>19/46<br>19/46<br>19/46<br>19/46<br>19/46<br>19/46<br>19/46<br>19/46<br>19/46<br>19/46<br>19/46<br>19/46 |        |                         | 19/kg<br>19/kg<br>19/kg<br>19/kg<br>19/kg<br>19/kg<br>19/kg<br>19/kg<br>19/kg<br>19/kg<br>19/kg<br>19/kg<br>19/kg<br>19/kg<br>19/kg<br>19/kg | \$%%%\$\$\$\$\$\$\$\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\2007\ |                           | 197/kg<br>197/kg<br>197/kg<br>197/kg<br>197/kg<br>197/kg<br>197/kg<br>197/kg<br>197/kg<br>197/kg<br>197/kg<br>197/kg<br>197/kg<br>197/kg<br>197/kg | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 300000000000000000000000000000000000000 | 64/66<br>64/66<br>64/66<br>64/66<br>64/66<br>64/66<br>64/66<br>64/66<br>64/66<br>64/66<br>64/66<br>64/66<br>64/66<br>64/66<br>64/66 | \$\$\$\$\$\$\$\$\$\$\$ |                           | 10/ kg 10 |
|                                                                                                                                                                                                                                                                               | ene<br>ene                           | › <b>ሱ</b> ሱ | , , ,                   | ug/kg<br>ug/kg                                                                                                                      | ስ<br>የ | , , ,                   | ug/kg<br>ug/kg<br>ug/kg                                                                                                                      | ን <b>ሲ</b> ሲ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , , ,                     | ug/kg<br>ug/kg                                                                                                                                     | ነ<br>የ                                         | , , ,                                   | ug/kg<br>ug/kg<br>ug/kg                                                                                                             | ን <b>ሶ</b> ሲ           | , , ,                     | ug/kg<br>ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

| Well/Boring:<br>Sample 10:<br>Depth: | <u> </u>         | 2-63A<br>A1555<br>2 - 3 | 4 : 4          | · ·             | 2-63A<br>A1556<br>7 - 8 |       |        | 2-63A<br>A1557<br>10 - 11 |       |              | 2-63A<br>A1558<br>I5 - 16 |                |             | 2-634<br>A1559<br>18 - 19 |       |
|--------------------------------------|------------------|-------------------------|----------------|-----------------|-------------------------|-------|--------|---------------------------|-------|--------------|---------------------------|----------------|-------------|---------------------------|-------|
|                                      | Result           | OFR                     | Units          | Result          | QFR                     | Units | Result | QFR                       | Units | Result       | aFR                       | Units          | Resul t     | aFR                       | Units |
|                                      | 11000            | z                       | mg/kg          | 11000           | z                       | mg/kg | 12000  | z                         | mg/kg | 006          | z                         | mg/kg          | 1500        | z                         | mg/kg |
|                                      | 3.0              | z                       |                | <1.2            | 3                       | mg/kg | <1.2   | 3                         | mg/kg | <0.95        | 3                         | mg/kg          | <0.85       | 3                         | mg/kg |
|                                      | 00,              | z                       |                | 22              | z                       | mg/kg | 110    | z                         | mg/kg | 20           | Z                         | mg/kg          | <23         | 3                         | mg/kg |
|                                      | <u>.</u> ;       |                         |                | <b>5</b>        |                         | mg/kg | 6.     |                           | mg/kg | <0.49        | >                         | mg/kg          | <0.57       | >                         | mg/kg |
|                                      | 13.71            |                         | mg/kg<br>mg/kg | <0.48           | <b>-</b>                | mg/kg | 0.7    |                           | mg/kg | <0.49<br>3.0 | <b>&gt;</b>               | mg/kg<br>mg/kg | 0.90        |                           | mg/kg |
|                                      | <0.50            | _                       |                | <0.50           | _                       | mg/kg | <0.50  | _                         | ma/ka | <0.50        | _                         | mg/kg          | <0.50       | _                         | mg/kg |
|                                      | 6.6              |                         |                | 15              |                         | mg/kg | 18     |                           | mg/kg | <2.4         | ) >                       | mg/kg          | <2.8        | · >                       | mg/kg |
|                                      | 15000            | z                       |                | 10000           | z                       | mg/kg | 17000  | z                         | mg/kg | 2800         | z                         | mg/kg          | 3700        | z                         | mg/kg |
|                                      | 13               | 2                       |                | 7.3             | z                       | mg/kg | 7.0    | z                         | mg/kg | 0.88         | z                         | mg/kg          | 1.2         | z                         | mg/kg |
|                                      | <0.023           | >                       |                | <0.025          | >                       | mg/kg | <0.024 | _                         | mg/kg | <0.023       | >                         | mg/kg          | <0.021      | <b>-</b>                  | mg/kg |
|                                      | 19               |                         |                | <del>8</del>    |                         | mg/kg | 50     |                           | mg/kg | <3.9         | >                         | mg/kg          | <4.5        | >                         | mg/kg |
|                                      | <0.93            | >                       |                | %°0°            | <b>-</b>                | mg/kg | <1.2   | _                         | mg/kg | <0.97        | >                         | mg/kg          | <b>~1.1</b> | >                         | mg/kg |
|                                      | 18               |                         |                | 54              |                         | mg/kg | 27     |                           | mg/kg | 4.7          |                           | mg/kg          | 4.8         |                           | mg/kg |
|                                      | <0.330           | <b>-</b>                |                | <0.330          | >                       | mg/kg | <0.330 | <b>-</b>                  | mg/kg | <0.330       | >                         | mg/kg          | <0.330      | >                         | mg/kg |
|                                      | <0.330           | >                       |                | <0.330          | _                       | mg/kg | <0.330 | >                         | mg/kg | <0.330       | >                         | mg/kg          | <0.330      | >                         | mg/kg |
|                                      | <0.330           | <b>-</b> :              |                | <0.330          | _                       | mg/kg | <0.330 | <b>-</b>                  | mg/kg | <0.330       | >                         | mg/kg          | <0.330      | >                         | mg/kg |
|                                      | <0.330           | <b>&gt;</b> :           |                | <0.330          | >                       | mg/kg | <0.330 | <b>-</b>                  | mg/kg | <0.330       | >                         | mg/kg          | <0.330      | >                         | mg/kg |
|                                      | <0.825<br>0.1825 | <b>&gt;</b> :           |                | <0.825          | <b>-</b> :              | mg/kg | <0.825 | <b>-</b>                  | mg/kg | <0.825       | >                         | mg/kg          | <0.825      | >                         | mg/kg |
|                                      | <0.330<br>6.330  | <b>&gt;</b> :           |                | <0.330<br>5.330 | <b>-</b> :              | mg/kg | <0.550 | <b>-</b> :                | mg/kg | <0.330       | <b>-</b>                  | mg/kg          | <0.330      | <b>-</b>                  | mg/kg |
|                                      | <0.350<br>       | <b>)</b>                |                | <0.550<br>      | >                       | mg/kg | <0.330 | <b>-</b>                  | mg/kg | <0.330       | >                         | mg/kg          | <0.330      | >                         | mg/kg |
|                                      | <0.550           | <b>&gt;</b> :           |                | <0.330          | <b>-</b>                | mg/kg | <0.330 | >                         | mg/kg | <0.330       | >                         | mg/kg          | <0.330      | >                         | mg/kg |
|                                      | <0.825           | >                       |                | <0.825          | >                       | mg/kg | <0.825 | >                         | mg/kg | <0.825       | >                         | mg/kg          | <0.825      | >                         | mg/kg |
|                                      | <0.330           | >                       |                | <0.330          | >                       | mg/kg | <0.330 | >                         | mg/kg | <0.330       | >                         | mg/kg          | <0.330      | >                         | mg/kg |
|                                      | <0.330           | >                       |                | <0.330          | >                       | mg/kg | <0.330 | >                         | mg/kg | <0.330       | >                         | mg/kg          | <0.330      | <b>-</b>                  | mg/kg |
|                                      | <0.330           | >                       |                | <0.330          | >                       | mg/kg | <0.330 | >                         | mg/kg | <0.330       | >                         | mg/kg          | <0.330      | <b>-</b>                  | mg/kg |
|                                      | <0.330           | >                       |                | <0.330          | >                       | mg/kg | <0.330 | >                         | mg/kg | <0.330       | >                         | mg/kg          | <0.330      | >                         | mg/kg |
|                                      | <0.330           | >                       |                | <0.330          | <b>-</b>                | mg/kg | <0.330 | >                         | mg/kg | <0.330       | >                         | mg/kg          | <0.330      | <b>-</b>                  | mg/kg |
|                                      | <0.330           | <b>&gt;</b> :           |                | <0.330          | <b>-</b>                | mg/kg | <0.330 | >                         | mg/kg | <0.330       | >                         | mg/kg          | <0.330      | >                         | mg/kg |
|                                      | <0.825           | >                       |                | <0.825          | >                       | mg/kg | <0.825 | <b>-</b>                  | mg/kg | <0.825       | >                         | mg/kg          | <0.825      | >                         | mg/kg |
|                                      | <0.330           | >                       | mg/kg          | <0.330          | <b>-</b>                | mg/kg | <0.330 | <b>&gt;</b>               | mg/kg | <0.330       | <b>-</b>                  | mg/kg          | <0.330      | <b>-</b>                  | mg/kç |
|                                      |                  |                         |                |                 |                         |       |        |                           |       |              |                           |                |             |                           |       |

| Well/Boring:<br>Sample ID:<br>Depth:                                                                                                                                                                |                                                          | 2-63A<br>A1555<br>2 - 3 |                                                    | 2<br>7                                                                       | 2-63A<br>A1556<br>7 - 8 |                                                                      | 2 A C                                                                        | 2-63A<br>A1557<br>10 - 11 |                                                             | 2 A Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-63A<br>A1558<br>15 - 16              |                                                    | 2<br>A<br>18                                                                             | 2-63A<br>A1559<br>18 - 19 |                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------|----------------------------------------------------|------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------|
| Parameters                                                                                                                                                                                          | Result                                                   | QFR                     | Units                                              | Resul t                                                                      | QFR                     | Units                                                                | Resul t                                                                      | QFR                       | Units                                                       | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QFR                                    | Units                                              | Result                                                                                   | QFR                       | Units                                                                       |
| 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether | 60.330<br>60.825<br>60.330<br>60.330<br>60.330<br>60.330 |                         | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 60.330<br>60.330<br>60.330<br>60.330<br>60.330                               |                         | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                            | 60.330<br>60.330<br>60.330<br>60.330<br>60.330                               | <b></b>                   | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                   | 60.330<br>60.330<br>60.330<br>60.330<br>60.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 222222                                 | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg          | 60.330<br>60.330<br>60.330<br>60.330<br>60.330                                           |                           | 39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg                                   |
| 4-Nitroaniline<br>4-Nitrophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene                                                                                                                     | 60.825<br>60.825<br>60.330<br>60.330                     | JJJJ:                   | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                   |                                                                              |                         | mg/kg<br>mg/kg<br>mg/kg                                              | <pre>&lt;0.825 &lt;0.825 &lt;0.330 &lt;0.330 &lt;0.330 </pre>                | <b>5555</b> 5             | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                            | <pre>&lt;0.825 &lt;0.825 &lt;0.330 &lt;0.330 &lt;0.330 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                   | <pre>&lt;0.825 &lt;0.825 &lt;0.330 &lt;0.330 &lt;0.330 </pre>                            |                           | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                            |
| Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzoic Acid                                                                                                | 0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330       |                         | 39/kg<br>39/kg<br>39/kg<br>39/kg                   |                                                                              |                         | 39/kg<br>39/kg<br>39/kg<br>39/kg                                     | 60.330<br>60.330<br>60.330<br>60.330<br>60.330                               |                           | 39/kg<br>39/kg<br>39/kg<br>39/kg                            | 60.330<br>60.330<br>60.330<br>60.330<br>60.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | 39/kg<br>39/kg<br>39/kg<br>39/kg                   | <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> |                           | 39/kg<br>39/kg<br>39/kg<br>39/kg                                            |
| Berly's alconor<br>Butylbenzylphthalate<br>Chrysene<br>Di-n-butylphthalate<br>Dibenzo(a,h)anthracene<br>Dibenzofuan<br>Diethylphthalate<br>Fluoranthene                                             | 6.330<br>6.330<br>6.330<br>6.330<br>6.330<br>6.330       | ככככככ ככי              | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg          | 0.34<br>0.34<br>0.35<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33 | ככככככ ככי              | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg | 60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330 | כככרכככ כככ               | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg | 6.53<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33<br>6.33 | , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg | 0.57<br>0.57<br>0.65<br>0.65<br>0.03<br>0.04<br>0.04<br>0.03<br>0.03                     | כככיכככ כ כ               | 96/kg<br>199/kg<br>199/kg<br>199/kg<br>199/kg<br>199/kg<br>199/kg<br>199/kg |
| Hexachlorobenzene                                                                                                                                                                                   | <0.330                                                   | <b>&gt;</b>             | mg/kg                                              |                                                                              | <b>-</b>                | mg/kg                                                                | <0.330                                                                       | >                         | mg/kg                                                       | <0.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                      | mg/kg                                              | <0.330                                                                                   | <b>&gt;</b>               | mg/kg                                                                       |

| Well/Boring:<br>Sample ID:<br>Depth: | NAN              | 2-63A<br>A1555<br>2 - 3 |                | NAN                | 2-63A<br>A1556<br>7 - 8 |                | 240                        | 2-63A<br>A1557<br>10 - 11 |                | 2 A ST          | 2-63A<br>A1558<br>15 - 16 |                 | 2 A 8L           | 2-63A<br>A1559<br>18 - 19 |                |
|--------------------------------------|------------------|-------------------------|----------------|--------------------|-------------------------|----------------|----------------------------|---------------------------|----------------|-----------------|---------------------------|-----------------|------------------|---------------------------|----------------|
| Parameters                           | Result           | OFR                     | Units          | Result             | OFR                     | Units          | Result                     | OF R                      | Units          | Result          | OFR                       | Units           | Result           | QFR                       | Units          |
| Hexachlorobutadiene                  | <0.330           | >                       | mq/ka          | <0.330             | ב                       | ma/ka          | <0.330                     | 3                         | ma/ka          | <0.330          | =                         | ma/ka           | 0.330            | =                         | ma/ka          |
| Hexachlorocyclopentadiene            | <0.330           | ) )                     | mg/kg          | <0.330             | ) )                     | mg/kg          | <0.330                     | ) <b>–</b>                | mg/kg          | <0.330          | <b>&gt; &gt;</b>          | mg/kg           | <b>6.330</b>     | ) <b>)</b>                | mg/kg          |
| Hexachloroethane                     | <0.330           | <b>)</b>                | mg/kg          | <0.330             | <b>-</b>                | mg/kg          | <0.330                     | _                         | mg/kg          | <0.330          | >                         | mg/kg           | <0.330           | n                         | mg/kg          |
| Indeno(1,2,5-cd)pyrene               | <0.330           | <b>&gt;</b> :           | mg/kg          | <0.330             | <b>-</b> :              | mg/kg          | <0.330                     | <b>-</b>                  | mg/kg          | <0.330          | <b>&gt;</b>               | mg/kg           | <0.330           | ⊃                         | mg/kg          |
| Isophorone                           | <0.330           | <b>&gt;</b> :           | mg/kg          | <0.330<br>0.330    | <b>-</b> :              | mg/kg          | <0.330                     | <b>-</b> :                | mg/kg          | <0.330          | <b>-</b>                  | mg/kg           | <0.330           | <b>-</b>                  | mg/kg          |
| N-Nitrosodisbosylamine               | 0.550            | <b>&gt;</b> =           | mg/kg          | <0.330             | <b>&gt;</b> =           | mg/kg          | <0.350                     | <b>-</b> :                | mg/kg          | <0.330          | <b>&gt;</b> :             | mg/kg           | <0.330           | ⊃:                        | mg/kg          |
| Nampthal and                         | 0.530            | > =                     | 119/Kg         | 0520               | <b>&gt;</b> =           | mg/kg          | <0.330<br><0.230<br><0.230 | <b>&gt;</b> =             | mg/kg          | <0.330<br>0.330 | <b>&gt;</b> :             | mg/kg           | <0.330           | <b>&gt;</b> :             | mg/kg          |
| Nitrobenzene                         | 055.0>           | > =                     | 24/2E          | 055.0>             | > =                     | 19/ Ag         | 220                        | <b>&gt;</b> =             | mg/kg          | 0.220           | <b>&gt;</b> =             | mg/kg           | 40.330<br>40.330 | > :                       | mg/kg          |
| Pentachlorophenol                    | <0.825           | > =                     |                | \$25.00<br>\$25.00 | > =                     | 24/50          | ,                          | > =                       | 113/kg         | 20.00           | > =                       | mg/kg           | VO.330           | > =                       | mg/kg          |
| Phenanthrene                         | <0.330           | ) <b>)</b>              | mg/kg          | <0.330             | )<br>)                  | mg/kg          | <0.330                     | > =                       | ma/ka          | <0.330          | <b>&gt;</b> =             | mg/kg           | <0.330           | <b>-</b>                  | mg/kg<br>ma/ka |
| Phenol                               | <0.330           | >                       | mg/kg          | <0.330             | _                       | mg/kg          | <0.330                     | · –                       | mg/kg          | <0.330          | ) >                       | mg/kg           | <0.330           | ) >                       | mg/kg          |
| Pyrene                               | <0.330           | >                       | mg/kg          | <0.330             | >                       | mg/kg          | <0.330                     | _                         | mg/kg          | <0.330          | >                         | mg/kg           | <0.330           | >                         | mg/kg          |
| bis(2-Chloroethoxy)methane           | <0.330           | >                       | mg/kg          | <0.330             | <b>-</b>                | mg/kg          | <0.330                     | >                         | mg/kg          | <0.330          | <b>-</b>                  | mg/kg           | <0.330           | <b>-</b>                  | mg/kg          |
| bis(2-Chloroethyl)ether              | <0.330           | <b>&gt;</b> :           | mg/kg          | <0.330             | <b>-</b> :              | mg/kg          | <0.330                     | <b>-</b>                  | mg/kg          | <0.330          | >                         | mg/kg           | <0.330           | ⊃                         | mg/kg          |
| DIS(Z-UNIOPOISOPPOPYL)ethe           | <0.330           | <b>&gt;</b> :           | mg/kg          | <0.330<br>0.330    | <b>-</b> :              | mg/kg          | <0.330                     | <b>&gt;</b> :             | mg/kg          | <0.330          | >                         | mg/kg           | <0.330           | <b>-</b>                  | mg/kg          |
| DIS(Z-Etnythexyt)phthalate           | <0.330<br>7 0    | <b>-</b>                | mg/kg          | <0.350             | <b>-</b>                | mg/kg          | <0.330                     | <b>&gt;</b> :             | mg/kg          | 1.7             | :                         | mg/kg           | 1.7              | :                         | mg/kg          |
| 1, 1, 1-Trichtoroethane              | o.ç<br>^}        | <b>¬</b> =              | ug/kg          | 4.5<br>د۲.         | ¬ =                     | ug/kg          | ôή                         | <b>&gt;</b> =             | ug/kg          | ۍ               | <b>&gt;</b> =             | ug/kg           | ۍ <del>۱</del>   | <b>&gt;</b> =             | ug/kg          |
| 1 1 2-Trichloroethane                | ńζ               | =                       | 24/5           | 'nί                | ) <u>-</u>              | 04/65          | ) <b>(</b>                 | > =                       | 64/65<br>64/65 | ۲,              | <b>o</b> :                | 54/60<br>14/10: | ? <del>५</del>   | > =                       | 09/ Kg         |
| 1,1-Dichloroethane                   | λŵ               | <b>)</b> )              | ug/kg<br>ug/kg | ) <b>(</b> 0       | <b>)</b>                | ug/kg<br>ug/ka | 5 <b>.</b> ≎               | <b>&gt;</b>               | ug/kg<br>ug/ka | ъ.<br>Ф         | <b>&gt;</b> =             | ug/kg           | ۍ <del>د</del> ې | > =                       | ug/kg          |
| 1,1-Dichloroethene                   | \$               | >                       | ug/kg          | <b>&lt;</b> 5      | _                       | ug/kg          | ŵ                          | · <b>¬</b>                | ug/kg          | , <del>Ĉ</del>  | ) >                       | ug/kg           | <del>ن</del> ئ   | ) =                       | ua/ka          |
| 1,2-Dichloroethane                   | \$               | >                       | ug/kg          | ĉ.                 | _                       | ug/kg          | ₽                          | _                         | ug/kg          | ئ               | >                         | ug/kg           | Ĉ.               | _                         | ug/kg          |
| 1,2-Dichloropropane                  | د                | >                       | ug/kg          | \$                 | >                       | ug/kg          | ۍ                          | _                         | ug/kg          | ئ               | >                         | ug/kg           | <b>&lt;</b> 5    | ⊃                         | ug/kg          |
| 2-Butanone                           | 3.2              | -                       | ug/kg          | 3.1                | -                       | ug/kg          | <b>~1</b> 00               | _                         | ug/kg          | <b>~1</b> 00    | >                         | ug/kg           | 15               | 8                         | ug/kg          |
| 2-Chloroethylvinyl ether             | ~ <del>1</del> 0 | >                       | ug/kg          | <b>~</b> 10        | ⊃                       | ug/kg          | <b>~10</b>                 | _                         | ug/kg          | <b>~10</b>      | >                         | ug/kg           | <b>1</b> 0       | >                         | ug/kg          |
| 2-Nexanone                           | <b>\$</b> 20     | <b>-</b>                | ug/kg          | <50<br>-           | <b>-</b>                | ug/kg          | <b>2</b> 0                 | >                         | ug/kg          | <b>&lt;</b> 50  | >                         | ug/kg           | <50              | >                         | ug/kg          |
| 4-Methyl-Z-Pentanone                 |                  | <b>-</b>                | ug/kg          | <b>\$</b>          | >                       | ug/kg          | <b>~</b> 20                | <b>-</b>                  | ug/kg          | <b>^</b> 20     | >                         | ug/kg           | <b>&lt;</b> 50   | >                         | ug/kg          |
| Acetone                              | 6.5              | 号 :                     | ug/kg          | 9.1                | 号 :                     | ug/kg          | 5.                         | <b>¬</b> :                | ug/kg          | 12              | <b>9</b>                  | ug/kg           | 29               | 7                         | ug/kg          |
| Bromoform                            | ôή               | > =                     | ug/kg          | <b>≎</b>           | )<br>                   | ug/kg          | ٠<br>پ                     | <b>&gt;</b> :             | ug/kg          | 'nή             | <b>&gt;</b> :             | ug/kg           | ιΩή              | <b>ɔ</b> :                | ug/kg          |
|                                      | ,                | >                       | 84 /8n         | ,                  | >                       | 497 Kg         | 7                          | >                         | ug/ kg         | 9               | >                         | ug/kg           | 0                | >                         | ug/kg          |

|                                                                                                                                                                                                                                                                                                                           | Well/Boring:<br>Sample ID:<br>Depth:  | NAN                                 | 2-63A<br>A1555<br>2 - 3 |                                                                                                                                                                         | 1¥ù            | 2-63A<br>11556<br>7 - 8 |                                                                                                                                              | 240                      | 2-63A<br>A1557<br>10 - 11 |                                                                                                                                                                                           | 2-<br>15 A1 | 2-63A<br>A1558<br>I5 - 16 |                                               | -2-<br>181                             | 2-63A<br>A1559<br>18 - 19 |                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------|-----------------------------------------------|----------------------------------------|---------------------------|-----------------------------------------|
| Parameters                                                                                                                                                                                                                                                                                                                |                                       | Result                              | QFR.                    | Units                                                                                                                                                                   | Result         | QFR                     | Units                                                                                                                                        | Result                   | QFR                       | Units                                                                                                                                                                                     | Result      | Q FR                      | Units                                         | Result                                 | OFR                       | Units                                   |
| Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane Chloromethane Chloromethane Ethylbenzene Ethylbenzene Ethylbenzene Ethylbenzene Tetrachloroethene Toluene Trichloroethene Vinyl Acetate Vinyl Chloride Xylenes (total) cis 1,3 Dichloroethene trans 1,3-Dichloroethene | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | \$&&&\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |                         | 64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86<br>64/86 | \$&&&&\$&\$&\$ |                         | 69/kg<br>69/kg<br>69/kg<br>69/kg<br>69/kg<br>69/kg<br>69/kg<br>69/kg<br>69/kg<br>69/kg<br>69/kg<br>69/kg<br>69/kg<br>69/kg<br>69/kg<br>69/kg | \$%%%\$\$\$%%\$\$%%\$\$% |                           | 19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg<br>19/Kg | \$~~~\$     |                           | 6 6 4 / 6 n n n n n n n n n n n n n n n n n n | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |                           | 6 6 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |
| trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                  | ene                                   | \$                                  | <b>-</b>                | ug/kg                                                                                                                                                                   | ٨              | <b>-</b>                | ug/kg                                                                                                                                        | <sub>Ĉ</sub>             | <b>-</b>                  | ug/kg                                                                                                                                                                                     | ئ           | <b>5</b>                  | ug/kg                                         | \$                                     | כ                         | ug/kg                                   |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
 that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.</pre>

| Well/Boring:<br>Sample ID:<br>Depth: | N <b>A</b> N     | 2-64A<br>A1548<br>2 - 3 |          | 7 A 2           | 2-64A<br>A1549<br>7 - 8 |        | 2<br>A<br>7 | 2-64A<br>41550<br>7 - 8 |        | 2<br>A<br>12 | 2-64A<br>A1551<br>12 - 13 |                | 2-<br>A1   | 2-64A<br>A1552<br>17 - 18 |                |
|--------------------------------------|------------------|-------------------------|----------|-----------------|-------------------------|--------|-------------|-------------------------|--------|--------------|---------------------------|----------------|------------|---------------------------|----------------|
| Parameters                           | Result           | QFR                     | Units    | Result          | QFR                     | Units  | Resul t     | QFR                     | Units  | Result       | QFR<br>R                  | Units          | Result     | QFR                       | Units          |
| A i un i ro i un i                   | 12000            | =                       | -1/1-1   | 00071           | =                       |        | 0000        | =                       | ,      | 0000         | :                         |                | 000,       | :                         |                |
| Arsenic - Graphite Furnace           | 000              | Z                       | mg/kg    | 0000            | z                       | mg/kg  | 12000       | z                       | mg/kg  | 9900         | z                         | mg/kg          | 1800<br>73 | <b>z</b> :                | mg/kg          |
|                                      | , co             | 2                       | 0 4 / CE |                 | 2                       | 104/AU |             | 3                       | 119/Kg | - ;          | 3                         | mg/kg          | 7.1.2      | <b>&gt;</b> :             | 119/ Kg        |
| Beryllium                            | 7.4              | 2                       | mg/kg    | 1.9             | 5                       | 119/kg | 1.6<br>1.6  | 5                       | 19/kg  | 1.5          | 5                         | mg/kg<br>mg/ka | 50.45      | z =                       | mg/kg<br>mg/ka |
| Cadmium                              | 1:1              |                         | mg/kg    | 0.55            |                         | mg/kg  | <0.54       | >                       | mg/kg  | <0.52        | <b>-</b>                  | mg/kg          | <0.45      | ) <b>)</b>                | mg/kg          |
| Chromium                             | 15               |                         | mg/kg    | 19              |                         | mg/kg  | 14          |                         | mg/kg  | -            |                           | mg/kg          | 8.5        |                           | mg/kg          |
| Chromium VI                          | <0.50            | ⊃                       | mg/kg    | <0.50           | >                       | mg/kg  | <0.50       | >                       | mg/kg  | <0.50        | >                         | mg/kg          | <0.50      | <b>-</b>                  | mg/kg          |
| Copper                               | 8.5              | :                       | mg/kg    | 22              |                         | mg/kg  | 20          |                         | mg/kg  | 19           |                           | mg/kg          | <2.3       | >                         | mg/kg          |
| I FON                                | 15000            | Z:                      | mg/kg    | 13000           | Z:                      | mg/kg  | 086         | Z                       | mg/kg  | 11000        | z                         | mg/kg          | 3700       | z                         | mg/kg          |
| Lead - Graphite Furnace              | 2.7              | <b>z</b> :              | mg/kg    | 2.5             | <b>z</b> :              | mg/kg  | 3.0         | Z :                     | mg/kg  | 7.8          | Z                         | mg/kg          | 1.5        | Z                         | mg/kg          |
| Mercury                              | <0.030<br>73.030 | >                       | mg/kg    | <0.051          | >                       | mg/kg  | <0.032      | >                       | mg/kg  | <0.030       | >                         | mg/kg          | <0.032     | >                         | mg/kg          |
| Nickel                               | -                | :                       | mg/kg    | 87              | :                       | mg/kg  |             |                         | mg/kg  | 21           |                           | mg/kg          | 6.3        |                           | mg/kg          |
| Silver                               | <0.93            | <b>-</b>                | mg/kg    | <br>!           | >                       | mg/kg  | <u>.</u> .  | >                       | mg/kg  | <b>~1.</b> 0 | <b>&gt;</b>               | mg/kg          | <0.91      | _                         | mg/kg          |
| 71nc                                 | 57               | :                       | mg/kg    | 53              |                         | mg/kg  | <b>5</b> 8  |                         | mg/kg  | 22           |                           | mg/kg          | 7.8        |                           | mg/kg          |
| 1,2,4-Trichlorobenzene               | <0.330           | <b>-</b>                | mg/kg    | <0.330          | >                       | mg/kg  | <0.330      | >                       | mg/kg  | <0.330       | >                         | mg/kg          | <0.330     | _                         | mg/kg          |
| 1,2-Dichlorobenzene                  | <0.330           | <b>-</b>                | mg/kg    | <0.330          | >                       | mg/kg  | <0.330      | >                       | mg/kg  | <0.330       | >                         | mg/kg          | <0.330     | _                         | mg/kg          |
| 1,5-Dichlorobenzene                  | <0.330           | <b>-</b>                | mg/kg    | <0.330          | <b>-</b>                | mg/kg  | <0.330      | >                       | mg/kg  | <0.330       | >                         | mg/kg          | <0.330     | >                         | mg/kg          |
| 1,4-Dichlorobenzene                  | <0.350           | <b>&gt;</b> :           | mg/kg    | <0.330          | <b>&gt;</b>             | mg/kg  | <0.330      | >                       | mg/kg  | <0.330       | >                         | mg/kg          | <0.330     | >                         | mg/kg          |
| 2,4,5-Irichlorophenol                | <0.825           | <b>&gt;</b> :           | mg/kg    | <0.825          | <b>&gt;</b> :           | mg/kg  | <0.825      | >                       | mg/kg  | <0.825       | >                         | mg/kg          | <0.825     | >                         | mg/kg          |
| 2,4,6-Irichlorophenol                | <0.350           | <b>&gt;</b> :           | mg/kg    | <0.330          | <b>&gt;</b> :           | mg/kg  | <0.330      | >:                      | mg/kg  | <0.330       | >                         | mg/kg          | <0.330     | <b>-</b>                  | mg/kg          |
| 2,4-Dichlorophenol                   | <0.330<br>6 230  | <b>&gt;</b> :           | mg/kg    | <0.330          | <b>&gt;</b> :           | mg/kg  | <0.330      | <b>&gt;</b> :           | mg/kg  | <0.330       | >                         | mg/kg          | <0.330     | <b>-</b>                  | mg/kg          |
| Z,4-Ulmethylphenol                   | <0.350<br>6.937  | <b>-</b> :              | mg/kg    | <0.330          | <b>&gt;</b> :           | mg/kg  | <0.330      | <b>&gt;</b> :           | mg/kg  | <0.330       | >                         | mg/kg          | <0.330     | <b>&gt;</b>               | mg/kg          |
| 2,4-Dinitrophenol                    | CZ0.0>           | <b>&gt;</b> :           | mg/kg    | \$0.825<br>6.15 | <b>&gt;</b> :           | mg/kg  | <0.825      | >                       | mg/kg  | <0.825       | >                         | mg/kg          | <0.825     | >                         | mg/kg          |
| z,4-binitrotoluene                   | <0.350<br>0.550  | <b>-</b> :              | mg/kg    | <0.550          | <b>&gt;</b>             | mg/kg  | <0.330      | >                       | mg/kg  | <0.330       | >                         | mg/kg          | <0.330     | >                         | mg/kg          |
| 2,6-Dinitrotoluene                   | <0.330           | >                       | mg/kg    | <0.330          | >                       | mg/kg  | <0.330      | >                       | mg/kg  | <0.330       | >                         | mg/kg          | <0.330     | >                         | mg/kg          |
| Z-Chloronaphthalene                  | <0.330           | <b>-</b>                | mg/kg    | <0.330          | <b>-</b>                | mg/kg  | <0.330      | >                       | mg/kg  | <0.330       | >                         | mg/kg          | <0.330     | >                         | mg/kg          |
| 2-Chlorophenol                       | <0.330           | <b>&gt;</b> :           | mg/kg    | <0.330          | <b>-</b>                | mg/kg  | <0.330      | >                       | mg/kg  | <0.330       | >                         | mg/kg          | <0.330     | _                         | mg/kg          |
| Z-Methylnaphthalene                  | <0.350           | >                       | mg/kg    | <0.330          | >                       | mg/kg  | <0.330      | >                       | mg/kg  | <0.330       | >                         | mg/kg          | <0.330     | >                         | mg/kg          |
| 2-Methylphenol                       | <0.330           | <b>&gt;</b> :           | mg/kg    | <0.330          | <b>&gt;</b> :           | mg/kg  | <0.330      | >                       | mg/kg  | <0.330       | <b>-</b>                  | mg/kg          | <0.330     | >                         | mg/kg          |
| 2-Nitroaniline                       | <0.825           | ⊃:                      | mg/kg    | <0.825          | <b>-</b> :              | mg/kg  | <0.825      | >                       | mg/kg  | <0.825       | <b>-</b>                  | mg/kg          | <0.825     | _                         | mg/kg          |
| Z-Nitrophenol                        | <0.330           | >                       | mg/kg    | <0.530          | <b>-</b>                | mg/kg  | <0.330      | >                       | mg/kg  | <0.330       | <b>-</b>                  | mg/kg          | <0.330     | _                         | mg/kg          |

| Well/Boring:<br>Sample ID:<br>Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2<br>14<br>2                                               | 2-64A<br>A1548<br>2 - 3 |                                                                                                                            | 4 K P.                                | 2-64A<br>A1549<br>7 - 8 |                                                                                                                   | 2<br>A<br>7                                                                                                                                                                                                    | 2-64A<br>A1550<br>7 - 8                 |                                       | 2 <b>4</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-64A<br>A1551<br>I2 - 13 |                                                                                                                                                                         | 2<br>A<br>7                                                                                                                                                  | 2-64A<br>A1552<br>17 - 18 |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Result                                                      | QFR                     | Units                                                                                                                      | Resul t                               | QFR                     | Units                                                                                                             | Result                                                                                                                                                                                                         | QFR                                     | Units                                 | Resul t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QFR                       | Units                                                                                                                                                                   | Result                                                                                                                                                       | QFR                       | Units          |
| 3,3'-Dichlorobenzidine 3,4'-Dinitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline 4-Methylphenol 4-Wethylphenol 4-Witrophenol Acenaphthene Acenaphthene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(s)phrhalate Chrysene Di-n-butylphthalate Chrysene Di-n-butylphthalate Di-n-butylphthalate Di-n-octylphthalate Dienzo(a,h)anthracene | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | 22222222222222 2 22222  | 39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |                         | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg | 60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330 | 222222222222222222222222222222222222222 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60 |                           | 39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg<br>39/kg | 60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330 |                           |                |
| r voor antiterie<br>Fluorene<br>Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.330<br><0.330<br><0.330                                  | ,,,                     | mg/kg<br>mg/kg                                                                                                             | <0.330<br><0.330<br><0.330            | ,,,                     | mg/kg<br>mg/kg<br>mg/kg                                                                                           | <0.330<br><0.330<br><0.330                                                                                                                                                                                     |                                         | mg/kg<br>mg/kg                        | <0.330<br><0.330<br><0.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 222                       | 39/kg<br>39/kg                                                                                                                                                          | <0.330<br><0.330<br><0.330                                                                                                                                   | 222                       | mg/kg<br>mg/kg |

B = Analyte was also found in sample blank
 E = Concentration exceeds instrument calibration range for that specific analysis
 J = Concentration is an estimated value
 N = Sample is outside of Matrix Spike QC limit
 < = Not detected</li>
 QFR = Qualifier
 Analytical data has not been validated.

| Well/Boring:<br>Sample ID:<br>Depth: | 242                  | 2-64A<br>A1548<br>2 - 3 |       | 2 A V           | 2-64A<br>A1549<br>7 - 8 |       | 247              | 2-64A<br>A1550<br>7 - 8 |       | 1975           | 2-64A<br>A1551<br>12 - 13 |       | . S. A. 7.     | 2-64A<br>A1552<br>17 - 18 |       |
|--------------------------------------|----------------------|-------------------------|-------|-----------------|-------------------------|-------|------------------|-------------------------|-------|----------------|---------------------------|-------|----------------|---------------------------|-------|
| Parameters                           | Resul t              | QFR                     | Units | Result          | QFR                     | Units | Result           | QFR                     | Units | Result         | QFR                       | Units | Result         | Q<br>R                    | Units |
|                                      |                      |                         |       |                 |                         |       |                  |                         |       |                |                           |       |                |                           |       |
| Hexachlorobutadiene                  | <0.330               | <b>)</b>                | mg/kg | <0.330          | <b>-</b>                | mg/kg | <0.330           | <b>-</b>                | mg/kg | <0.330         | >                         | mg/kg | <0.330         | <b>-</b>                  | mg/kg |
| Hexachlorocyclopentadiene            | <0.350               | <b>&gt;</b> :           | mg/kg |                 | <b>-</b>                | mg/kg | <0.330           | <b>-</b>                | mg/kg | <0.330         | >                         | mg/kg | <0.330         | <b>-</b>                  | mg/kg |
| Hexachloroethane                     | <0.350               | <b>&gt;</b> :           | mg/kg | <0.330          | <b>-</b> :              | mg/kg | <0.330           | <b>-</b>                | mg/kg | <0.330         | >                         | mg/kg | <0.330         | >                         | mg/kg |
| Indeno(1,2,3-ca)pyrene               | <0.330<br>5.130      | <b>&gt;</b> :           | mg/kg |                 | >                       | mg/kg | <0.330           | <b>&gt;</b>             | mg/kg | <0.330         | >                         | mg/kg | <0.330         | <b>-</b>                  | mg/kg |
| 1 soprorone                          | <0.350<br>0.250      | <b>&gt;</b> :           | mg/kg |                 | >                       | mg/kg | <0.330           | <b>&gt;</b>             | mg/kg | <0.330         | >                         | mg/kg | <0.330         | >                         | mg/kg |
| N-Nitroso-di-n-propylamine           | <0.350               | <b>&gt;</b> :           | mg/kg |                 | <b>&gt;</b>             | mg/kg | <0.330           | >                       | mg/kg | <0.330         | >                         | mg/kg | <0.330         | >                         | mg/kg |
| N-Nitrosodiphenylamine               | <0.330               | <b>-</b> :              | mg/kg |                 | <b>&gt;</b>             | mg/kg | <0.330           | ⊃                       | mg/kg | <0.330         | >                         | mg/kg | <0.330         | <b>-</b>                  | mg/kg |
| Naphthalene                          | <0.350<br>0.750      | <b>&gt;</b> :           | mg/kg |                 | <b>-</b>                | mg/kg | <0.330           | <b>&gt;</b>             | mg/kg | <0.330         | >                         | mg/kg | <0.330         | <b>-</b>                  | mg/kg |
| NITropenzene                         | <0.330               | <b>&gt;</b> :           | mg/kg |                 | <b>-</b>                | mg/kg | <0.330           | >                       | mg/kg | <0.330         | >                         | mg/kg | <0.330         | >                         | mg/kg |
| Pentachlorophenol                    | 40.825<br>625<br>675 | <b>ɔ</b> :              | mg/kg | <0.825          | <b>&gt;</b> :           | mg/kg | <0.825           | <b>-</b>                | mg/kg | <0.825         | >                         | mg/kg | <0.825         | >                         | mg/kg |
| Prenantirene                         | <0.330<br>6.330      | <b>-</b> :              | mg/kg |                 | <b>&gt;</b> :           | mg/kg | <0.330           | <b>-</b>                | mg/kg | <0.330         | >                         | mg/kg | <0.330         | _                         | mg/kg |
| Friend                               | <0.330               | <b>&gt;</b> :           | mg/kg |                 | <b>-</b>                | mg/kg | <0.330           | >                       | mg/kg | <0.330         | >                         | mg/kg | <0.330         | >                         | mg/kg |
| Pyrene<br>Lista of Landau            | <0.550               | <b>&gt;</b> :           | mg/kg |                 | <b>-</b>                | mg/kg | <0.330           | >                       | mg/kg | <0.330         | ⊃                         | mg/kg | <0.330         | >                         | mg/kg |
| Dis(z-thloroethoxy)methane           | <0.350               | <b>-</b> :              | mg/kg |                 | <b>-</b>                | mg/kg | <0.330           | <b>-</b>                | mg/kg | <0.330         | ⊃                         | mg/kg | <0.330         | <b>-</b>                  | mg/kg |
| bis(2-unloroetnyl)etner              | <0.550               | <b>&gt;</b> :           | mg/kg |                 | <b>&gt;</b> :           | mg/kg | <0.330           | >                       | mg/kg | <0.330         | >                         | mg/kg | <0.330         | <b>-</b>                  | mg/kg |
| Dis(z-untoroisopropyt)etne           | <0.330               | >                       | mg/kg |                 | >                       | mg/kg | <0.330           | >                       | mg/kg | <0.330         | >                         | mg/kg | <0.330         | >                         | mg/kg |
| 1 1 1 Trickless()                    | ن.                   | :                       | mg/kg | ر.<br>د         | :                       | mg/kg | 1. <sub>9</sub>  |                         | mg/kg | 2.1            |                           | mg/kg | <0.330         | >                         | mg/kg |
| 1, 1, 1-1Fichtordethane              | Û,                   | <b>&gt;</b> :           | ug/kg | ، ئ             | <b>-</b> :              | ug/kg | ψ, i             | >                       | ug/kg | ₩.             | >                         | ug/kg | \$             | >                         | ug/kg |
| 1,1,2,Z-letrachloroethane            | Ûή                   | <b>&gt;</b> :           | ug/kg | ۰ ۍ             | <b>-</b> :              | ug/kg | . ≎              | >                       | ug/kg | ις,            | >                         | ug/kg | \$             | ⊃                         | ug/kg |
| 1,1,2-IFICHTOFORTHAME                | Ο <b>κ</b>           | <b>&gt;</b> =           | ug/kg | ۍ <del>بر</del> | <b>&gt;</b> =           | ug/kg | ڻ ب <del>ڻ</del> | <b>&gt;</b> :           | ug/kg | Ωí             | <b>-</b> :                | ug/kg | ι <b>,</b>     | <b>-</b> :                | ug/kg |
| 1 1 2 cm of containe                 | ) <del>(</del>       | <b>)</b> :              | 9/ kg | ب ر             | <b>ɔ</b> :              | ug/kg | ۱ ئ              | <b>)</b>                | ng/kg | ۰ ۲            | >                         | ug/kg | Ç.             | >                         | ug/kg |
| 1 2-Dichlorocthene                   | 6 ہ                  | <b>&gt;</b> :           | ug/kg | ۍ بر            | <b>&gt;</b> :           | ug/kg | ٠<br>د           | ⇒:                      | ug/kg | φ,             | <b>&gt;</b> :             | ug/kg |                | <b>-</b>                  | ug/kg |
| 1, 2-Dichior Dechane                 | ٠<br>ا               | <b>ɔ</b> :              | ug/kg | ۰ ۍ             | <b>-</b>                | ug/kg | Φ'               | >                       | ug/kg | ÷.             | >                         | ug/kg | <sub>ئ</sub>   | <b>-</b>                  | ug/kg |
| 1, z-ulchloropropane                 | ۰,                   | <b>-</b>                | ug/kg | Ŷ,              | <b>&gt;</b> :           | ug/kg | ₽,               | >                       | ug/kg | ₽              | >                         | ug/kg | \$             | >                         | ug/kg |
| Z-Butanone                           | ۲.5<br>زز            | <b>-</b> >:             | ug/kg | <100            | >                       | ug/kg | 3.0              | -                       | ug/kg | 4.0            | -                         | ug/kg | 2.0            | 7                         | ug/kg |
| Z-Chloroethylvinyl ether             | ~10<br>-             | >                       | ug/kg | <b>~10</b>      | >                       | ug/kg | <b>~</b> 10      | >                       | ug/kg | <b>~10</b>     | >                         | ug/kg | <b>1</b> 0     | >                         | ug/kg |
| Z-Hexanone                           | 0.ç.                 | <b>&gt;</b> :           | ug/kg | \$0<br>;        | >                       | ug/kg | <b>~</b> 20      | >                       | ug/kg | <b>&lt;</b> 50 | >                         | ug/kg | <50            | >                         | ug/kg |
| 4-Metnyl-Z-Pentanone                 | 0¢>                  | >                       | ug/kg | <50             | >                       | ug/kg | <b>^</b> 20      | >                       | ug/kg | <b>~</b> 20    | >                         | ug/kg | <b>^</b> 50    | >                         | ug/kg |
| Acetone                              | 9.8                  | <b>9</b>                | ug/kg | 13              | 粤                       | ug/kg | 13               | 8                       | ug/kg | 7.2            | 8                         | ug/kg | 11             | 粤                         | ug/kg |
| Benzene                              | ۰ ۍ                  | <b>&gt;</b> :           | ug/kg | φ,              | <b>&gt;</b> :           | ug/kg | <b>.</b>         | >                       | ug/kg | ئ              | >                         | ug/kg | ۍ<br>ئ         | >                         | ug/kg |
| Bromotorm                            | ç                    | >                       | ug/kg | ≎               | <b>-</b>                | ug/kg | ₽                | >                       | ug/kg | <del>ب</del>   | <b>ɔ</b>                  | ug/kg | <del>ب</del> ک | <b>-</b>                  | ug/kg |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
 that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.</pre>

|                           | Well/Boring:<br>Sample ID:<br>Depth: | NAN        | 2-64A<br>A1548<br>2 - 3 |       | NAV          | 2-64A<br>A1549<br>7 - 8 |       | 786          | 2-64A<br>A1550<br>7 - 8 |       | 2 A 21       | 2-64A<br>A1551<br>12 - 13 |       | 9,4,7            | 2-64A<br>A1552<br>17 - 18 |        |
|---------------------------|--------------------------------------|------------|-------------------------|-------|--------------|-------------------------|-------|--------------|-------------------------|-------|--------------|---------------------------|-------|------------------|---------------------------|--------|
| Parameters                |                                      | Result     | OFR                     | Units | Result       | Q.F.R                   | Units | Resul t      | QFR                     | Units | Result       | o<br>FR                   | Units | Result           | QFR                       | Units  |
| -                         |                                      | :          |                         |       |              |                         |       |              |                         |       |              |                           |       |                  |                           |        |
| Bromomethane              |                                      | <b>~10</b> | >                       | ug/kg | <b>~10</b>   | >                       | ug/kg | <b>1</b> 0   | >                       | ua/ka | <10          | _                         | ua/ka | <b>~10</b>       | =                         | ua/ka  |
| Carbon Disulfide          |                                      | \$         | >                       | ug/kg | ĉ.           | >                       | ug/kg | \$           | >                       | ug/kg | \$           | · <b>¬</b>                | ug/ka |                  |                           | ua/ka  |
| Carbon Tetrachloride      |                                      | \$         | <b>-</b>                | ug/kg | ĉ            | >                       | ug/kg | Ą            | >                       | ug/kg | څ.           | _                         | ug/kg | ٠Ĉ               |                           | ua/ka  |
| Chlorobenzene             |                                      | \$         | <b>-</b>                | ug/kg | ĉ            | >                       | ug/kg | ئ            | >                       | ug/kg | ئ            | _                         | ug/kg | ŵ                | _                         | ua/ka  |
| Chlorodibromomethane      |                                      | ۍ<br>ب     | >                       | ug/kg | ĉ.           | >                       | ug/kg | ۍ            | >                       | ug/kg | ŵ            | _                         | ug/kg | ŵ                | <b>&gt;</b>               | ug/ka  |
| Chloroethane              |                                      | °,         | <b>-</b> :              | ug/kg | <b>~</b> 10  | <b>-</b>                | ug/kg | <b>~10</b>   | >                       | ug/kg | <b>^10</b>   | _                         | ug/kg | <b>^10</b>       | >                         | ug/kg  |
| Chlorotorm                |                                      | ۍ<br>ب     | >                       | ug/kg | ŵ.           | <b>-</b>                | ug/kg | څ            | >                       | ug/kg | ئ            | >                         | ug/kg | <b>\$</b>        | _                         | ug/kg  |
| Chloromethane             |                                      | °10        | <b>&gt;</b> :           | ug/kg | ~10<br>_     | >                       | ug/kg | <b>~10</b>   | >                       | ug/kg | <b>~10</b>   | >                         | ug/kg | <10              | >                         | ug/kg  |
| Ulchlorobromomethane      |                                      | δ,         | <b>&gt;</b> :           | ug/kg | <b>.</b>     | >                       | ug/kg | ٠            | >                       | ug/kg | \$           | >                         | ug/kg | \$               | ⊃                         | ug/kg  |
| Ethyl benzene             |                                      | Ç,         | <b>-</b> :              | ug/kg | ٠            | >                       | ug/kg | ₽,           | >                       | ug/kg | <b>.</b>     | >                         | ug/kg | څ.               | >                         | ug/kg  |
| Methylene Unioride        |                                      | 10         | <b>&gt;</b> :           | ug/kg | 5.5          | 号 :                     | ug/kg | 5.8          | 8                       | ug/kg | 6.5          | 뽁                         | ug/kg | 7.4              | 7                         | ug/kg  |
| Styrene                   |                                      | ۰, ۍ       | <b>&gt;</b> :           | ug/kg | <b>ئ</b>     | >                       | ug/kg | ₽            | <b>-</b>                | ug/kg | ئ            | >                         | ug/kg | ۍ                | >                         | ug/kg  |
| letrachloroethene         |                                      | δ,         | <b>&gt;</b> :           | ug/kg | ₩,           | >                       | ug/kg | ₽            | <b>-</b>                | ug/kg | \$           | _                         | ug/kg | ئ                | >                         | ug/kg  |
| Toluene                   |                                      | ۰,         | <b>-</b> :              | ug/kg | . ≎          | >                       | ug/kg | ₩,           | _                       | ug/kg | ئ            | <b>-</b>                  | ug/kg | ۍ                | >                         | ug/kg  |
| Vind Acctate              |                                      | Ç,         | <b>&gt;</b> :           | ug/kg | Ç,           | <b>&gt;</b> :           | ug/kg | φ,           | <b>-</b>                | ug/kg | ۍ            | >                         | ug/kg | څ                | >                         | ug/kg  |
| אווואו ארבופוב            |                                      | 2;         | <b>&gt;</b> :           | ug/kg | <u>0</u> :   | >                       | ug/kg | <b>01</b> >  | <b>-</b>                | ug/kg | <b>~10</b>   | ⊃                         | ug/kg | <b>~10</b>       | >                         | ug/kg  |
| Vinyl chloride            |                                      | 210        | <b>-</b>                | ug/kg | <b>~10</b>   | >                       | ug/kg | <b>~1</b> 0  | <b>-</b>                | ug/kg | <b>^10</b>   | _                         | ug/kg | <b>~10</b>       | >                         | ug/kg  |
| Ë,                        |                                      | Φ.         | >                       | ug/kg | ۍ            | >                       | ug/kg | څ            | _                       | ug/kg | <sub>ئ</sub> | >                         | ug/kg | څ.               | >                         | ug/kg  |
| _ ,                       | ne                                   | <b>.</b>   | >                       | ug/kg | <del>?</del> | >                       | ug/kg | \$           | <b>-</b>                | ug/kg | \$           | _                         | ug/kg | څ                | >                         | ug/kg  |
| cis-1,2-Dichloroethene    | a                                    | ₽          | >                       | ug/kg | <del>ئ</del> | <b>-</b>                | ug/kg | <sub>ئ</sub> | ⊃                       | Ug/kg | ź.           | =                         | ua/ka | \$               | =                         | 110/kg |
| trans 1,3-Dichloropropene | bene                                 | څ          | _                       | ug/kg | <del>ئ</del> | >                       | ug/kg | ŵ            | _                       | ua/ka | ث            | - =                       | ua/ka | , <del>r</del> Ĉ | =                         | 19/kg  |
| trans-1,2-Dichloroethene  | ene                                  | \$         | <b>-</b>                | ug/kg | ئ            | >                       | ug/kg | \$           | _                       | ug/kg | \$           | _                         | ug/kg | \$               | )                         | ug/kg  |
|                           |                                      |            |                         |       |              |                         |       |              |                         |       |              |                           |       |                  |                           | ,      |

| Well/Boring:<br>Sample ID:<br>Depth: | 2-5<br>2.5       | 2-65A<br>A1540<br>5 - 3.5 |            | 0.40            | 2-65A<br>A1541<br>6 - 7 |       | 2<br>A<br>12    | 2-65A<br>A1542<br>I2 - 13 |       | 2<br>A<br>16   | 2-65A<br>A1543<br>16 - 17 |       | 20 A1  | 2-65A<br>A1544<br>20 - 21 |       |
|--------------------------------------|------------------|---------------------------|------------|-----------------|-------------------------|-------|-----------------|---------------------------|-------|----------------|---------------------------|-------|--------|---------------------------|-------|
| Parameters                           | Resul t          | QFR                       | Units      | Result          | A.R                     | Units | Result          | QFR                       | Units | Result         | OFR                       | Units | Result | QFR                       | Units |
|                                      |                  |                           |            |                 |                         |       |                 |                           |       |                |                           |       |        |                           |       |
|                                      | 8400             | z                         | mg/kg      | 2900            | z                       | mg/kg | 19000           | z                         | mg/kg | 6300           | z                         | mg/kg | 0006   | z                         | mg/kg |
| Arsenic - Graphite Furnace           | 2.8              |                           | mg/kg      | 3.3             |                         | mg/kg | 1.2             |                           | mg/kg | 4.1            |                           | mg/kg | 2.5    |                           | mg/kg |
| Barıum                               | 150              | Z                         | mg/kg      | 69              | z                       | mg/kg | 27              | z                         | mg/kg | 32             | z                         | mg/kg | 54     | z                         | mg/kg |
| Beryllium                            | -                |                           | mg/kg      | 0.88            |                         | mg/kg | 2.0             |                           | mg/kg | 1.0            |                           | mg/kg | 1.9    |                           | mg/kg |
| Cadmium                              | 0.74             |                           | mg/kg      | <0.46           | >                       | mg/kg | <0.55           | >                         | mg/kg | <0 <b>.</b> 46 | >                         | mg/kg | -:     |                           | mg/kg |
| Chromium                             | 4.6              |                           | mg/kg      | 8.2             |                         | mg/kg | 54              |                           | mg/kg | 11             |                           | mg/kg | 37     |                           | mg/kg |
| Chromium VI                          | <0.49<br>7.5     | >                         | mg/kg      | <0.51<br>       | >                       | mg/kg | <0.50           | >                         | mg/kg | <0.50          | >                         | mg/kg | <0.50  | <b>-</b>                  | mg/kg |
| Copper                               | 7.6              | :                         | mg/kg      | ٠.٢<br>رووز     | :                       | mg/kg | 22              |                           | mg/kg | 9.5            |                           | mg/kg | 7      |                           | mg/kg |
| I FON                                | 0000             | Z:                        | mg/kg      | 7200            | Z:                      | mg/kg | 16000           | Z                         | mg/kg | 11000          | z                         | mg/kg | 22000  | z                         | mg/kg |
| Lead - uraphite rurhace              | 8.8<br>200       | <b>z</b> :                | mg/kg      | 5.5             | <b>z</b> :              | mg/kg | 3.5             | z                         | mg/kg | 9.1            | 2                         | mg/kg | 5.7    | z                         | mg/kg |
| Mercury                              | <0.02<br>43.025  | >                         | mg/kg      | <0.020          | >                       | mg/kg | <0.023          | >                         | mg/kg | <0.024         | >                         | mg/kg | <0.024 | >                         | mg/kg |
| NICKEL                               | 7.               | :                         | mg/kg      | 12              |                         | mg/kg | 50              |                           | mg/kg | 13             |                           | mg/kg | 22     |                           | mg/kg |
| Silver                               | .8.6             | >                         | mg/kg      | <0.92<br>.i     | >                       | mg/kg | <b>7.</b>       | >                         | mg/kg | <0.93          | >                         | mg/kg | <0.98  | >                         | mg/kg |
| 71UC                                 | 7.               | :                         | mg/kg      | 15              |                         | mg/kg | 35              |                           | mg/kg | 17             |                           | mg/kg | 28     |                           | mg/kg |
| 1,2,4-Irichlorobenzene               | <0.330           | <b>&gt;</b> :             | mg/kg      | <0.330          | <b>-</b>                | mg/kg | <0.330          | >                         | mg/kg | <0.330         | >                         | mg/kg | <0.330 | >                         | mg/kg |
| 1, Z-Dichlorobenzene                 | <0.550           | <b>-</b> :                | mg/kg      | <0.330          | >                       | mg/kg | <0.330          | >                         | mg/kg | <0.330         | >                         | mg/kg | <0.330 | >                         | mg/kg |
| 1,5-Dichlorobenzene                  | <0.550           | <b>&gt;</b> :             | mg/kg      | <0.330          | <b>&gt;</b> :           | mg/kg | <0.330          | >                         | mg/kg | <0.330         | >                         | mg/kg | <0.330 | _                         | mg/kg |
| 1,4-Ulchlorobenzene                  | <0.330<br>0.330  | <b>&gt;</b> :             | mg/kg      | <0.350          | <b>-</b> :              | mg/kg | <0.330          | <b>-</b>                  | mg/kg | <0.330         | >                         | mg/kg | <0.330 | >                         | mg/kg |
| 2,4,3-Irichlorophenol                | 628.05           | <b>&gt;</b> :             | mg/kg      | <0.825<br>0.825 | <b>-</b> :              | mg/kg | <0.825          | >                         | mg/kg | <0.825         | >                         | mg/kg | <0.825 | >                         | mg/kg |
| 2,4,0-1richlorophenol                | <0.330<br>0.330  | <b>&gt;</b> :             | mg/kg      | <0.350          | <b>-</b> :              | mg/kg | <0.330          | <b>&gt;</b> :             | mg/kg | <0.330         | <b>-</b>                  | mg/kg | <0.330 | <b>-</b>                  | mg/kg |
|                                      | 40.330           | <b>&gt;</b> :             | mg/kg      | 0.00            | <b>ɔ</b> :              | mg/kg | <0.350<br>0.550 | <b>-</b> :                | mg/kg | <0.330         | >                         | mg/kg | <0.330 | >                         | mg/kg |
| 2 /- Dimitrophone                    | <0.330<br>\0.935 | <b>&gt;</b> :             | mg/kg      | <0.350<br>6.935 | <b>-</b> :              | mg/kg | <0.330          | <b>&gt;</b> :             | mg/kg | <0.330         | <b>-</b>                  | mg/kg | <0.330 | <b>-</b>                  | mg/kg |
|                                      | 20.00            | <b>&gt;</b> :             | Ш9/кд<br>, | 626.05          | <b>&gt;</b> :           | mg/kg | <0.872<br>0.825 | <b>&gt;</b> :             | mg/kg | <0.825         | >                         | mg/kg | <0.825 | >                         | mg/kg |
| 2,4-Dinitrotoluene                   | <0.330<br>0.330  | <b>&gt;</b> :             | mg/kg      | <0.350          | <b>-</b>                | mg/kg | <0.330          | >                         | mg/kg | <0.330         | >                         | mg/kg | <0.330 | >                         | mg/kg |
| 2,0-Dinitrotoluene                   | <0.330<br>0.330  | <b>-</b> :                | mg/kg      | <0.350          | >                       | mg/kg | <0.330          | >                         | mg/kg | <0.330         | >                         | mg/kg | <0.330 | >                         | mg/kg |
| Z-Chloronaphthalene                  | <0.330           | <b>-</b> :                | mg/kg      | <0.330          | >                       | mg/kg | <0.330          | >                         | mg/kg | <0.330         | >                         | mg/kg | <0.330 | >                         | mg/kg |
| Z-Uniorophenoi                       | <0.330           | <b>&gt;</b> :             | mg/kg      | <0.330          | <b>-</b> :              | mg/kg | <0.330          | >                         | mg/kg | <0.330         | >                         | mg/kg | <0.330 | <b>&gt;</b>               | mg/kg |
| 2 Methylnaphthalene                  | 40.330<br>330    | <b>-</b> :                | mg/kg      | <0.350<br>0.550 | <b>-</b>                | mg/kg | <0.330          | >                         | mg/kg | <0.330         | >                         | mg/kg | <0.330 | >                         | mg/kg |
| Z-Metnylphenol                       | <0.330           | <b>-</b> :                | mg/kg      | <0.330          | ⊃:                      | mg/kg | <0.330          | >                         | mg/kg | <0.330         | >                         | mg/kg | <0.330 | <b>&gt;</b>               | mg/kg |
| 2-Nitroaniline                       | <0.825<br>6.725  | <b>&gt;</b> :             | mg/kg      | <0.825          | <b>-</b> :              | mg/kg | <0.825          | <b>-</b>                  | mg/kg | <0.825         | >                         | mg/kg | <0.825 | >                         | mg/kg |
| Z-Nitrophenol                        | <b>60.33</b> 0   | <b>-</b>                  | mg/kg      | <0.350          | >                       | mg/kg | <0.330          | <b>-</b>                  | mg/kg | <0.330         | >                         | mg/kg | <0.330 | >                         | mg/kg |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

| Well/Boring:<br>Sample 1D:<br>Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-65A<br>A1540<br>2.5 - 3.              | .65A<br>1540<br>- 3.5 |                         | -2-<br>8-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-65A<br>A1541<br>6 - 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>A<br>51                          | 2-65A<br>A1542<br>12 - 13 |                                                                                                                                                       | 2<br>A<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-65A<br>A1543<br>16 - 17 |                                                                                                                                                                                  | 2<br>A<br>20                           | 2-65A<br>A1544<br>20 - 21 |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|-------------------------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Result                                  | OFR                   | Units                   | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OFR                     | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                | OFR                       | Units                                                                                                                                                 | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QFR.                      | Units                                                                                                                                                                            | Result                                 | QFR                       | Units                   |
| 3,3'-Dichlorobenzidine 5,Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether 4-Chloroaniline 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether 4-Methylphenol 4-Nitroaniline 6-Nitrophenol Acenaphthone Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)hluoranthene | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                       |                         | 6 6 6 330<br>6 6 330<br>7 6 330<br>7 6 330<br>7 6 330<br>7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |                         | 99/K9 999/K9 99/K9 99/ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                           | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg | 0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0.0330<br>0. |                           | 99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg<br>99/Kg | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 |                           |                         |
| Fluoranthene<br>Fluorene<br>Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.330<br><0.330<br><0.330              | 222                   | mg/kg<br>mg/kg<br>mg/kg |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | mg/kg<br>mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.330<br><0.330<br><0.330            | 222                       | mg/kg<br>mg/kg<br>mg/kg                                                                                                                               | <0.330<br><0.330<br><0.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | mg/kg<br>mg/kg<br>mg/kg                                                                                                                                                          | <0.330<br><0.330<br><0.330             | 222                       | mg/kg<br>mg/kg<br>mg/kg |

B = Analyte was also found in sample blank
 E = Concentration exceeds instrument calibration range for that specific analysis
 J = Concentration is an estimated value
 N = Sample is outside of Matrix Spike QC limit
 N = Not detected
 QFR = Qualifier
 Analytical data has not been validated.

| Well/Boring:<br>Sample ID:<br>Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-6<br>2.5                               | 2-65A<br>A1540<br>2.5 - 3.5             |                                                                                                                   | 0 A 9                                 | 2-65A<br>A1541<br>6 - 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 45                                  | 2-65A<br>A1542<br>12 - 13 |                                       | 2 4 2                                 | 2-65A<br>A1543<br>16 - 17              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-<br>A1<br>20                                           | 2-65A<br>A1544<br>20 - 21 |                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|---------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------|---------------------------------------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                   | QFR                                     | Units                                                                                                             | Result                                | a<br>R                  | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Result                                | QFR                       | Units                                 | Result                                | QFR.                                   | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result                                                   | OFR                       | Units                                 |
| Hexachlorobutadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Indeno(1,2,3.cd)pyrene Isophorone N.Nitroso-di-n-propylamine N.Nitrosodiphenylamine N.Nitrosodiphenylamine Nitrobenzene Pentachlorophenol Phenanthrene Phenol Phenol Pyrene Dis(2-Chlorocthoxy)methane Dis(2-Chlorocthyl)ethe Dis(2-Chlorocthoxy)methane Dis(2-Chlorocthoxy)methane Dis(2-Chlorocthoxy)methane Dis(2-Chlorocthoxy)methane Dis(2-Chlorocthoxy)methane Dis(2-Chlorocthoxy)methane Dis(2-Chlorocthoxy)methane 1,1-Dichlorocthone 1,2-Dichlorocthone 1,2-Dichlorocthone 2-Butanone 2-Chlorocthylvinyl ether 2-Hethyl-2-Pentanone 4-Methyl-2-Pentanone | \$6.000000000000000000000000000000000000 | 222222222222222222222222222222222222222 | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                         | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                           | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ | 18/ Kg<br>18/ Kg<br>18 | \$25.60 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$30 \$3 | בכרכככככככככככככככככככ    | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 |
| Acetone<br>Benzene<br>Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.4<br>5<br>5                            | , <del>,</del> , ,                      | ug/kg<br>ug/kg<br>ug/kg                                                                                           | \$ \$ \$ \$<br>\$ \$ \$ \$            | , <del>2</del> 0 0      | ug/kg<br>ug/kg<br>ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>5                                | 2 D D                     | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg      | 55.7<br>55.7                          | , g o o                                | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | §.5.5<br>5.5.5                                           | - <del>2</del>            | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg      |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

|                                       | Well/Boring:<br>Sample ID:<br>Depth: | 2-<br>A1<br>2.5  | 2-65A<br>A1540<br>5 - 3.5 |                | 0 A W            | -65A<br>11541    |                | 2 A ST     | 2-65A<br>A1542<br>12 - 13 |                | 19.4°5           | 2-65A<br>A1543<br>16 - 17 |                | 2-<br>A1          | 2-65A<br>A1544<br>20 - 21 |                |
|---------------------------------------|--------------------------------------|------------------|---------------------------|----------------|------------------|------------------|----------------|------------|---------------------------|----------------|------------------|---------------------------|----------------|-------------------|---------------------------|----------------|
| Parameters                            |                                      | Result           | QFR                       | Units          | Result           | QFR.             | Units          | Result     | QFR                       | Units          | Result           | QFR                       | Units          | Result            | QFR                       | Units          |
| Bromomethane<br>Carbon Disulfide      |                                      | 6<br>5<br>7      | <b>&gt;</b> >:            | ug/kg<br>ug/kg | <del>6</del> & . | <b>&gt;</b> >:   | ug/kg<br>ug/kg |            | <b>&gt;</b> >:            | ug/kg<br>ug/kg | <del>6</del>     | <b>&gt;</b> >             | ug/kg<br>ug/kg | <10<br><5         | <b></b>                   | ug/kg<br>ug/kg |
| Carbon letrachloride<br>Chlorobenzene |                                      | <b>δ.</b> δ      | <b>&gt;</b> >             | ug/kg<br>ug/kg | \$ \psi          | <b>&gt;</b> >    | ug/kg<br>ug/kg | Ф.         | <b>&gt;</b> >             | ug/kg<br>ug/kg | φ.               | <b>&gt;</b> >             | ug/kg<br>ug/ka | <b>ئ</b> ئ        | <b>&gt;</b> >             | ug/kg<br>ug/ka |
| Chlorodibromomethane                  |                                      | ٠<br>٢           | <b>&gt;</b> =             | ug/kg          | ۍ <u>د</u>       | <b>&gt;</b> =    | ug/kg          | <b>ئ</b> ئ | <b>&gt;</b> :             | ug/kg          | ۍ<br>د<br>د      | <b>&gt;</b> :             | ug/kg          | ₩,                | <b>&gt;</b> :             | ug/kg          |
| Chloroform                            |                                      | 5.<br>€          | <b>)</b>                  | ug/kg<br>ug/kg | <u> </u>         | o                | ug/kg<br>ug/kg | <u>.</u> & | <b>-</b> -                | ug/kg<br>ug/kg | ÷.               | <b>&gt;</b>               | ug/kg<br>ug/kg | <u>\$</u>         | <b>)</b>                  | ug/kg<br>ug/kg |
| Chloromethane                         |                                      | <del>\$</del> 4  | <b>&gt;</b> :             | ug/kg          | 6<br>4           | ⊃:               | ug/kg          | ٠<br>ئ     | >:                        | ug/kg          | ₽,               | <b>&gt;</b> :             | ug/kg          | را<br>ت           | <b>ɔ</b> :                | ug/kg          |
| Ethylbenzene                          |                                      | 5 æ              | <b>)</b>                  | ug/kg<br>ug/kg | о.<br>С          | <b>&gt; &gt;</b> | ug/kg<br>ug/kg | 6.A        | <b>&gt;</b> >             | ug/kg<br>ug/kg | <b>ο</b> φ       | <b>-</b> -                | ug/kg<br>ug/kg | \$ <b>\</b> \$    | <b>-</b> -                | ug/kg<br>ug/kg |
| Methylene Chloride<br>Styrene         |                                      | 5.6<br><5        | <b>9</b> 5                | ug/kg<br>ug/ka | 6.8<br><5        | ۵ ع              | ug/kg<br>ug/ka | 6.8<br>5   | 8<br>=                    | ug/kg          | 3.3<br>5.3       | <b>9</b> =                | ug/kg          | 2.8<br><5         | 뽁 =                       | ug/kg          |
| Tetrachloroethene                     |                                      | ıδι              | · <b>ɔ</b> :              | ug/kg          | ıδı              | ) <b>)</b> :     | ug/kg          | . Φ.       | )                         | ug/kg          | , Δ.             | ) <b>–</b>                | ug/kg          | . <del>ι</del> δ. | ) –                       | ug/kg          |
| loluene<br>Trichloroethene            |                                      | \$ <b>\</b> \$   | <b>&gt;</b> >             | ug/kg<br>ug/kg | Ф. Ф.            | <b>&gt;</b> >    | ug/kg<br>ug/ka | φ<br>Φ     | <b>&gt;</b> >             | ug/kg<br>ug/ka | φ.               | <b>&gt;</b> >             | ug/kg<br>ug/ka | ሱ ሱ               | <b>&gt;</b> =             | ug/kg<br>ug/ka |
| Vinyl Acetate                         |                                      | <10              | <b>)</b>                  | ug/kg          | <b>~10</b>       | >                | ug/kg          | <b>~10</b> | _                         | ug/kg          | <b>~10</b>       | )                         | ug/kg          | <b>~10</b>        | · –                       | ug/kg          |
| Vinyl Chloride                        |                                      | ~10<br>          | <b>&gt;</b> :             | ug/kg          | , <u>1</u> 0     | <b>&gt;</b> :    | ug/kg          | ~10        | <b>&gt;</b> :             | ug/kg          | 10               | <b>&gt;</b> :             | ug/kg          | 10                | <b>-</b> :                | ug/kg          |
| <pre></pre>                           | e.                                   | S <del>(</del> S | <b>&gt;</b> =             | ug/kg<br>ug/ka | ô. <del>Ω</del>  | <b>&gt;</b> =    | ug/kg          | o          | <b>&gt;</b> =             | ug/kg          | ۍ <sub>۲</sub> ۵ | >=                        | ug/kg          | ۍ بر              | <b>&gt;</b> =             | ug/kg          |
| Ċ                                     |                                      | . <del>\$</del>  | ) >                       | ug/kg          | , <del>(</del> , | · >              | ug/kg          | ιĈ         | ) <b>–</b>                | ug/kg          | 'nΦ              | ) <b>–</b>                | ug/kg<br>ug/kg | ۍ<br>د            | )<br>)                    | ug/kg          |
|                                       | oene                                 | ιŞι              | <b>ɔ</b> :                | ug/kg          | Ω                | <b>)</b>         | ug/kg          | 'n         | <b>-</b>                  | ug/kg          | ťς               | <b>-</b>                  | ug/kg          | ٠                 | _                         | ug/kg          |
| trans-1,2-Dichloroethene              | ene                                  | ≎                | <b>&gt;</b>               | ug/kg          | <b>≎</b>         | >                | ug/kg          | ≎          | >                         | ug/kg          | ÷                | >                         | ug/kg          | ÷                 | <b>-</b>                  | ug/kg          |

|                                      |            | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Units      | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>90/kg<br>90/kg<br>90/kg<br>90/kg<br>90 |
| 2-65A<br>A1546<br>99 - 30            | Q FR       | z <sup>N</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2-<br>29                             | Resul t    | 1500<br>2.3<br>2.3<br>2.3<br>4.55<br>6.7<br>6.7<br>6.7<br>6.7<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                      | Units      | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2-65A<br>A1545<br>26 - 27            | QFR        | ZDZ DDZZD D DDDDDDDDDDDDDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 <b>A</b> 2                         | Result     | 2300<br>41.1<br>42.2<br>40.54<br>40.54<br>60.51<br>60.024<br>7.9<br>41.1<br>7.8<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300                                                                        |
| Well/Boring:<br>Sample ID:<br>Depth: | Parameters | Aluminum Arsenic - Graphite Furnace Barium Beryllium Cadmium Chromium Chromium VI Copper Iron Lead - Graphite Furnace Mercury Nickel 3:1ver Zinc 1,2.4-Trichlorobenzene 1,4.5-Trichlorobence 2,4.5-Trichlorophenol 2,4.5-Trichlorophenol 2,4.5-Initrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

Analytical post the FTA for SO Tinker Air Force Base

|                                      |            | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|--------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                      | Units      | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 2-65A<br>A1546<br>29 - 30            | QFR        | 2222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 29 A 2                               | Result     | 60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.330<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60.300<br>60 |  |
|                                      | Units      | 99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>99/kg<br>90/kg<br>90/kg<br>90                                                                                                                                                                                                                                                                                                     |  |
| 2-65A<br>A1545<br>26 - 27            | QFR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 28 A. P.                             | Result     | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Well/Boring:<br>Sample ID:<br>Depth: | Parameters | 3,3'-Dichlorobenzidine 5.Mitroaniline 4,6-Dinitro-2-methylphenol 4.Bromophenyl-phenylether 4-Chloro-3-methylphenol 4.Chloropenyl-phenylether 4-Chloropenyl-phenylether 4-Chlorophenyl-phenylether 4-Chlorophenyl-phenylether 4-Nitroaniline 4-Nitrophenol Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(x)fluoranthene Eluylbenzylphthalate Dienzofuran Diethylphthalate Dienzofuran Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

Analytical ...sults at the FTA for SO Tinker Air Force Base

| Well/Boring:<br>Sample ID:<br>Depth: | 28 A. Q.       | 2-65A<br>A1545<br>26 - 27 |       | 29 A 2     | 2-65A<br>A1546<br>29 - 30 |       |
|--------------------------------------|----------------|---------------------------|-------|------------|---------------------------|-------|
| Parameters                           | Result         | QFR                       | Units | Resul t    | Q.<br>R.                  | Units |
|                                      |                |                           |       |            |                           |       |
| Hexachlorobutadiene                  | <0.330         | <b>-</b>                  | mg/kg | <0.330     | >                         | mg/kg |
| Hexachlorocyclopentadiene            | <0.330         | >                         | mg/kg | <0.330     | >                         | mg/kg |
| Hexachloroethane                     | <0.330         | >                         | mg/kg | <0.330     | >                         | mg/kg |
| Indeno(1,2,3-cd)pyrene               | <0.330         | >                         | mg/kg | <0.330     | _                         | mg/kg |
| Isophorone                           | <0.330         | >                         | mg/kg | <0.330     | _                         | mg/kg |
| N-Nitroso-di-n-propylamine           | <0.330         | >                         | mg/kg | <0.330     | _                         | mg/kg |
| N-Nitrosodiphenylamine               | <0.330         | >                         | mg/kg | <0.330     | >                         | mg/kg |
| Naphthalene                          | <0.330         | <b>-</b>                  | mg/kg | <0.330     | >                         | mg/kg |
| Nitrobenzene                         | <0.330         | <b>&gt;</b>               | mg/kg | <0.330     | _                         | mg/kg |
| Pentachlorophenol                    | <0.825         | >                         | mg/kg | <0.825     | >                         | mg/kg |
| Phenanthrene                         | <0.330         | >                         | mg/kg | <0.330     | _                         | mg/kg |
| Phenol                               | <0.330         | >                         | mg/kg | <0.330     | >                         | mg/kg |
| Pyrene                               | <0.330         | >                         | mg/kg | <0.330     | <b>-</b>                  | mg/kg |
| bis(2-Chloroethoxy)methane           | <0.330         | >                         | mg/kg | <0.330     | >                         | mg/kg |
| bis(2-Chloroethyl)ether              | <0.330         | >                         | mg/kg | <0.330     | >                         | mg/kg |
| bis(2-Chloroisopropyl)ethe           | <0.330         | >                         | mg/kg | <0.330     | >                         | mg/kg |
| bis(2-Ethylhexyl)phthalate           | 20.0           | _                         | mg/kg | <0.330     | >                         | mg/kg |
| 1,1,1-Trichloroethane                | \$             | >                         | ug/kg | \$         | >                         | ug/kg |
| 1,1,2,2-Tetrachloroethane            |                | >                         | ug/kg | څ          | >                         | ug/kg |
| 1,1,2-Trichloroethane                | φ,             | <b>-</b>                  | ug/kg | \$         | >                         | ug/kg |
| 1,1-Dichloroethane                   | Φ,             | <b>-</b>                  | ug/kg | \$<br>'    | <b>&gt;</b>               | ug/kg |
| l, 1-Dichloroethene                  | ₽              | _                         | ug/kg | <b>ئ</b>   | >                         | ug/kg |
| 1,2-Dichloroethane                   | ₩              | >                         | ug/kg | څ          | >                         | ug/kg |
| 1,2-Dichloropropane                  | ₽              | >                         | ug/kg | څ          | <b>-</b>                  | ug/kg |
| 2-Butanone                           | 5.1            | _                         | ug/kg | 2.4        | ~                         | ug/kg |
| 2-Chloroethylvinyl ether             | <del>,</del>   | _                         | ug/kg | <b>1</b> 0 | >                         | ug/kg |
| 2-Hexanone                           | <b>&lt;</b> 50 | <b>-</b>                  | ug/kg | <50        | >                         | ug/kg |
| 4-Methyl-2-Pentanone                 | <50            | >                         | ug/kg | <50        | >                         | ug/kg |
| Acetone                              | 6.7            | 뽁                         | ug/kg | 8.0        | 8                         | ug/kg |
| Benzene                              | \$             | >                         | ug/kg | څ          | >                         | ug/kg |
| Bromoform                            | ĉ.             | >                         | ug/kg | ئ          | >                         | ug/kg |
|                                      |                |                           |       |            |                           |       |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

Analytical Jults at the FTA for SO Tinker Air Force Base

|                                      |            | 1 |              |                  |                      |               |                      |              |            |               |                      |              |                    |          |                   |         |                 |               |            |                 |                         |        |       |                          |
|--------------------------------------|------------|---|--------------|------------------|----------------------|---------------|----------------------|--------------|------------|---------------|----------------------|--------------|--------------------|----------|-------------------|---------|-----------------|---------------|------------|-----------------|-------------------------|--------|-------|--------------------------|
|                                      | Units      |   | ua/ka        | in/ka            | ua/ka                | ug/kg         | ug/kg                | ug/kg        | ug/kg      | ug/kg         | ug/kg                | ug/kg        | ug/kg              | ug/kg    | ug/kg             | ug/kg   | ug/kg           | ug/kg         | ug/kg      | ug/kg           | ug/kg                   | ug/kg  | ug/kg | ug/kg                    |
| 2-65A<br>A1546<br>29 - 30            | afr<br>R   |   | )            | =                | ) =                  | >             | >                    | >            | >          | >             | >                    | >            | _                  | <b>-</b> | <b>-</b>          | ⊃       | <b>-</b>        | >             | >          | ⊃               | >                       | _      | _     | >                        |
| 2 4 S                                | Result     |   | <10          |                  | ιĈ                   | ŵ             | ۍ                    | <b>~1</b> 0  | ئ          | <b>~10</b>    | ĉ,                   | Ĉ            | <del>,</del>       | Ĉ        | ŵ                 | Ω       | ۍ               | <b>~</b> 10   | <b>~10</b> | ئ               | څ.                      | ĉ.     | ئ     | څ<br>ج                   |
|                                      | Units      |   | ug/kg        | ua/ka            | ua/ka                | ug/kg         | ug/kg                | ug/kg        | ug/kg      | ug/kg         | ug/kg                | ug/kg        | ug/kg              | ug/kg    | ug/kg             | ug/kg   | ug/kg           | ug/kg         | ug/kg      | ug/kg           | ug/kg                   | ug/kg  | ug/kg | ug/kg                    |
| 2-65A<br>A1545<br>26 - 27            | QFR        |   | ם            | _                | _                    | >             | >                    | >            | >          | >             | >                    | >            | 8                  | >        | >                 | >       | >               | >             | <b>-</b>   | <b>-</b>        | >                       | >      | >     | >                        |
| 2 ¥ 2                                | Result     |   | <10          | \$               | څ.                   | \$            | ئ                    | <b>~10</b>   | ۍ          | <b>~10</b>    | \$                   | ئ            | 1.3                | \$       | ŵ.                | ŕ       | <b>₹</b>        | <del>,</del>  | <b>~10</b> | ئ               | ئ                       | ŵ.     | ئ     | î,                       |
| Well/Boring:<br>Sample ID:<br>Depth: |            |   |              |                  |                      |               |                      |              |            |               |                      |              |                    |          |                   |         |                 |               |            |                 | Ð                       |        | ene   | Je<br>L                  |
|                                      | Parameters |   | Bromomethane | Carbon Disulfide | Carbon Tetrachloride | Chlorobenzene | Chlorodibromomethane | Chloroethane | Chloroform | Chloromethane | Dichlorobromomethane | Ethylbenzene | Methylene Chloride | Styrene  | Tetrachloroethene | Toluene | Trichloroethene | Vinyl Acetate |            | Xylenes (total) | cis 1,3 Dichloropropene | ,2-Dic | -5,   | trans-1,2-Dichloroethene |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

## ANALYTICAL RESULTS GROUNDWATER

| Well/Boring:<br>Sample ID:<br>Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 8 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-62B<br>A1601<br>0 - 0 |                                            | 0 8 2                                                                                                    | 2-62B<br>11602<br>0 - 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V. 4.0 | 2-628<br>11665<br>) - 0 |       | -2-<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-63B<br>41600<br>0 - 0 |       | 1   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|-----|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | QFR                     | Units                                      | Resul t                                                                                                  | QFR                      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result | OFR                     | Units | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OFR                     | Units |     |
| Alkalinity, Titrimetric Chemical Oxygen Demand Choride by Ion Chrom. Nitrate and Nitrite Phenolics Silica Sulfate by Ion Chrom. Total Phosphorus Aluminum Arsenic - Graphite Furnace Barium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Cadmium Calcium Cadmium Ca | 520<br>87<br>2.9<br>40.010<br>7.3<br>110<br>0.15<br>8.2<br>40.0050<br>48<br>0.040<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.00020<br>4.0 | D D SZZDZ ZDŠDŠŠ ZDA A  | SS 1/6m 1/6m 1/6m 1/6m 1/6m 1/6m 1/6m 1/6m | 330<br>425<br>897<br>2.7<br>40.010<br>6.9<br>6.9<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0 | D D D SZZDZ ZDŠDŠŠ ZDA A | se   /6m   / |        |                         |       | 470<br>470<br>425<br>3.8<br>40.010<br>8.9<br>40.010<br>6.10<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050<br>6.0050 |                         |       | I . |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )<br>}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                       | 'n                                         | <u>}</u>                                                                                                 | ٠,                       | , )65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                         |       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )                       | , /An |     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well/Boring:<br>Sample ID:<br>Depth: | V KO                                                                         | 2-628<br>11601<br>) - 0 |                                                              | 2<br>0                                  | 2-62B<br>A1602<br>0 - 0 |       | 0 4 0  | 2-62B<br>A1665<br>0 - 0 |       | 2-<br>A1                                | 2-63B<br>A1600<br>0 - 0                |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|-----------------------------------------|-------------------------|-------|--------|-------------------------|-------|-----------------------------------------|----------------------------------------|-------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | Resul t                                                                      | OFR                     | Units                                                        | Result                                  | QFR                     | Units | Result | OFR                     | Units | Result                                  | OFR                                    | Units |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dinitrophenol<br>2,4-Dinitrophenol<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2-Chlorophenol<br>2-Methylphenol<br>2-Methylphenol<br>2-Nitroaniline<br>3,3'-Dichlorobenzidine<br>3,3'-Dichlorobenzidine<br>4,6-Dinitro-2-methylphenol<br>4,6-Dinitro-2-methylphenol<br>4,6-Dinitro-2-methylphenol<br>4-Chloroaniline<br>4-Chloroaniline<br>4-Chloroaniline<br>4-Chloroaniline<br>4-Chloroaniline<br>4-Nitroaniline<br>4-Nitrophenol<br>Acenaphthene<br>Anthracene<br>Benzo(a)anthracene<br>Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(a)pyrene<br>Benzo(b)fluoranthene | no l                                 | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |                         | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n | 666686666688668866666666666666666666666 |                         |       |        |                         |       | 666626666666262666666666666666666666666 | ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ |       |

| Well/Boring:<br>Sample ID:<br>Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 2-62B<br>A1601<br>0 - 0                                     |                                                              | .,,                                                                          | 2-628<br>A1602<br>0 - 0 |       | 2 A    | 2-62B<br>A1665<br>0 - 0 |       | 0 8 72                                                                       | 2-638<br>A1600<br>0 - 0 |                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------|-------|--------|-------------------------|-------|------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result                    | QFR                                                         | Units                                                        | Result                                                                       | QFR                     | Units | Result | QFR                     | Units | Result                                                                       | QFR                     | Units                                                        |
| Benzoic Acid Benzyl alcohol Butylbenzylphthalate Chrysene Di-n-butylphthalate Di-noctylphthalate Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Indeno(1,2,3-cd)pyrene Isophorone Isophorone Isophorone Isophorole Isophorol | 8999999999999999999999998 | <b>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</b> | 1/6m<br>1/6m<br>1/6m<br>1/6m<br>1/6m<br>1/6m<br>1/6m<br>1/6m | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |                         |       |        |                         |       | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |                         | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                             |                                                              |                                                                              |                         |       |        |                         |       |                                                                              |                         |                                                              |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

| Well/Boring:<br>Sample 1D:<br>Depth: | C) & D         | 2-62B<br>A1601<br>0 - 0 |               | 2              | 2-62B<br>41602<br>0 - 0 |               | NAO                        | 2-62B<br>41665<br>0 - 0 |              | 0 4 0                     | 2-63B<br>A1600<br>0 - 0 |               |   |
|--------------------------------------|----------------|-------------------------|---------------|----------------|-------------------------|---------------|----------------------------|-------------------------|--------------|---------------------------|-------------------------|---------------|---|
| Parameters                           | Result         | QFR                     | Units         | Result         | QFR                     | Units         | Result                     | QFR                     | Units        | Result                    | a.<br>R                 | Units         |   |
| Total Kieldsh Witnesse               | 02.0           |                         |               | ç              | =                       | -             |                            |                         |              |                           |                         |               | l |
|                                      | 20.0           |                         | mg/L          | 60.0           | >                       | mg/l          |                            |                         |              | <0.25                     | <b>-</b>                | mg/l          |   |
| Total Suspended Solids               | 3.0            |                         | 1/6m          | 5.0<br>25.0    |                         | 1/6m          |                            |                         |              | 2.2                       |                         | mg/l          |   |
|                                      | 2.7            | =                       | ) / BE        | 012            | =                       | )   B         |                            |                         |              | ر<br>د ر                  | =                       | 1/6m          |   |
| 1 1 1-Trichloroethane                |                | <b>=</b>                | )  <br> <br>  | · •            | > =                     | 7             | ,                          | =                       |              | )<br>-<br>-               | <b>&gt;</b> :           | 1/6m          |   |
| 1.1.2.2-Tetrachloroethane            | ŝέ             | > =                     | 1/6n          | ) <b>'</b> (   | > =                     | 1/60          | 95                         | <b>&gt;</b> =           | 1/6n         | ≎ ⊬                       | <b>&gt;</b> :           | 1/6n          |   |
| 1,1,2-Trichloroethane                | 0.6            | •                       | ) (65<br>     | 7.7            | >                       | ) (S)         | 200                        | <b>&gt;</b> =           | 1/60         | 2 4                       | <b>&gt;</b> :           | 1/6n          |   |
| 1,1-Dichloroethane                   | <b>.</b>       | _                       | 7/65          | ; ç            | =                       | )<br> <br>    | 200                        | > =                     | - / b        | ۲,                        | > =                     | 1/60          |   |
| 1,1-Dichloroethene                   | 5.7            | )                       | , (g)<br>1/60 | 6.0            | )                       | ) (6n         | , v                        | <b>&gt;</b> =           | )<br> <br>   | ۍ <u>د</u>                | > =                     | 1/60          |   |
| 1,2-Dichloroethane                   | 200            |                         | 1/gu          | 550            |                         | 1/6n          | 430                        | •                       | 1/67         | , ,                       | <b>-</b>                | 1/85          |   |
| 1,2-Dichloropropane                  | 7.0            |                         | 1/gn          | 7.3            |                         | )/bn          | ×100                       | _                       | )/6n         | \$                        | · =                     | ) (60<br> /B1 |   |
| 2-Butanone                           | <100           | ⊃                       | ng/t          | <100           | >                       | 1/gn          | <2000                      | · >                     | )/bn         | ×100                      | ) =                     | 1/60          |   |
| 2-Chloroethylvinyl ether             | <b>~10</b>     | >                       | ug/l          | <b>~10</b>     | >                       | ug/l          | <200                       | _                       | ng/l         | 410                       | ) >                     | 1/65          |   |
| 2-Hexanone                           | < <u>5</u> 0   | >                       | ng/f          | <b>&lt;</b> 50 | >                       | ug/l          | <1000                      | >                       | 1/gn         | <50                       | · >                     | 1/bn          |   |
| 4-Methyl-Z-Pentanone                 | <b>\$</b> 20   | >                       | ng/l          | <b>~</b> 20    | >                       | ng/l          | <1000                      | >                       | 1/gn         | <b>~</b> 20               | >                       | 1/gn          |   |
| Acetone                              | , 100<br>, 100 | >                       | 1/gn          | 100            | >                       | ug/l          | 230                        | 7                       | ng/l         | <b>~100</b>               | >                       | 1/gn          |   |
| Benzene<br>Bromoform                 | 4.4            | =                       | 1/gn          | 5.7            |                         | J/gn          | <100<br>                   | <b>-</b>                | ng/f         | ۍ                         | >                       | ng/l          |   |
| BI OHIOT OF HI                       | Ç 7            | <b>&gt;</b> :           | 1/gn          | Ç,             | <b>&gt;</b> :           | J/gn          | ×100                       | <b>-</b> :              | )/gn         | ζÇ,                       | >                       | l/gu          |   |
| Carbon Distriction                   | <u> </u>       | <b>&gt;</b> =           | 1/6n          | 0 v            | <b>&gt;</b> :           | ng/           | 2500                       | <b>&gt;</b> :           | 1/gn         | °10                       | <b>&gt;</b> :           | l/gu          |   |
| Carbon Tetrachloride                 | ôφ             | > =                     | )<br>(6)      | 2 <del>(</del> | <b>&gt;</b> =           | )/gn          | 95                         | <b>&gt;</b> =           | 1/6n         | ٥,4                       | <b>&gt;</b> :           | 1/gn          |   |
| Chlorobenzene                        | 220            | )                       | )/bn          | 240            | ,                       | ) (65<br>1/bn | 250                        | •                       | ) (S)        | ۍ <del>د</del>            | > =                     | 1/65          |   |
| Chlorodibromomethane                 | \$             | >                       | 1/gn          | ιĈ             | >                       | )/Bn          | -100<br>-100               | _                       | )/65<br>1/bn | , <sub>1</sub> 2          | =                       | 1/65          |   |
| Chloroethane                         | <b>~10</b>     | >                       | 1/gn          | <b>10</b>      | >                       | 1/gn          | <200                       | ·                       | )/bn         | <del>,</del> <del>,</del> | ) >                     | )/65<br>1/bn  |   |
| Chloroform                           | 4.8            | -                       | l/gn          | 4.8            | -                       | ng/l          | ×100                       | _                       | 1/bn         | ιÇ                        | _                       | 7/07          |   |
| Chloromethane                        | <b>~10</b>     | ⊃                       | l/gn          | <b>^10</b>     | >                       | ng/l          | <200                       | · >                     | J/BN         | 10<br>10                  | ) =                     | /a/           |   |
| Dichlorobromomethane                 | ۍ .            | <b>-</b>                | ug/l          | ۍ.             | >                       | ug/l          | <100                       | <b>-</b>                | 1/gn         | \$                        | )                       | 1/gn          |   |
| Ethylbenzene                         | ů,             | >                       | ng/l          | ₽,             | >                       | ng/f          | ~100<br>~100               | >                       | ug/l         | ئ                         | >                       | 1/6n          |   |
| Methylene Chloride                   | , <10          | <b>&gt;</b> :           | 1/gn          |                | <b>)</b>                | ng/l          | <200                       | <b>¬</b>                | ng/l         | <b>~10</b>                | >                       | 1/gn          |   |
| styrene<br>Tetrachloroethene         | C 4<br>7.4     | <b>-</b> -              | ) /Bn         | ¢.7            | <b>-</b>                | 1/6n          | , 100<br>100<br>100<br>100 | <b>&gt;</b> =           | /gn          | <b>ب</b> بر               | <b>&gt;</b> :           | 1/gn          |   |
|                                      |                | ı                       | ,             | :              | ,                       | ,             | ?                          | >                       | , /AD        | ,                         | >                       | ı /An         |   |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

|                                      | ts         | <br>                                                                                                                                                              |
|--------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Units      | /6n<br>/6n<br>/6n<br>/6n<br>/6n                                                                                                                                   |
| 2-63B<br>11600<br>) - 0              | QFR        | ככ ככככ כ                                                                                                                                                         |
| <b>∨ 4</b> 0                         | Result     | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                      |
|                                      | Units      | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n                                                                                                                      |
| 2-628<br>41665<br>) - 0              | QFR        | ככ ככככסכ                                                                                                                                                         |
| 0.80                                 | Result     | 7900<br>7900<br>7900<br>7900<br>7900<br>7100<br>7100<br>7100                                                                                                      |
|                                      | Units      | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n                                                                                                              |
| 2-62B<br>11602<br>) - 0              | QFR        | כםככככםד                                                                                                                                                          |
| 0 4 0                                | Result     | 1.5<br>8900<br>410<br>410<br>45<br>45<br>45<br>1700<br>140                                                                                                        |
|                                      | Units      | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n                                                                                                      |
| -62B<br>1601<br>- 0                  | QFR        | כםככככםר                                                                                                                                                          |
| 0 8 0                                | Result     | 1.3<br>8300<br>410<br>410<br>45<br>45<br>45<br>130                                                                                                                |
| Well/Boring:<br>Sample ID:<br>Depth: | Parameters | Toluene<br>Trichloroethene<br>Vinyl Acetate<br>Vinyl Chloride<br>Xylenes (total)<br>cis 1,3 Dichloropropene<br>cis-1,2-Dichloroethene<br>trans 1,3-Dichloroethene |
|                                      | Par        | Trichlor<br>Vinyl Ac<br>Vinyl Ch<br>Xylenes<br>cis 1,3<br>cis-1,2-<br>trans 1,                                                                                    |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.</pre>

Analytical Coults at the FTA for WG Tinker Air Force Base

| Well/Boring:<br>Sample 1D:<br>Depth: | 0.40            | 2-648<br>A1603<br>0 - 0 |         | 2-<br>0 A1  | 2-658<br>A1604<br>0 - 0 |        |
|--------------------------------------|-----------------|-------------------------|---------|-------------|-------------------------|--------|
| Parameters                           | Resul t         | Q FR                    | Units   | Result      | QFR                     | Units  |
|                                      |                 |                         | Ι.      |             |                         |        |
| Alkalinity, litrimetric              | 280             |                         | mg/l as | 200         |                         | mg/las |
| Chemical Oxygen Demand               | <b>~</b> 25     | >                       | mg/l    | <b>~</b> 25 | _                       | mg/l   |
| Chloride by Ion Chrom.               | 34              |                         | mg/l    | 22          |                         | 1/60   |
| Nitrate and Nitrite                  | 3.8             |                         | J/BIII  | 5.6         |                         | 1/60   |
| Phenolics                            | <0.010          | >                       | mg/l    | <0.010      | >                       | J/Bm   |
| Silica                               | 4.3             |                         | mg/l    | 1           |                         | J/Bm   |
| Sulfate by Ion Chrom.                | 54              |                         | mg/l    | 37          |                         | mg/l   |
| Total Phosphorus                     | <0.10           | _                       | mg/l    | <0.10       | >                       | J/gm   |
| Aluminum                             | 1.4             |                         | mg/l    | 0.95        |                         | J/gm   |
| Arsenic - Graphite Furnace           | <0.010          | >                       | mg/l    | <0.010      | >                       | J/Em   |
| Barium                               | 0.23            |                         | mg/l    | 0.24        |                         | J/Bm   |
| Cadmium                              | <0.0050         | 3                       | mg/l    | <0.0050     | 3                       | )/Bm   |
| Calcium                              | 29              | Z                       | mg/l    | 80          | z                       | mg/l   |
| Chromium                             | <0.010          | 3                       | mg/l    | <0.010      | S                       | l/gm   |
| Chromium VI                          | <0.010          | >                       | mg/l    | <0.010      | >                       | mg/[   |
| Copper                               | <0.025          | 3                       | mg/l    | <0.025      | 3                       | mg/l   |
| Iron                                 | 2.0             |                         | mg/l    | 1.1         |                         |        |
| Lead - Graphite Furnace              | <0.0030         | >                       | mg/f    | <0.0030     | <b>-</b>                | mg/l   |
| Magnesium                            | 33              |                         | mg/l    | 52          |                         | mg/l   |
| Manganese                            | 0.048           | z                       | mg/l    | 0.065       | z                       | mg/l   |
| Mercury                              | <0.00020        | ⊃                       | mg/f    | <0.00020    | >                       | mg/l   |
| Nickel                               | <0.040          | 3                       | mg/f    | <0.040      | 3                       | mg/l   |
| Potassium                            | <b>5.</b> 0     | <b>-</b>                | mg/l    | 1.7         |                         | mg/l   |
| Selenium                             | .0°<br>0.10     | 3                       | mg/l    | <0.10       | 3                       | mg/l   |
| Silver                               | <0.010          | 3                       | mg/l    | <0.010      | 3                       | 1/6m   |
| Sodium                               | 95              |                         | mg/l    | 43          |                         | J/gm   |
| Zinc                                 | <0.020          | 3                       | mg/l    | <0.020      | š                       | mg/l   |
| 1,2,4-Trichlorobenzene               | <b>~1</b> 0     | >                       | l/gn    | <b>~10</b>  | <b>-</b>                | l/gu   |
| 5                                    | <b>~</b> 10     | >                       | ug/l    | <b>~10</b>  | >                       | ug/l   |
| 1,3-Dichlorobenzene                  | <del>,</del> 10 | <b>&gt;</b> :           | ug/l    | <b>~10</b>  | <b>-</b>                | ng/f   |
| ',4-Dichlorobenzene                  | <10             | >                       | ng/l    | <10         | >                       | ug/l   |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

Analytical ...sults at the FTA for WG Tinker Air Force Base

|                            | Sample ID:<br>Depth: | A1603<br>0 - 0 |          | <b>V &amp; O</b> | 2-658<br>A1604<br>0 - 0 |                  |
|----------------------------|----------------------|----------------|----------|------------------|-------------------------|------------------|
| Parameters                 | Result               | t OFR          | Units    | Result           | OFR<br>R                | Units            |
| 4.5-Trichlorophenol        | <10                  | 5              | 1/60     | -10<br>-10       | =                       | 1/07             |
| 4.6-Trichlorophenol        | <10                  | =              | 1/01     | Ç                | -                       | /65              |
| 4-Dichlorophenol           | \$ <b>.</b>          | =              | 7/65     | 2 5              | =                       | ) (B)            |
| / Dischalphonel            | 7 7                  | o =            | ) (S)    | 7 5              | > :                     | )<br>60          |
| 4-Dimerny (pilenot         | )<br>(               | o :            | 1/gn     | <u> </u>         | <b>&gt;</b> :           | ) j              |
| 4-Dinitrophenol            | <b>9</b> ;           | <b>-</b>       | ) din    | Ç:               | <b>-</b>                | 1/gn             |
| 4-Dinitrotoluene           | 01>                  | >              | l/gn     | <b>~10</b>       | >                       | 1/gn             |
| 2,6-Dinitrotoluene         | <10                  | ⊃              | l/gu     | <b>~</b> 10      | >                       | 1/gn             |
| 2-Chloronaphthalene        | 10                   | >              | 1/6n     | <del>,</del>     | _                       | 1/bn             |
| -Chlorophenol              | <b>\$</b>            | <b>-</b>       | 1/gn     | <del>\$</del>    | >                       | 1/bn             |
| 2-Methylnaphthalene        | 10                   | ⊃              | 1/bn     | <b>~10</b>       | >                       | 1/85             |
| 2-Methylphenol             | <b>1</b> 0           | <b>-</b>       | J/gu     | ^ <b>1</b> 0     | _                       | -<br>-<br>-<br>- |
| -Nitroaniline              | \$                   | <b>-</b>       | ng/l     | \$               | <b>¬</b>                | - S              |
| -Nitrophenol               | <del>1</del> 0       | <b>-</b>       | 1/gn     | <del>1</del> 0   | >                       | 1/gn             |
| 3'-Dichlorobenzidine       | <b>~10</b>           | ⊃              | ug/l     | <b>1</b> 0       | >                       | J/gn             |
| 3-Nitroaniline             | \$                   | <b>-</b>       | ug/l     | <b>&lt;</b> 25   | >                       | J/gn             |
| 6-Dinitro-2-methylphenol   | <b>\$</b>            | ⊃              | ug/l     | <b>&lt;</b> 52   | >                       | ug/l             |
| 4-Bromophenyl-phenylether  | <b>~10</b>           | >              | ng/f     | <b>~10</b>       | _                       | J/gn             |
| 4-Chloro-3-methylphenol    | <b>1</b> 0           | >              | ug/l     | <b>5</b>         | >                       | 1/Bn             |
| 4-Chloroaniline            | °10                  | >              | ug/l     | <b>~</b> 10      | >                       | J/gn             |
| 4-Chlorophenyl-phenylether | <b>~10</b>           | <b>&gt;</b>    | ng/l     | <b>~10</b>       | >                       | J/gn             |
| 4-Methylphenol             | <b>\$</b>            | <b>&gt;</b>    | ug/l     | <b>1</b> 0       | >                       | 1/gn             |
| 4-Nitroaniline             | <b>1</b> 0           | >              | ug/l     | <del>\$</del>    | >                       | 1/6n             |
| 4-Nitrophenol              | <b>4</b> 25          | <b>-</b>       | 1/gn     | <b>&lt;</b> 25   | >                       | 1/6n             |
| Acenaphthene               | <del>1</del> 0       | >              | 1/gn     | <b>1</b> 0       | _                       | l/gu             |
| Acenaphthylene             | <del>1</del> 0       | ⊃              | 1/gn     | <b>~</b> 10      | _                       | l/bn             |
| Anthracene                 | ×10                  | <b>¬</b>       | 1/60     | <b>~10</b>       | _                       | 1/60             |
| Benzo(a)anthracene         | <10                  | _              | 1/80     | <b>~</b> 10      | =                       | //07             |
| Benzo(a)pyrene             | ×10                  | >              | 1/60     | 70               | _                       | 1/8/1            |
| Benzo(b)fluoranthene       | <10                  | =              | 1/00     | <b>1</b> 0       | =                       | //27             |
| Renzola h i berylene       | <10                  | =              | /61      | <u> </u>         | =                       | ) (ES            |
|                            |                      | • =            | )<br>(6) | , ,              | <b>)</b> :              | )<br>S           |
| Senzo(K)T(Uoranthene       | Ξ                    | =              | - 20     | Ξ                | -                       |                  |

Analytical hasults at the FTA for WG Tinker Air Force Base

| Benzoic Acid         Result         GFR         Units         Result         GFR         Un           Benzyl alcohol         <10         Ug/l         <10         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Well/Boring:<br>Sample ID:<br>Depth: |                | 2-64B<br>A1603<br>0 - 0 |        | 0 8 0          | 2-65B<br>A1604<br>0 - 0 |       |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|-------------------------|--------|----------------|-------------------------|-------|---|
| 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Parameters                           | Result         | QFR                     | Units  | Result         | QFR                     | Units |   |
| 400 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7:04 C                               | ,              | П                       | 1, 201 | 710            | Ξ                       | 1, 11 | ĺ |
| 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benzole Acid                         | 0.5            | <b>ɔ</b> :              | 1/6n   | 2;             | <b>&gt;</b> :           | ) Son |   |
| \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzyl alconol                       | <b>~10</b>     | >                       | ۱/gn   | <b>~</b> 10    | >                       | )/gn  |   |
| 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Butylbenzylphthalate                 | <b>~</b> 10    | >                       | l/gn   | <b>1</b> 0     | <b>¬</b>                | 1/6n  |   |
| 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chrysene                             | <b>~10</b>     | >                       | 1/6n   | <del>1</del> 0 | _                       | 1/6n  |   |
| 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Di-n-butylphthalate                  | <10            | >                       | 1/bn   | <10            | _                       | 1/80  |   |
| 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Di-n-octylphthalate                  | <10            | >                       | 1/6n   | ×10            | )                       | 1/60  |   |
| \$\frac{40}{40}\$ \$\frac{40}{40} | Dibenzo(a,h)anthracene               | <b>~10</b>     | >                       | 1/6n   | <10            | ⊃                       | 1/60  |   |
| <pre> </pre> <pre> <pre> </pre>  </pre> <pre>   <pre> </pre>  <pre> </pre> <pre> </pre>  <pre> </pre>  <pre> </pre>  <pre> </pre>  <pre> </pre>  <pre> </pre>  <pre> </pre>  <pre> </pre>  <pre> </pre>  <pre> </pre>  <pre> </pre>  <pre>   <pre>  <pre>   <pre>   <pre>   &lt;</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>                                                                                                                                                                                                                          | Dibenzofuran                         | <10            | >                       | 1/6n   | <10            | ⊃                       | 1/60  |   |
| \$\frac{410}{410}\$ \$\frac{410}{                             | Diethylphthalate                     | <b>~10</b>     | >                       | J/Bn   | <b>~10</b>     | <b>-</b>                | 1/6n  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dimethylphthalate                    | <b>~10</b>     | >                       | J/Bn   | <b>1</b> 0     | _                       | 1/6n  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fluoranthene                         | <b>~10</b>     | >                       | J/gn   | <b>1</b> 0     | >                       | J/Bn  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fluorene                             | <b>~10</b>     | >                       | l/gn   | <b>~10</b>     | >                       | 1/6n  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hexachlorobenzene                    | <b>~10</b>     | >                       | 1/gn   | <b>~</b> 10    | >                       | 1/6n  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hexachlorobutadiene                  | <b>~10</b>     | >                       | l/gn   | <b>1</b> 0     | ⊃                       | 1/6n  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Hexachlorocyclopentadiene</b>     | <b>~10</b>     | >                       | l/gn   | <b>~10</b>     | >                       | 1/gn  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hexachloroethane                     | <b>~10</b>     | >                       | ng/l   | <b>~10</b>     | _                       | 1/gn  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Indeno(1,2,3-cd)pyrene               | <b>~10</b>     | >                       | 1/gn   | <b>~10</b>     | >                       | 1/gn  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Isophorone                           | <b>~</b> 10    | >                       | ng/l   | <b>~</b> 10    | >                       | 1/6n  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N-Nitroso-di-n-propylamine           | <b>1</b> 0     | >                       | 1/gn   | <b>~10</b>     | _                       | 1/gn  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N-Nitrosodiphenylamine               | <b>~10</b>     | >                       | ng/f   | <b>~10</b>     | ⊃                       | 1/gn  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Naphthalene                          | <del>1</del> 0 | >                       | ng/l   | <b>~10</b>     | >                       | 1/gn  |   |
| <pre>&lt;25</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nitrobenzene                         | <del>1</del> 0 | >                       | ng/l   | <del>,</del>   | >                       | 1/6n  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pentachlorophenol                    | <b>&lt;</b> 52 | >                       | ug/l   | <b>4</b> 25    | ⊃                       | 1/6n  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phenanthrene                         | <b>~</b> 10    | >                       | ug/l   | <b>~10</b>     | >                       | 1/6n  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phenol                               | <b>~10</b>     | >                       | l/gn   | <b>~10</b>     | >                       | 1/6n  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pyrene                               | <b>~</b> 10    | >                       | ug/l   | <b>1</b> 0     | >                       | 1/6n  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bis(2-Chloroethoxy)methane           | <b>~10</b>     | >                       | ug/l   | <b>^</b>       | >                       | J/gn  |   |
| <pre>&lt;10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bis(2-Chloroethyl)ether              | <b>1</b> 0     | >                       | ng/l   | <b>~</b> 10    | _                       | 1/6n  |   |
| 450 mg/l 650 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bis(2-Chloroisopropyl)ethe           | <b>~10</b>     | <b>-</b> :              | ug/l   | <del>,</del>   | <b>-</b>                | 1/6n  |   |
| USSOIVED SOLIDS DESCRIPTION TO THE DESCRIPTION OF THE PROPERTY                                                                                                                                                                                                                                                                | bis(2-Ethylhexyl)phthalate           | 01°            | >                       | 1/gn   | ~10<br>.75     | >                       | l/gn  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 450            |                         | J/gm   | 000            |                         | mg/l  |   |

Analytical kesults at the FTA for WG Tinker Air Force Base

|                                      |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|--------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                      | Units      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 2-658<br>A1604<br>0 - 0              | QFR<br>R   | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 0 8 0                                | Result     | \$.7.3.2.888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                      | Units      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 2-64B<br>A1603<br>0 - 0              | QFR        | 2 2222272222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0 4 0                                | Result     | 6.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Well/Boring:<br>Sample ID:<br>Depth: | Parameters | Total Kjeldahl Nitrogen Total Suspended Solids Total Suspended Solids The IR 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butanone 2-Butanone 2-Chloroethylvinyl ether 2-Hexanone 4-Methyl-2-Pentanone Acetone Benzene Benzene Carbon Disulfide Carbon Disulfide Carbon Disulfide Carbon Disulfide Chlorobenzene Chlorobenzene Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloroethane Chloromethane Chloroethane Ethylbenzene Methylene |  |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.</pre>

| 3                         | Well/Boring:<br>Sample ID:<br>Depth: | N & O       | 2-64B<br>A1603<br>0 - 0 |       | ~~0        | 2-65B<br>A1604<br>0 - 0 |        |   |
|---------------------------|--------------------------------------|-------------|-------------------------|-------|------------|-------------------------|--------|---|
| Parameters                |                                      | Result      | OFR                     | Units | Result     | OFR                     | Units  |   |
| Toluene                   |                                      | ئ<br>د      | _                       | 1/60  | \$         | ם                       | 1/60   | 1 |
| Trichloroethene           |                                      | %           |                         | 1/6n  | 8          | •                       | -/s    |   |
| Vinyl Acetate             |                                      | <b>~10</b>  | ⊃                       | 1/6n  | <b>~10</b> | _                       | 1/60   |   |
| Vinyl Chloride            |                                      | <b>~1</b> 0 | _                       | 1/gn  | <b>1</b> 0 | _                       | J/g/l  |   |
| Xylenes (total)           |                                      | ئ           | >                       | 1/gn  | ŵ          | _                       | 1/60   |   |
| cis 1,3 Dichloropropene   |                                      | ئ           | <b>-</b>                | 1/gn  | ŵ          | _                       | 1/60   |   |
| cis-1,2-Dichloroethene    |                                      | 39          |                         | 1/6n  | 54         | ,                       | - / bn |   |
| trans 1,3-Dichloropropene | 9                                    | ÷           | >                       | 1/6n  | ŵ          | _                       | 1/80   |   |
| trans-1,2-Dichloroethene  |                                      | 3.5         | 7                       | ug/l  | ₽          | · >                     | ng/l   |   |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = qualifier
Analytical data has not been validated.

| Well/Boring:<br>Sample ID:<br>Depth: | -2-<br>0        | -62A<br>1648<br>- 0 |              | 0.40             | 2-63A<br>11607<br>1 - 0 |           | 2.<br>A1    | 2-64A<br>A1608<br>0 - 0 |          | 0 4 0             | 2-65A<br>A1609<br>0 - 0 |           |
|--------------------------------------|-----------------|---------------------|--------------|------------------|-------------------------|-----------|-------------|-------------------------|----------|-------------------|-------------------------|-----------|
| Parameters                           | Resul t         | QFR.                | Units        | Result           | QFR                     | Units     | Result      | QFR                     | Units    | Result            | QFR.                    | Units     |
| Alkalinity, Titrimetric              | 390             |                     | ma/!         | 380              |                         | Jan   Jan | 350         |                         | 96  / bm | 100               |                         |           |
| Chemical Oxygen Demand               | <b>&lt;25</b>   | <b>¬</b>            | J/gm         | <b>425</b>       | >                       | 2 )/gm    | <b>2</b> 25 | <b>-</b>                |          | \$                | )                       | SB 1/BIII |
| Chloride by Ion Chrom.               | 9.9             |                     | )/gm         | 17               |                         | mg/L      | 56          |                         | l/gm     | 54                |                         | mg/l      |
| Nicrate and Nicrite                  | 0.0<br>0.0      | =                   | J/gm         | 5.5              | :                       | J/gm      | 1:1         |                         | J/Bm     | 0.78              |                         | mg/f      |
| rnenolics<br>Silica                  | 010.05          | >                   | J/gm         | <0.010           | >                       | mg/l      | <0.010      | >                       | mg/l     | <0.010            | >                       | mg/l      |
| Sulfate by Ion Chrom.                | - 2             |                     | 1/6m         | 8.8              | 3                       | 1/6m      | 8.6         | =                       | J/gm     | £ 6               | 3                       | mg/l      |
| Total Phosphorus                     | <b>0</b> 10     | =                   | ) / CIII     | , c              | 2 2                     | ) / E     | ÷ <         | z =                     | 1/6III   | 4 4               | 2 :                     | 1/6E      |
| Aluminum                             | . r             | )                   | ) / E        | 32.13            | E 2                     | ) / Bill  | 0.00        | 5 =                     | 1/6m     | , c               | <b>z</b> :              | 1/6m      |
| Arsenic - Graphite Furnace           | <0.010          | <b>¬</b>            | )/6III       | 0.018            | 2                       | ) / E     | <0.010      | <b>z</b> =              | 1/6      | 6.0<br>010<br>010 | z =                     | )/BIII    |
| Barium                               | 0.56            |                     | J/Bm         | 3.7              |                         | )/bll     | 0.56        | ,                       | ) /BIII  | 02.00             | =                       | ) / DE    |
| Cadmium                              | <0.0050         | >                   | mg/l         | 9900.0           |                         | mg/l      | <0.0050     | >                       | )/6m     | <0.0050           | ) >                     | )/6III    |
| Calcium                              | 68              |                     | mg/l         | 9                |                         | ոց/լ      | 61          |                         | J/gm     | 36                |                         | l/gm      |
| Chromium                             | 0.021           | •                   | mg/l         | 0.12             | Z:                      | mg/l      | 0.075       | z                       | mg/l     | 0.053             | z                       | mg/l      |
| Corrollum VI                         | 0.070           | <b>&gt;</b> :       | mg/l         | <0.010           | >                       | J/Gm      | <0.010      | <b>&gt;</b>             | J/gm     | <0.010            | >                       | mg/l      |
|                                      | <0.02<br>1 1    | -                   | ) / GE       | 0.10             |                         | )/Bm      | <0.025      | <b>-</b>                | 1/gm     | <0.025            | <b>-</b>                | mg/l      |
| lead - Graphite Furbace              | 02UU U>         | =                   | )  <br>      | 7,0              |                         | ) ju      | 0.0         |                         | 1/6E     | 4.5               | =                       | ) /BII    |
| Magnesium                            | 45              | •                   | ) / BIII     | 57               |                         | ) / E     | 35          |                         | ) / SEE  | 10.0030           | >                       | 1/6m      |
| Manganese                            | 0.016           |                     | mg/l         | 1.2              | Z                       | J/Em      | 0.12        | z                       | )/EII    | 0.067             | z                       | ) / E     |
| Mercury                              | <0.00020        | <b>-</b>            | mg/l         | <0.00020         | _                       | mg/l      | <0.00020    | _                       | mg/l     | <0.00020          | _                       | ]/bш      |
| Nickel                               | <0.040<br>-     | <b>&gt;</b> :       | mg/l         | 0.079            | z                       | mg/l      | 0.067       | z                       | mg/l     | <0.040            | 3                       | J/gm      |
| Potassium                            | 0.0             | <b>-</b> :          | mg/t         | 7.3              |                         | mg/l      | <b>5.</b> 0 | _                       | mg/l     | <5.0              | >                       | mg/l      |
| setenium                             | .0.010<br>0.010 | <b>-</b> :          | mg/t         | .0.10<br>        | 3                       | mg/l      | <0.10       | 3                       | mg/l     | <0.010            | 3                       | J/6m      |
| STIVE                                | 0.0.0           | >                   | mg/l         | <0.010<br>61.010 | >                       | mg/l      | <0.010      | <b>-</b>                | mg/l     | <0.010            | _                       | mg/l      |
| Sogium<br>Fire                       | τ <del>,</del>  | :                   | mg/t         | 3                |                         | mg/l      | 23          |                         | mg/l     | 22                |                         | mg/l      |
| 4.3 / Taithleatheans                 | 070.05          | <b>&gt;</b> :       | mg/l         | 0.10             | <b>z</b> :              | mg/l      | 0.021       | Z                       | mg/l     | 0.028             | z                       | mg/l      |
| 1,2,4-Irichlorobenzene               | 0 5             | <b>&gt;</b> :       | ) dn         | 01,              | <b>&gt;</b> :           | 1/gn      | °10         | <b>-</b>                | ng/l     | <b>~10</b>        | >                       | ng/l      |
| 1,2-Dichlorobenzene                  | 25              | <b>&gt;</b> =       | 1/6n         | 0 5              | <b>&gt;</b> :           | )/6n      | 010         | <b>&gt;</b> :           | 1/gn     | ,<br>10           | <b>&gt;</b> :           | )/gn      |
| 1.4-Dichlorobenzene                  | 200             | > =                 | 1/6n<br>1/6n | 25               | > =                     | 1/6n      | 25          | > =                     | 1/6n     | 5,4               | <b>&gt;</b> =           | 1/6n      |
|                                      | •               | •                   |              | <u>?</u>         | •                       | . 65      | 2           | •                       | - An     | 2                 | >                       | - /6n     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Well/Boring:<br>Sample ID:<br>Depth: | .9.<br>1.0.                                                          | -62A<br>1648<br>- 0 |                                         | .,,,                                                                 | 2-63A<br>A1607<br>0 - 0   |       | N & D                                                                | 2-64A<br>A1608<br>0 - 0 |                                         | ONO                                                             | 2-65A<br>A1609<br>0 - 0 |                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------|---------------------|-----------------------------------------|----------------------------------------------------------------------|---------------------------|-------|----------------------------------------------------------------------|-------------------------|-----------------------------------------|-----------------------------------------------------------------|-------------------------|-----------------------------------------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      | Result                                                               | QFR                 | Units                                   | Result                                                               | QFR                       | Units | Result                                                               | Q FR                    | Units                                   | Result                                                          | OFR                     | Units                                   |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dinflorophenol<br>2,4-Dinfrophenol<br>2,4-Dinfrophenol<br>2,6-Dinfroplene<br>2,6-Dinfrophenol<br>2-Chlorophenol<br>2-Chlorophenol<br>2-Methylhaphthalene<br>2-Nitrophenol<br>3,3'-Dichlorobenzidine<br>3,3'-Dichlorobenzidine<br>4-Bromophenyl-phenylether<br>4,6-Dinfro-2-methylphenol<br>4,6-Dinfro-3-methylphenol<br>4-Chlorophenyl-phenylether<br>4-Chlorophenyl-phenylether<br>4-Chlorophenyl-phenylether<br>4-Chlorophenyl-phenylether<br>4-Chlorophenyl-phenylether<br>4-Chlorophenyl-phenylether<br>8-Chlorophenyl-phenylether<br>8-Chlorophenyl-phenylether<br>Achaphthene<br>Achaphthene<br>Achaphthene<br>Benzo(a) phyrene<br>Benzo(a) fluoranthene<br>Benzo(a), i)perylene<br>Benzo(a), i)perylene | enol<br>her<br>ther                  | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |                     | 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 2222222222222222222222222 |       | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |                         | 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n | \$\$\$\$%\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |                         | 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well/Boring:<br>Sample ID:<br>Depth: | 0 <b>Y</b> is                                                                | -62A<br>1648<br>- 0 |                                                              | 0 4 8                                                              | 2-63A<br>A1607<br>0 - 0          |                                                              | NAO                                                                    | 2-64A<br>A1608<br>0 - 0 |                                                              | -2.40<br>0.42                       | 2-65A<br>A1609<br>0 - 0 |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|-------------------------------------|-------------------------|-------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | Result                                                                       | QFR                 | Units                                                        | Result                                                             | QFR                              | Units                                                        | Result                                                                 | OFR                     | Units                                                        | Result                              | Q FR                    | Units |
| Benzoic Acid Benzyl alcohol Butylbenzylphthalate Chrysene Di-n-butylphthalate Di-n-octylphthalate Dibenzofuran Diethylphthalate Dibenzofuran Diethylphthalate Dimethylphthalate Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorophenol N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine N-Nitrobenzene Pentachlorophenol Phenanthrene Phenol Phenol Phenanthrene Phenol Phenanthrene Phenol Phenanthrene Phenol Phenanthrene Phenol | ine ine ine ithe ate                 | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |                     | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ | 1/6m<br>1/6m<br>1/6m<br>1/6m<br>1/6m<br>1/6m<br>1/6m<br>1/6m | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |                         | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n | 66666666666666666666666666666666666 |                         |       |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
 that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.</pre>

| Well/Boring:<br>Sample 1D:<br>Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | 2-62A<br>A1648<br>0 - 0 |                                                              | 27                                       | 2-63A<br>41607<br>0 - 0                |                                         | 2<br>A<br>0                    | 2-64A<br>41608<br>0 - 0 |                                         | 0 42                                        | 2-65A<br>A1609<br>0 - 0                |                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|--------------------------------------------------------------|------------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------|-------------------------|-----------------------------------------|---------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Result                                          | OFR                     | Units                                                        | Result                                   | OFR                                    | Units                                   | Result                         | OFR                     | Units                                   | Result                                      | QFR                                    | Units                                                        |
| Total Kjeldahl Nitrogen Total Organic Carbon Total Suspended Solids TPH - IR 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2-Butannone 2-Butannone 2-Butannone 3-Butannone 4-Methyl-2-Pentannone 6-Chloroethane 6-Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroethane Chloroethane Chloroethane Chloromethane Chloromethane Ethylbenzene Ethylbenzene Ethylbenzene Methylene Chloride Styrene | \$\cdot \pi |                         | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n | 6.1.50.000000000000000000000000000000000 | ×55 5555555555555555555555555555555555 | 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n | 6-186.<br>8.<br>8.<br>8.<br>8. | ×5                      | 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n | 2.1.5.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 | z>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n |
| ופרו מכוויכו כריויכויכ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                               | )                       |                                                              | ,                                        | ,                                      | ,                                       |                                | )                       | ,                                       |                                             |                                        | •                                                            |

B = Analyte was also found in sample blank
 E = Concentration exceeds instrument calibration range for that specific analysis
 J = Concentration is an estimated value
 N = Sample is outside of Matrix Spike QC limit
 < = Not detected</li>
 QFR = Qualifier
 Analytical data has not been validated.

|                                                                                                                                              | Well/Boring:<br>Sample ID:<br>Depth: | Ċ¥Ο                     | -62A<br>1648<br>- 0 |                                              | 0 \$ 0             | 2-63A<br>11607<br>0 - 0 |                                                              | N <b>4</b> 0               | 2-64A<br>41608<br>0 - 0 |                                                              | 0 \$ 0                              | 2-65A<br>41609<br>0 - 0 |                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------|---------------------|----------------------------------------------|--------------------|-------------------------|--------------------------------------------------------------|----------------------------|-------------------------|--------------------------------------------------------------|-------------------------------------|-------------------------|--------------------------------------|
| Parameters                                                                                                                                   |                                      | Result                  | QFR                 | Units                                        | Result             | a<br>R                  | Units                                                        | Result                     | OFR                     | Units                                                        | Result                              | QFR                     | Units                                |
| Toluene Trichloroethene Vinyl Acetate Vinyl Chloride Xylenes (total) cis 1,3 Dichloropropene cis-1,2-Dichloroethene trans 1,3-Dichloroethene | ne<br>sene<br>ine                    | \$ <del>7</del> 5668888 | כככככככיכ           | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n | \$\$\$\$\$\$\$\$\$ | 2222222                 | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n | <b>გბ</b> ტტგ <b>ბ</b> ბბბ | 2222222                 | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n | \$\$\frac{2}{5}\$\$\$\$\$\$\$\$\$\$ | 2222222                 | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n |

## ANALYTICAL RESULTS QUALITY CONTROL - SOIL

Analytical QC results at the FTA for SQ Tinker Air Force Base

| Well/Boring:<br>Sample 1D:<br>Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | 2-62A<br>A1561-MS<br>2 - 3 |                                        | A15                                                                | 2-62A<br>A1561-MSD<br>2 - 3 |                                                    | 2-<br>A15                                            | 2-63A<br>A1555-MS<br>2 - 3 |                                        | A15                                                              | 2-63A<br>A1555-MSD<br>2 - 3 |                 | A11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-64A<br>A1548-MS<br>2 - 3 |                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------|----------------------------------------|--------------------------------------------------------------------|-----------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------|----------------------------------------|------------------------------------------------------------------|-----------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result                                                       | QFR                        | Units                                  | Result                                                             | OFR                         | Units                                              | Result                                               | QFR                        | Units                                  | Result                                                           | Q.F.R                       | Units           | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QFR                        | Units                                  |
| Aluminum Arsenic - Graphite Furnace Barium Beryllium Cadmium Chromium Chromium VI Copper Iron Lead - Graphite Furnace Mercury Nickel Silver Zinc 1,2,4-Trichlorobenzene 2,4,6-Tribromophenol 2,4-Dinitrotoluene 2,4,6-Tribromophenol 2,4-Dinitrotoluene 2,5-Luorobhenol 2,4-Dinitrotoluene 2,6-Nitrophenol 2-Fluorobhenol 2-Fluorobhenol 2-Fluorobhenol 2-Fluorobhenol 2-Fluorobhenol 2-Fluorophenol 2-Fluorobhenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 2-Fluorophenol 3-Fluorophenol 4-Nitrobenzene-D5 8-Freenenenenenenenenenenenenenenenenenene | 47.75<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 |                            | ************************************** | 7,7<br>1,7<br>1,7<br>1,7<br>1,7<br>1,7<br>1,7<br>1,7<br>1,7<br>1,7 |                             | **************************************             | 951<br>90<br>90<br>90<br>90<br>110<br>88<br>90<br>90 |                            | ************************************** | 1406<br>67<br>67<br>88<br>88<br>88<br>88<br>73<br>73<br>73<br>73 |                             | %%%%%%%%%%%<br> | 1371<br>100<br>100<br>100<br>101<br>101<br>101<br>101<br>100<br>101<br>100<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>1 |                            | ************************************** |
| Pyrene<br>Terphenyl-D14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 287                                                          |                            | %%<br>%<br>%<br>%<br>%<br>%<br>%       | 65<br>60<br>60<br>60                                               |                             | 7. 7. 7. 7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | •                                                    |                            |                                        |                                                                  |                             |                 | 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | %rec<br>%rec<br>%rec                   |

B = Analyte was also found in sample blank
 E = Concentration exceeds instrument calibration range for that specific analysis
 J = Concentration is an estimated value
 N = Sample is outside of Matrix Spike QC limit
 N = Sample as not been validated.

Analytical QC results at the FTA for SQ Tinker Air Force Base

| Jek<br>S                                                                                                       | Well/Boring:<br>Sample ID:<br>Depth: | 2 A 1     | 2-62A<br>A1561-MS<br>2 - 3 |                    | <b>A1</b> | 2-62A<br>A1561-MSD<br>2 - 3 | _                  | <u>«</u>  | 2-63A<br>A1555-MS<br>2 - 3 |              | A         | 2-63A<br>A1555-MSD<br>2 - 3 |              | A1<br>A2  | 2-64A<br>A1548-MS<br>2 - 3 |              |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|----------------------------|--------------------|-----------|-----------------------------|--------------------|-----------|----------------------------|--------------|-----------|-----------------------------|--------------|-----------|----------------------------|--------------|
| Parameters                                                                                                     |                                      | Resul t   | OFR                        | Units              | Result    | OFR                         | Units              | Result    | OFR                        | Units        | Result    | OFR.                        | Units        | Result    | QFR                        | Units        |
| 1,1-Trichloroethane<br>1,2,2-Tetrachloroethane<br>1,2-Trichloroethane                                          |                                      |           |                            |                    |           |                             |                    |           |                            |              |           |                             |              |           |                            |              |
| ,1-Dichloroethane<br>,1-Dichloroethene                                                                         |                                      | 101       |                            | %rec               | 101       |                             | %rec               | 103       |                            | %rec         | 101       |                             | %rec         | 103       |                            | %rec         |
| 1,2-Dichloroethane-D4<br>1,2-Dichloropropane<br>Butanone                                                       | δ.                                   | &         |                            | %rec               | 101       |                             | %<br>nec           | 106       |                            | %rec         | 108       |                             | %rec         | 105       |                            | %rec         |
| Z-Chloroethylvinyl ether<br>Z-Hexanone<br>4-Methyl-Z-Pentanone                                                 |                                      |           |                            |                    | <50       | <b>-</b>                    | %rec               |           |                            |              |           |                             |              |           |                            |              |
| Acetone<br>Benzene<br>Bromofuorobenzene<br>Bromoform<br>Bromomethane<br>Carbon Disulfide                       | 93                                   | m /-      |                            | %<br>%rec<br>c     | 92        |                             | %rec<br>%rec       | 96        |                            | %rec<br>%rec | 66<br>66  |                             | %rec<br>%rec | 102<br>98 |                            | %rec<br>%rec |
| Charbon letrachioride Chlorobenzene Chloroethane Chloromethane Dichloromethane Ethylbenzene Methylene Chloride | %                                    | 4         |                            | ۲<br>د<br>د        | 53        |                             | %<br>Nec           | %         |                            | %<br>o       | 86        |                             | %rec         | 96        |                            | %rec         |
| retrachloroethene<br>Toluene<br>Toluene-D8                                                                     | 6°                                   | 94<br>102 |                            | %<br>%<br>%<br>rec | 94<br>101 |                             | %<br>%<br>%<br>rec | 96<br>102 |                            | %rec<br>%rec | 98<br>106 |                             | %rec<br>%rec | 98<br>103 |                            | %rec<br>%rec |
|                                                                                                                |                                      |           |                            |                    |           |                             |                    |           |                            |              |           |                             |              |           |                            |              |

Analytical QC results at the FTA for SQ Tinker Air Force Base

|                                                                                                                                       | Well/Boring:<br>Sample ID:<br>Depth: | W.               | 2-62A<br>A1561-MS<br>2 - 3 |              | 2 TA<br>2 TC | 2-62A<br>A1561-MSD<br>2 - 3 |             | A12              | 2-63A<br>A1555-MS<br>2 - 3 |                 | A15              | 2-63A<br>A1555-MSD<br>2 - 3 | _     | ,4 <b>,</b> 4 | 2-64A<br>A1548-MS<br>2 - 3 |       |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------|----------------------------|--------------|--------------|-----------------------------|-------------|------------------|----------------------------|-----------------|------------------|-----------------------------|-------|---------------|----------------------------|-------|
| Parameters                                                                                                                            |                                      | Result QFR Units | QFR<br>R                   | Units        | Result afR   | QFR                         | Units       | Result QFR Units | QFR                        | Units           | Result afR Units | a F.R                       | Units | Result        | QFR                        | Units |
| Trichloroethene Vinyl Acetate Vinyl Chloride Xylenes (total) cis 1,3 Dichloropropene cis-1,2-Dichloroethene trans 1,3-Dichloropropene | ne<br>pene<br>ene<br>ene             | &                |                            | %<br>76<br>C | 62           |                             | ×<br>5<br>6 | 82               |                            | <b>%</b><br>Tec | 82               |                             | %rec  | 2             |                            | %rec  |

| Well/Boring:<br>Sample ID:<br>Depth: |            | 2-64A<br>A1548-MSD<br>2 - 3 |            | 2.5<br>2.5 | 2-65A<br>A1540-MS<br>2.5 - 3.5 | ·             | A1     | 2-65A<br>A1540-MSD<br>2.5 - 3.5 |          | II.    | FIELDOC<br>A1547<br>0 - 0 |       |
|--------------------------------------|------------|-----------------------------|------------|------------|--------------------------------|---------------|--------|---------------------------------|----------|--------|---------------------------|-------|
| Parameters                           | Result     | QFR                         | Units      | Result     | QFR                            | Units         | Result | QFR                             | Units    | Result | QFR                       | Units |
| Aluminum                             | 1155       |                             | %rec       | 1296       |                                | %rec          | 1122   |                                 | 26.2     |        |                           |       |
| Arsenic - Graphite Furnace           | 8          |                             | %rec       | 116        |                                | %<br>%<br>Fec | 117    |                                 | 2 N      |        |                           |       |
| Barium                               | 1358       |                             | Xrec       | 338        |                                | %<br>2.00     | 12%    |                                 | 200      |        |                           |       |
| Beryllium                            | 89         |                             | z z<br>Sec | 87         |                                | . %<br>       | 87     |                                 | %<br>Fec |        |                           |       |
| Cadmium                              | 8          |                             | %rec       | 82         |                                | Xrec          | 82     |                                 | %rec     |        |                           |       |
| Chromium                             | 93         |                             | %rec       | 95         |                                | %rec          | %      |                                 | %rec     |        |                           |       |
| Chromium VI                          | 2          |                             | %rec       | 25         |                                | Xrec          | 26     |                                 | %rec     |        |                           |       |
| Copper                               | 8          |                             | %rec       | 87         |                                | %rec          | 87     |                                 | %rec     |        |                           |       |
| Iron                                 | 448        |                             | %rec       | 789        |                                | %rec          | 889    |                                 | %rec     |        |                           |       |
| Lead - Graphite Furnace              | 129        |                             | %rec       | 190        |                                | %rec          | 256    |                                 | %rec     |        |                           |       |
| Mercury                              | 110        |                             | %rec       | 110        |                                | %rec          | 120    |                                 | %rec     |        |                           |       |
| Nickel                               | 83         |                             | %rec       | 8          |                                | %rec          | 83     |                                 | %rec     |        |                           |       |
| Silver                               | 8          |                             | %rec       | 82         |                                | %rec          | 82     |                                 | %rec     |        |                           |       |
| ZINC                                 | 35         |                             | %rec       | 25         |                                | %rec          | 8      |                                 | %rec     |        |                           |       |
| 1,2,4-Trichlorobenzene               | <b>6</b> ; |                             | %rec       | 94         |                                | %rec          | 34     |                                 | %rec     |        |                           |       |
| 1,4-Dichlorobenzene                  | 2.         |                             | %rec       | 40         |                                | %rec          | 62     |                                 | %rec     |        |                           |       |
| 2,4,6-Tribromophenol                 | <b>6</b> 2 |                             | %rec       | 83         |                                | %rec          | ĸ      |                                 | %rec     |        |                           |       |
| 2,4-Dinitrotoluene                   | 21         |                             | %rec       | 70         |                                | %rec          | 36     |                                 | %rec     |        |                           |       |
| Z-Chlorophenol                       | <u> </u>   |                             | %rec       | 88         |                                | %rec          | 92     |                                 | %rec     |        |                           |       |
| Z-Fluorobiphenyl                     | \$ ;       |                             | %rec       | 101        |                                | %rec          | 82     |                                 | %rec     |        |                           |       |
| Z-Fluorophenol                       | <b>2</b> 5 |                             | Xrec       | 2          |                                | %rec          | 63     |                                 | %rec     |        |                           |       |
| 4-Chloro-3-methylphenol              | 2:         |                             | %rec       | 26         |                                | %rec          | 62     |                                 | %rec     |        |                           |       |
| 4-Nitrophenol                        | 9          |                             | %rec       | 22         |                                | %rec          | 26     |                                 | %rec     |        |                           |       |
| Acenaphthene                         | <b>2</b> 8 |                             | %rec       | 26         |                                | %rec          | 67     |                                 | %rec     |        |                           |       |
| N-Nitroso-di-n-propylamine           | 9/         |                             | %rec       | 52         |                                | %rec          | 39     |                                 | %rec     |        |                           |       |
| Nitrobenzene-D5                      | 8          |                             | %rec       | 8          |                                | %rec          | 89     |                                 | %rec     |        |                           |       |
| Pentachlorophenol                    | <b>6</b> ; |                             | %rec       | 80         |                                | %rec          | 63     |                                 | %rec     |        |                           |       |
| Phenol                               | <b>~</b> 1 |                             | %rec       | 9:         |                                | %rec          | 69     |                                 | %rec     |        |                           |       |
| Phenol -05                           | 21         |                             | %rec       | 81         |                                | %rec          | 2      |                                 | %rec     |        |                           |       |
| Pyrene                               | 8<br>1     |                             | %rec       | 45         |                                | %rec          | 43     |                                 | %rec     |        |                           |       |
| Terphenyl -D14                       | 7          |                             | %rec       | 80         |                                | %rec          | 92     |                                 | %rec     |        |                           |       |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

| 3                                                                                                            | Well/Boring:<br>Sample ID:<br>Depth: | 2-<br>A154 | 2-64A<br>A1548-MSD<br>2 - 3 |                                       | , * .      | 2-65A<br>A1540-MS<br>2.5 - 3.5 |                | A15        | 2-65A<br>A1540-MSD<br>2.5 - 3.5 |                            | I.P.                   | FIELDQC<br>A1547<br>0 - 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|-----------------------------|---------------------------------------|------------|--------------------------------|----------------|------------|---------------------------------|----------------------------|------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters                                                                                                   |                                      | Result     | OFR                         | Units                                 | Result     | 9.<br>8.                       | Units          | Result     | OF.R                            | Units                      | Result                 | af.R                      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,1,1-Trichloroethane<br>1,1,2,2-Tetrachloroethan<br>1,1,2-Trichloroethane                                   | a.                                   |            |                             |                                       |            |                                |                |            |                                 |                            | <b>δδ</b>              | >>=                       | 1/gu<br>1/gu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,1-Dichloroethane 1,1-Dichloroethene                                                                        |                                      | 106        |                             | %rec                                  | 95         |                                | %rec           | %          |                                 | %rec                       | ያ<br>የ                 |                           | ) (6n<br>1 / (6n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1,2-Dichloroethane-D4<br>1,2-Dichloropropane                                                                 |                                      | 104        |                             | %rec                                  | 105        |                                | %rec           | 107        |                                 | %rec                       | ა <u>ნ</u> ა           | <b>-</b> -                | ug/l<br>%rec<br>ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2-Butanone<br>2-Chloroethylvinyl ether<br>2-Hexanone<br>4-Methyl-2-Pentanone                                 |                                      |            |                             |                                       |            |                                |                |            |                                 |                            | <del>\$</del> 5 5 5 5  |                           | )/6n<br>1/6n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzene<br>Bromofluorobenzene<br>Bromoform<br>Bromomethane<br>Carbon Disulfide                               |                                      | 102<br>98  |                             | <b>%</b> %<br>7 %<br>6 C              | 104<br>93  |                                | %<br>%rec<br>% | 105<br>92  |                                 | <b>%</b> %<br>%rec<br>%rec | <del></del>            | בככ ככ                    | ug/1<br>wrec<br>ug/1<br>ug/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Carbon Tetrachloride<br>Chlorobenzene<br>Chlorodibromomethane<br>Chloroethane<br>Chloroform<br>Chloromethane |                                      | &          |                             | %rec                                  | 107        |                                | %<br>%<br>Tec  | 108        |                                 | %rec                       | ~~~ <del>,</del> 5~~5~ | ככככרככ                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ethylbenzene<br>Methylene Chloride<br>Styrene<br>Tetrachloroethene<br>Toluene<br>Toluene-D8                  |                                      | 101<br>105 |                             | % % % % % % % % % % % % % % % % % % % | 105<br>103 |                                | X<br>X<br>Tec  | 108<br>108 |                                 | %<br>%<br>%<br>%<br>%      | <b>δ</b> ξδδ <b>δδ</b> | ,,,,,,,                   | 1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000 |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

Analytical QC results at the FTA for SQ Tinker Air Force Base

|                                      | ţş               | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n                                                                                          |
|--------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Units            | 5 5 5 5 5 5                                                                                                                           |
| : IELDQC<br>A1547<br>0 - 0           | QFR              | 222222                                                                                                                                |
| I &                                  | Result QFR       | 2662222                                                                                                                               |
| 910                                  | Units            | %<br>0                                                                                                                                |
| 2-65A<br>41540-MSD<br>2.5 - 3.5      | OFR              |                                                                                                                                       |
| 2.5<br>2.5                           | Result QFR Units | 87                                                                                                                                    |
| សិស                                  | Result QFR Units | <b>%</b>                                                                                                                              |
| 2-65A<br>A1540-MS<br>2.5 - 3.5       | QFR              |                                                                                                                                       |
| , A                                  | Result           | 85                                                                                                                                    |
| ۵                                    | Units            | %<br>Fec                                                                                                                              |
| 2-64A<br>1548-MSD<br>2 - 3           | QFR              |                                                                                                                                       |
| ∢                                    | Result           | 78                                                                                                                                    |
| Well/Boring:<br>Sample ID:<br>Depth: |                  | pene<br>ene<br>ropene<br>thene                                                                                                        |
|                                      | Parameters       | Trichloroethene Vinyl Acetate Vinyl Chloride Xylenes (total) cis 1,3 Dichloropropene cis-1,2-Dichloroethene trans 1,3-Dichloropropene |

# ANALYTICAL RESULTS QUALITY CONTROL - WATER

Analytical QC results at the FTA for WQ
Tinker Air Force Base

| Well/Boring:<br>Sample ID:<br>Depth: |            | 2-62A<br>A1648-MS<br>0 - 0 | Ø      | A           | 2-62A<br>A1648-MSD<br>0 - 0 |       | , <b>A</b> | 2-65A<br>A1609-MS<br>0 - 0 |          | A1t    | 2-65A<br>A1609-MSD<br>0 - 0 |           | A12    | 2-658<br>A1604-MS<br>0 - 0 |            |
|--------------------------------------|------------|----------------------------|--------|-------------|-----------------------------|-------|------------|----------------------------|----------|--------|-----------------------------|-----------|--------|----------------------------|------------|
| Parameters                           | Result     | QFR.                       | Units  | Result      | gFR<br>R                    | Units | Result     | OFR                        | Units    | Result | OFR                         | Units     | Result | OFR                        | Units      |
| Alfolinity Titolmotoric              | 200        |                            |        | 6           |                             | ;     | 55         |                            |          | 1      |                             |           |        |                            |            |
| Charital Outron Desert               | 060        |                            | -<br>E | 0<br>6<br>7 |                             | - /6E | <u>8</u>   |                            | mg/las   |        |                             | mg/las    | 510    |                            | mg/las     |
| Chemical Oxygen Demand               | 5          |                            | %rec   | 104         |                             | %rec  | 106        |                            | %rec     | 110    |                             | %rec      | 106    |                            | %rec       |
| Chloride by Ion Chrom.               | <b>3</b> 3 |                            | %rec   | 86          |                             | %rec  | 8          |                            | %rec     | 91     |                             | %rec      | 8      |                            | %rec       |
| Nitrate and Nitrite                  | 0<br>8     |                            | %rec   | 2           |                             | %rec  | 110        |                            | %rec     | 8      |                             | %rec      | 96     |                            | %rec       |
| Phenol ics                           | 5          |                            | %rec   | 87          |                             | %rec  | 78         |                            | %rec     | 81     |                             | %rec      | 06     |                            | %rec       |
| Silica                               | 126        |                            | %rec   | 126         |                             | %rec  | 76         |                            | %rec     | 108    |                             | %rec      | 63     |                            | %rec       |
| Sulfate by Ion Chrom.                | \$         |                            | %rec   | 81          |                             | %rec  | 62         |                            | %rec     | 69     |                             | %rec      | 28     |                            | %rec       |
| Total Phosphorus                     | 105        |                            | %rec   | 104         |                             | %rec  | 0          |                            | %rec     |        |                             | %rec      | 88     |                            | 2 4        |
| Aluminum                             | 101        |                            | %rec   | 101         |                             | %rec  | 120        |                            | %rec     | 133    |                             | %rec      | 100    |                            | %rec       |
| Arsenic - Graphite Furnace           | 109        |                            | %rec   | 108         |                             | %rec  | 76         |                            | %rec     | 107    |                             | %rec      | 93     |                            | %rec       |
| Barium                               | 26         |                            | %rec   | 90          |                             | %rec  | 106        |                            | %rec     | 105    |                             | %rec      | 98     |                            | 20.2%      |
| Beryllium                            |            |                            |        |             |                             |       |            |                            |          |        |                             | )         | }      |                            | }          |
| Cachnium                             | 26         |                            | %rec   | 86          |                             | %rec  | 8          |                            | %rec     | 81     |                             | %rec      | 2      |                            | 700%       |
| Calcium                              | 109        |                            | %rec   | 130         |                             | %rec  | 26         |                            | %rec     | 26     |                             | %rec      | 121    |                            | 75.67      |
| Chromium                             | 26         |                            | %rec   | 26          |                             | %rec  | 8          |                            | %rec     | 2      |                             | %rec      | . 6    |                            | 201%       |
| Chromium VI                          | 102        |                            | %rec   | 86          |                             | %rec  | 102        |                            | %rec     | 104    |                             | %rec      | 88     |                            | 20.2       |
| Copper                               | %          |                            | %rec   | %           |                             | %rec  | 82         |                            | %rec     | . 08   |                             | %rec      | 2      |                            | 7,07       |
| Iron                                 | &          |                            | %rec   | 100         |                             | %rec  | 82         |                            | %rec     | 100    |                             | 22.8      | 86     |                            | 2 0        |
| Lead - Graphite Furnace              | 96         |                            | %rec   | 26          |                             | %rec  | 106        |                            | %rec     | 124    |                             | %rec      | 101    |                            | 20.22      |
| Magnesium                            | 104        |                            | %rec   | 117         |                             | %rec  | %          |                            | %rec     | 96     |                             | %rec      |        |                            | 22.62      |
| Manganese                            | <b>3</b>   |                            | Xrec   | 76          |                             | %rec  | 22         |                            | %rec     | 22     |                             | %rec      | 2      |                            | %rec       |
| Mercury                              | 123        |                            | Xrec   | 124         |                             | %rec  | 116        |                            | %rec     | 118    |                             | %rec      | 111    |                            | 7.50       |
| Nickel                               | %          |                            | %rec   | 95          |                             | %rec  | 2          |                            | %rec     | 62     |                             | %rec      | . 22   |                            | 20.2%      |
| Potassium                            | 11         |                            | %rec   | 113         |                             | %rec  | 102        |                            | %rec     | 102    |                             | %rec      | : 8    |                            | 20.2       |
| Selenium                             | \$         |                            | %rec   | 8           |                             | %rec  | 81         |                            | %rec     | 78.    |                             | 201%      | 22     |                            | 7 2 2      |
| Silver                               | 55         |                            | %rec   | 95          |                             | %rec  | 85         |                            | %<br>7   | 2 6    |                             | 2 2 2     | 7 8    |                            | ) e        |
| Sodium                               | 65         |                            | %rec   | 22          |                             | %rec  | 98         |                            | %rec     | 88     |                             | %rec      | 88     |                            | 70.7%      |
| Zinc                                 | %          |                            | %rec   | 96          |                             | %rec  | 2 8        |                            | %<br>200 | !2     |                             | %<br>20 % | 2,2    |                            | ر<br>د م   |
| 1,2,4-Trichlorobenzene               | 80         |                            | %rec   | 28          |                             | %rec  | 8          |                            | %rec     | 87     |                             | %rec      | ; K    |                            | 2 P. P. C. |
| 1, 2-Dichlorobenzene                 |            |                            |        |             |                             |       |            |                            |          |        |                             | }<br>:    | )      |                            | }          |
| 1,3-Dichlorobenzene                  |            |                            |        |             |                             |       |            |                            |          |        |                             |           |        |                            |            |

Analytical QC results at the FTA for WQ Tinker Air Force Base

|                                      | Units      | %rec                | %<br>2                                                                                                            | %rec                                                    | %rec           | %rec<br>%rec                                         |                                                         |                                                          |                                                                                | %rec            |                                                                 | %rec<br>%rec                  |
|--------------------------------------|------------|---------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------|------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------|-------------------------------|
| 2-658<br>A1604-MS<br>0 - 0           | OFR        |                     |                                                                                                                   |                                                         |                |                                                      |                                                         |                                                          |                                                                                |                 |                                                                 |                               |
| ₹                                    | Result     | 7                   | 59                                                                                                                | 69                                                      | 8              | 23                                                   |                                                         |                                                          |                                                                                | 88              |                                                                 | 83                            |
|                                      | Units      | %rec                | %rec                                                                                                              | %rec                                                    | %rec           | %rec<br>%rec                                         |                                                         |                                                          |                                                                                | %rec            |                                                                 | %rec<br>%rec                  |
| 2-65A<br>A1609-MSD<br>0 - 0          | OFR        |                     |                                                                                                                   |                                                         |                |                                                      |                                                         |                                                          |                                                                                |                 |                                                                 |                               |
| , V                                  | Result     | 83                  | 89                                                                                                                | 22                                                      | 75             | 88                                                   |                                                         |                                                          |                                                                                | 82              |                                                                 | 84                            |
|                                      | Units      | %rec                | %rec                                                                                                              | %rec                                                    | %rec           | %rec<br>%rec                                         |                                                         |                                                          |                                                                                | %rec            |                                                                 | %rec<br>%rec                  |
| 2-65A<br>A1609-MS<br>0 - 0           | OFR        |                     |                                                                                                                   |                                                         |                |                                                      |                                                         |                                                          |                                                                                |                 |                                                                 |                               |
| <b>⋖</b>                             | Result     | 18                  | 86                                                                                                                | 81                                                      | 88             | 3.5                                                  |                                                         |                                                          |                                                                                | 35              |                                                                 | 93                            |
| _                                    | Units      | %rec                | %rec                                                                                                              | %rec                                                    | %rec           | Arec<br>Arec                                         |                                                         |                                                          |                                                                                | %rec            |                                                                 | <b>% %</b>                    |
| 2-62A<br>A1648-MSD<br>0 - 0          | OFR        |                     |                                                                                                                   |                                                         |                |                                                      |                                                         |                                                          |                                                                                |                 |                                                                 |                               |
| A1                                   | Result     | 16                  | 8                                                                                                                 | 76                                                      | 06             | <b>\$</b> 5                                          |                                                         |                                                          |                                                                                | 26              |                                                                 | 37<br>102                     |
| 10                                   | Units      | %rec                | %rec                                                                                                              | %rec                                                    | %<br>Shec      | <br>                                                 |                                                         |                                                          |                                                                                | %rec            |                                                                 | %rec<br>%rec                  |
| 2-62A<br>A1648-MS<br>0 - 0           | QFR        |                     |                                                                                                                   |                                                         |                |                                                      |                                                         |                                                          |                                                                                |                 |                                                                 |                               |
| ∢                                    | Result     | 85                  | 06                                                                                                                | 76                                                      | 85             | 288                                                  |                                                         |                                                          |                                                                                | *               |                                                                 | 36<br>102                     |
| Well/Boring:<br>Sample ID:<br>Depth: |            |                     |                                                                                                                   |                                                         |                |                                                      |                                                         |                                                          | enol                                                                           |                 |                                                                 |                               |
|                                      | Parameters | 1,4-Dichlorobenzene | 2,4,6 TRIBROWOPHENOL<br>2,4,6 Tribromophenol<br>2,4,6 Trichlorophenol<br>2,4-0ichlorophenol<br>2,4-0imethylphenol | 2,4-Dinitrophenol 2,6-Dinitrotoluene 2,6-Dinitrotoluene | 2-chlorophenol | 2-FLUOROPHENOL<br>2-FLUOROPHENOL<br>2-Fluorobiphenyl | 2-Fluorophenol<br>2-Methylnaphthalene<br>2-Methylphenol | 2-Nitrophenol<br>2-Nitrophenol<br>3,3'-Dichlorobenzidine | <pre>3-Nitroanitine 4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether</pre> | 4-Chloroaniline | 4-Untolophenyt-prenytetrier<br>4-Methylphenol<br>4-Nitroaniline | 4-Nitrophenol<br>Acenaphthene |

Analytical QC results at the FTA for WQ Tinker Air Force Base

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Well/Boring:<br>Sample ID:<br>Depth: | A      | 2-62A<br>A1648-MS<br>0 - 0 |       | A1.    | 2-62A<br>A1648-MSD<br>0 - 0 | _     | A15.   | 2-65A<br>A1609-MS<br>0 - 0 |       | ₹      | 2-65A<br>A1609-MSD<br>0 - 0 |       | <b>A</b> | 2-65B<br>A1604-MS<br>0 - 0 |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|----------------------------|-------|--------|-----------------------------|-------|--------|----------------------------|-------|--------|-----------------------------|-------|----------|----------------------------|-------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | Result | OFR                        | Units | Result | OFR                         | Units | Result | OFR                        | Units | Result | OFR                         | Units | Result   | OFR                        | Units |
| Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)horanthene Benzo(a, h)menthalate Di-n-octylphthalate Di-n-octylphthalate Di-n-octylphthalate Di-n-octylphthalate Di-n-octylphthalate Di-n-octylphthalate Fluoranthene Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene | 9                                    |        |                            |       |        |                             |       |        |                            |       |        |                             |       |          |                            |       |
| Isophorone N-Nitroso-di-n-propylamine N-Nitrosodimberylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mine                                 | 103    |                            | %rec  | 101    |                             | %rec  | 62     |                            | %rec  | 80     |                             | %rec  | 83       |                            | %rec  |
| NITROBENZENE-D5<br>Naphthalene<br>Nitrobenzene<br>Nitrobenzene-D5                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | 26     |                            | Xrec  | 26     |                             | %rec  | 92     |                            | %rec  | 85     |                             | %rec  | 16       |                            | %rec  |

Analytical QC results at the FTA for WQ Tinker Air Force Base

| Units      | %rec<br>%rec                                                  | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %rec<br>%rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/l<br>%rec                                                                                                                                                                                                                                                                                                                                                                                                                                  | %rec<br>mg/{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %<br>Pec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q FR       |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Result     | 89<br>89                                                      | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90<br>84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 620<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Units      | %rec                                                          | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %rec<br>%rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/l<br>%rec                                                                                                                                                                                                                                                                                                                                                                                                                                  | %rec<br>mg/t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OFR        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Result     | 79                                                            | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 260<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                     | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Units      | %rec<br>%rec                                                  | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %rec<br>%rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/l<br>%rec                                                                                                                                                                                                                                                                                                                                                                                                                                  | %rec<br>mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| QFR.       |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Result     | 79<br>113                                                     | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 92<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 260<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                     | 140<br>140<br>140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Units      | %rec<br>%rec                                                  | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %%<br>%<br>%<br>%<br>%<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/l<br>%rec                                                                                                                                                                                                                                                                                                                                                                                                                                  | Arec<br>mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OFR        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Result     | 75<br>70<br>70<br>70                                          | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 440<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ <del>\$</del> \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>7</b> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Units      | %rec<br>%rec                                                  | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %rec<br>%rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/l<br>%rec                                                                                                                                                                                                                                                                                                                                                                                                                                  | Arec<br>mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | }<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Xrec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %<br>Cec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| QFR        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Result     | 06<br>07                                                      | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123<br>113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70 <u>7</u><br>74<br>84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Parameters | HENOL-D5<br>entach lorophenol                                 | nenalitii elle<br>henol<br>henol - DS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | renor by<br>grehenyl - D14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is(2-Chloroethoxy)methane<br>is(2-Chloroethyl)ether<br>is(2-Chloroisopropyl)ethe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | otal Dissolved Solids otal Kjeldal Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1.1-Trichloroethane<br>1,2,2-Tetrachloroethane<br>1,2-Trichloroethane<br>1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Dichlorocthane-D4<br>2-Dichloropropane<br>Butanone<br>Chlorocthylvinyl ether<br>Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-Methyl-2-Pentanone<br>Acetone<br>Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | Result QFR Units Result QFR Units Result QFR Units Result QFR | ers         Result afR Units         Result afR Units | Result   AFR   Units   Un | Fersult af Units         Result af | 40         Xrec         40         Xrec         79         Xrec         79         Xrec         80           38         Xrec         39         Xrec         92         Xrec         86         Xrec         83           123         Xrec         124         Xrec         92         Xrec         95         Xrec         90           113         Xrec         114         Xrec         85         Xrec         95         Xrec         90 | Result of Runits         Result of Runits< | Result of Runits         Result of Runits< | Result GFR Units         Result GFR GFR GFR GFR GFR Units         Result GFR | Result of Mits         Result | 40         Xrec         40         Xrec         113         Xrec         101         Xrec         80         Xrec         90         80         80         Xrec         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90         90 |

Analytical QC results at the FTA for WQ Tinker Air Force Base

|                                                                                                           | Well/Boring:<br>Sample 10:<br>Depth:     | ~ ₹       | 2-62A<br>A1648-MS<br>0 - 0 |              | <b>.</b>         | 2-62A<br>A1648-MSD<br>0 - 0 |                | , A        | 2-65A<br>A1609-MS<br>0 - 0 |            | A1     | 2-65A<br>A1609-MSD<br>0 - 0 |         | A1     | 2-65B<br>A1604-MS<br>0 - 0 |                  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------|-----------|----------------------------|--------------|------------------|-----------------------------|----------------|------------|----------------------------|------------|--------|-----------------------------|---------|--------|----------------------------|------------------|
| Parameters                                                                                                |                                          | Result    | OFR                        | Units        | Result OFR Units | o F.R                       | Units          | Result OFR | OF.R                       | Units      | Result | QFR.                        | Units   | Result | OFR .                      | Units            |
| Bromofluorobenzene<br>Bromoform<br>Bromomethane                                                           |                                          | 26        |                            | %rec         | 93               |                             | %rec           | 102        |                            | %rec       | 102    |                             | %rec    | 86     |                            | %rec             |
| Carbon Disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chlorodibromomethane<br>Chloroethane         |                                          | 100       |                            | %rec         | 26               |                             | %rec           | 101        |                            | %rec       | 102    |                             | %rec    | 95     |                            | %rec             |
| Chloromethane<br>Dichlorobromomethane<br>Ethylbenzene<br>Methylene Chloride                               |                                          |           |                            |              |                  |                             |                |            |                            |            |        |                             |         |        |                            |                  |
| Styrene<br>Tetrachloroethene<br>Toluene<br>Toluene-D8                                                     |                                          | 00<br>100 |                            | %rec<br>%rec | %8               |                             | % %<br>Te<br>C | 100        |                            | % %<br>Pec | 101    |                             | %rec    | 83     |                            | %rec             |
| Trichloroethene<br>Vinyl Acetate<br>Vinyl Chloride<br>Xylenes (total)                                     |                                          | 88        |                            | %rec         | 78               |                             | %rec           | 8          |                            | %<br>29 C  | 366    |                             | . %<br> | 85     |                            | %<br>%<br>c<br>c |
| cis-1,2 Dichloroethene<br>cis-1,2 Dichloroethene<br>trans-1,2-Dichloropropene<br>trans-1,2-Dichloroethene | a de |           |                            |              |                  |                             |                |            |                            |            |        |                             |         |        |                            |                  |

Units

| FIELDOC<br>A1566<br>0 - 0            | r QFR      |                         |                        |                        |                     |            |        |                       |                  |          |                            |                 |           |         |         |          |               |               |          |                         |          |      |         |        |           |          |        |        |      |                   |                 |                    |
|--------------------------------------|------------|-------------------------|------------------------|------------------------|---------------------|------------|--------|-----------------------|------------------|----------|----------------------------|-----------------|-----------|---------|---------|----------|---------------|---------------|----------|-------------------------|----------|------|---------|--------|-----------|----------|--------|--------|------|-------------------|-----------------|--------------------|
|                                      | Result     |                         |                        |                        |                     |            |        |                       |                  |          |                            |                 |           |         |         |          |               |               |          |                         |          |      |         |        |           |          |        |        |      |                   |                 |                    |
|                                      | Units      |                         |                        |                        |                     |            |        |                       |                  |          |                            |                 |           |         |         |          |               |               |          |                         |          |      |         |        |           |          |        |        |      |                   |                 |                    |
| FIELDQC<br>A1560<br>0 - 0            | QFR        |                         |                        |                        |                     |            |        |                       |                  |          |                            |                 |           |         |         |          |               |               |          |                         |          |      |         |        |           |          |        |        |      |                   |                 |                    |
| L.                                   | Result     |                         |                        |                        |                     |            |        |                       |                  |          |                            |                 |           |         |         |          |               |               |          |                         |          |      |         |        |           |          |        |        |      |                   |                 |                    |
|                                      | Units      |                         |                        |                        |                     |            |        |                       |                  | 1,000    | ) (Sill                    | )<br> <br> <br> | 7         | 7 6     | - /BII  | ,        | 1/6m          | 7,00          | 7 / 5    | ) - C                   | )<br>[8] |      | 7       | 7      | 2         |          | 1, 000 | 1/6    | 17   | 1/6E              | ,               | ng/l               |
| FIELDOC<br>A1554<br>0 - 0            | QFR        |                         |                        |                        |                     |            |        |                       |                  | =        | <b>&gt;</b> =              | > =             | > =       | > =     | >       | Ξ        | <b>&gt;</b> = | <b>&gt;</b> = | > =      | =                       | )        |      | Ξ       | =      | •         |          | =      | >      | :    | <b>&gt;</b> =     | ) ⊃             | <b>-</b>           |
| I. A                                 | Result     |                         |                        |                        |                     |            |        |                       |                  | 00 00    | 010                        | 200             | 07.07     | 0.000   | 0000    | 010      | 20.00         | <0.050        | 36.0     | 0200                    |          |      | <0.0000 | 07000  |           |          | 010    | 20.00  | 000  | <0.020<br><10     | <del>1</del> 0  | <b>~10</b>         |
|                                      | Units      |                         |                        |                        |                     |            |        |                       |                  |          |                            |                 |           |         |         |          |               |               |          |                         |          |      |         |        |           |          |        |        |      |                   |                 |                    |
| FIELDQC<br>A1553<br>0 - 0            | QFR<br>R   |                         |                        |                        |                     |            |        |                       |                  |          |                            |                 |           |         |         |          |               |               |          |                         |          |      |         |        |           |          |        |        |      |                   |                 |                    |
| <b>L</b>                             | Result     |                         |                        |                        |                     |            |        |                       |                  |          |                            |                 |           |         |         |          |               |               |          |                         |          |      |         |        |           |          |        |        |      |                   |                 |                    |
|                                      | Units      | mg/l as                 |                        | Zrec                   | %rec                | %rec       | %rec   | Xrec                  | %rec             | %rec     | %rec                       | %rec            | )         | %rec    | Xrec    | Xrec     | 72.60         | %<br>7.ec     | %<br>Fec | %rec                    | %rec     | %rec | %rec    | %rec   | Xrec      | Xrec     | Xrec   | %rec   | 7,00 | <b>%</b>          |                 |                    |
| 2-65B<br>A1604-MSD<br>0 - 0          | OFR        |                         |                        |                        |                     |            |        |                       |                  |          |                            |                 |           |         |         |          |               |               |          |                         |          |      |         |        |           |          |        |        |      |                   |                 |                    |
| A16                                  | Result     | 7                       | 104                    | 26                     | 75                  | 85         | 81     | 62                    | 96               | 92       | 33                         | 81              |           | 92      | 95      | 92       | 88            | 92            | 8        | 86                      | 93       | 74   | 112     | 74     | 95        | 22       | 92     | 78     | ĸ    | 80                |                 |                    |
| Well/Boring:<br>Sample ID:<br>Depth: | Parameters | Alkalinity, Titrimetric | Chemical Oxygen Demand | Chloride by Ion Chrom. | Nitrate and Nitrite | Phenol ics | ເສ     | Sulfate by Ion Chrom. | Total Phosphorus | Aluminum | Arsenic - Graphite Furnace |                 | Beryllium | 5.      | ign     | Chromium | Chromium VI   | Lo            |          | Lead - Graphite Furnace |          | Se   |         |        | Potassium |          |        |        |      | -Trichlorobenzene | Jichlorobenzene | ,3-Dichlorobenzene |
|                                      |            | Alk                     | S<br>F<br>F            | 5                      | Z.                  | Pher       | Silica | Sult                  | Tota             | Alu      | Arse                       | Barium          | Ber,      | Cadmium | Calcium | Chro     | Chro          | Copper        | I ro     | Lead                    | Magn     | Mang | Mercury | Nickel | Pota      | Selenium | Silver | Sodium | Zinc | 1,2,              | 4,              | -5,1               |

Analytical QC results at the FTA for WQ Tinker Air Force Base

|                                      | Units      |                     |                      |                      |                       |                    |                   |                    |                    |                     |                |                  |                |                  |                |                     |                |                |               |                        |                |                            |                           |                         |                 |                            |                |                |               |              |
|--------------------------------------|------------|---------------------|----------------------|----------------------|-----------------------|--------------------|-------------------|--------------------|--------------------|---------------------|----------------|------------------|----------------|------------------|----------------|---------------------|----------------|----------------|---------------|------------------------|----------------|----------------------------|---------------------------|-------------------------|-----------------|----------------------------|----------------|----------------|---------------|--------------|
| FIELDQC<br>A1566<br>0 - 0            | QFR        |                     |                      |                      |                       |                    |                   |                    |                    |                     |                |                  |                |                  |                |                     |                |                |               |                        |                |                            |                           |                         |                 |                            |                |                |               |              |
| E 40                                 | Result     |                     |                      |                      |                       |                    |                   |                    |                    |                     |                |                  |                |                  |                |                     |                |                |               |                        |                |                            |                           |                         |                 |                            |                |                |               |              |
|                                      | Units      |                     |                      |                      |                       |                    |                   |                    |                    |                     |                |                  |                |                  |                |                     |                |                |               |                        |                |                            |                           |                         |                 |                            |                |                |               |              |
| FIELDQC<br>A1560<br>0 - 0            | OFR        |                     |                      |                      |                       |                    |                   |                    |                    |                     |                |                  |                |                  |                |                     |                |                |               |                        |                |                            |                           |                         |                 |                            |                |                |               |              |
| ш.                                   | Result     |                     |                      |                      |                       |                    |                   |                    |                    |                     |                |                  |                |                  |                |                     |                |                |               |                        |                |                            |                           |                         |                 |                            |                |                |               |              |
|                                      | Units      | 1/6n                | 1/6n                 | %rec                 | 1/gn                  | 1/6n<br>1/pn       | )/6n              | 1/6n               | 1/gn               | 1/6n                | J/gn           |                  |                | %rec             | %rec           | ug/l                | 1/gn           | 1/gn           | 1/6n          | ng/f                   | ا/gu           | 1/gn                       | 1/6n                      | 1/6n                    | )/6n            | 1/6n                       | J/gn           | 1/6n           | )/6n          | 1/6n         |
| FIELDAC<br>A1554<br>0 - 0            | OFR.       | <b>)</b>            | <b>-</b>             |                      | <b>&gt;</b> =         | <b>&gt;</b> =      | )                 | >                  | >                  | <b>-</b>            | >              |                  |                |                  |                | >                   | >              | >              | >             | >                      | >              | >                          | >                         | >                       | >               | >                          | >              | <b>-</b>       | <b>&gt;</b> : | >            |
| I.F.                                 | Result     | ¢10                 | 01>                  | 37                   | <del>6</del> 5        | 200                | <b>425</b>        | <b>1</b> 0         | <b>~10</b>         | <b>^10</b>          | <b>&lt;10</b>  |                  |                | 31               | 53             | <b>^10</b>          | <b>~10</b>     | <b>ć</b> 25    | <b>1</b> 0    | <b>1</b> 0             | <b>~</b> 52    | <b>\$</b>                  | <b>1</b> 0                | <del>1</del> 0          | <b>~10</b>      | <b>10</b>                  | <b>~10</b>     | ×10            | <b>\$</b> 55  | <b>~10</b>   |
|                                      | Units      |                     |                      |                      |                       |                    |                   |                    |                    |                     |                |                  |                |                  |                |                     |                |                |               |                        |                |                            |                           |                         |                 |                            |                |                |               |              |
| FIELDOC<br>A1553<br>0 - 0            | OFR        |                     |                      |                      |                       |                    |                   |                    |                    |                     |                |                  |                |                  |                |                     |                |                |               |                        |                |                            |                           |                         |                 |                            |                |                |               |              |
| H 70                                 | Result     |                     |                      |                      |                       |                    |                   |                    |                    |                     |                |                  |                |                  |                |                     |                |                |               |                        |                |                            |                           |                         |                 |                            |                |                |               |              |
| _                                    | Units      | %rec                | %rec                 |                      |                       |                    |                   | %rec               |                    |                     | %rec           | %rec             | %rec           |                  |                |                     |                |                |               |                        |                |                            |                           | %rec                    |                 |                            |                | ;              | %rec          | Arec         |
| 2-65B<br>A1604-MSD<br>0 - 0          | QFR        |                     |                      |                      |                       |                    |                   |                    |                    |                     |                |                  |                |                  |                |                     |                |                |               |                        |                |                            |                           |                         |                 |                            |                |                |               |              |
| A16                                  | Result     | 82                  | 23                   |                      |                       |                    |                   | 69                 |                    |                     | 63             | <b>%</b>         | 92             |                  |                |                     |                |                |               |                        |                |                            |                           | 25                      |                 |                            |                | í              | æ 8           | 8            |
| Well/Boring:<br>Sample ID:<br>Depth: |            |                     |                      |                      |                       |                    |                   |                    |                    |                     |                |                  |                |                  |                |                     |                |                |               |                        |                | enol                       | her                       | _                       |                 | ther                       |                |                |               |              |
|                                      | Parameters | 1,4-Dichlorobenzene | 2,4,6-TRIBROMOPHENOL | 2,4,6-Iribromophenol | 2,4,6-Trichlorophenol | 2,4-Dimethylphenol | 2,4-Dinitrophenol | 2,4-Dinitrotoluene | 2,6-Dinitrotoluene | 2-Chloronaphthalene | 2-Chlorophenol | Z-FLUOROBIPHENYL | 2-FLUOROPHENOL | 2-Fluorobiphenyl | Z-Fluorophenol | 2-Methylnaphthalene | 2-Methylphenol | 2-Nitroaniline | Z-Nitrophenol | 3,5'-Dichlorobenzidine | 5-Nitroaniline | 4,6-Dinitro-2-methylphenol | 4-Bromophenyl-phenylether | 4-Chloro-3-methylphenol | 4-Chloroaniline | 4-Chlorophenyl-phenylether | 4-Methylphenol | 4-Nitroaniline | 4-Nitrophenol | Acenaphrnene |

|                                      | Units      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIELDQC<br>A1566<br>0 - 0            | OFR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>L</b>                             | Result     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| U                                    | Units      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FIELDQC<br>A1560<br>0 - 0            | r oFR      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      | Result     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      | Units      | 7-5-2<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIELDOC<br>A1554<br>0 - 0            | OFR        | ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u>.</u> 32                          | Result     | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      | Units      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FIELDOC<br>A1553<br>0 - 0            | OFR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>L</b>                             | Result     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ۵                                    | Units      | × ×<br>7 ≥ 6 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2-658<br>A1604-MSD<br>0 - 0          | QFR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      | Resul t    | \$8<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Well/Boring:<br>Sample ID:<br>Depth: |            | ai ne ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | Parameters | Acenaphthylene Anthracene Benzo(a) anthracene Benzo(a) pyrene Benzo(b) fluoranthene Benzo(f) fluoranthene Di-n-octylphthalate Iluoranthene Hexachlorobenzene Hexachlorochane Indeno(1,2,3-cd)pyrene |

Analytical QC results at the FTA for WQ Tinker Air Force Base

|                                      | Units      | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIELDOC<br>A1566<br>0 - 0            | QFR        | בבבבב בבבבב                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| E                                    | Result     | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                      | Units      | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FIELDQC<br>A1560<br>0 - 0            | OFR        | 22222 22222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| I.F.                                 | Result     | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                      | Units      | ng/l<br>ng/l<br>ng/l<br>ng/l<br>ng/l<br>ng/l<br>ng/l<br>ng/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FIELDOC<br>A1554<br>0 - 0            | o FR       | ככככככ כככככ כ כככ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L -                                  | Result     | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                      | Units      | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FIELDOC<br>A1553<br>0 - 0            | QFR.       | 22222 22222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| _                                    | Result     | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                      | Units      | Xrec<br>Xrec<br>Xrec<br>Xrec<br>Xrec<br>Xrec<br>Xrec<br>Xrec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2-65B<br>A1604-MSD<br>0 - 0          | QFR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>A</b> 1                           | Result     | 76<br>78<br>86<br>86<br>87<br>87<br>87<br>87<br>88<br>88<br>89<br>89<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Well/Boring:<br>Sample ID:<br>Depth: |            | oxy)methane yloather pyloather tyoyl)ethe Solids Solids witrogen arbon Solids ethane ethane ene ene ane ane ane ane ane ane ane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      | Parameters | PHENOL-D5 Pentachlorophenol Phenanthrene Phenol Pis(2-Chloroethyl)ethe Dis(2-Chlorostopyl)ethe Dis(2-Chlorostopyl)ethe Dis(2-Chlorostopyl)ethe Dis(2-Chlorostopyl)ethe Dis(2-Chlorostopyl)ethe Dis(2-Chloroethane Total Dissolved Solids Total Suspended Solids Total Trichloroethane T, 1, 2-Trichloroethane T, 2-Dichloroethane T, |

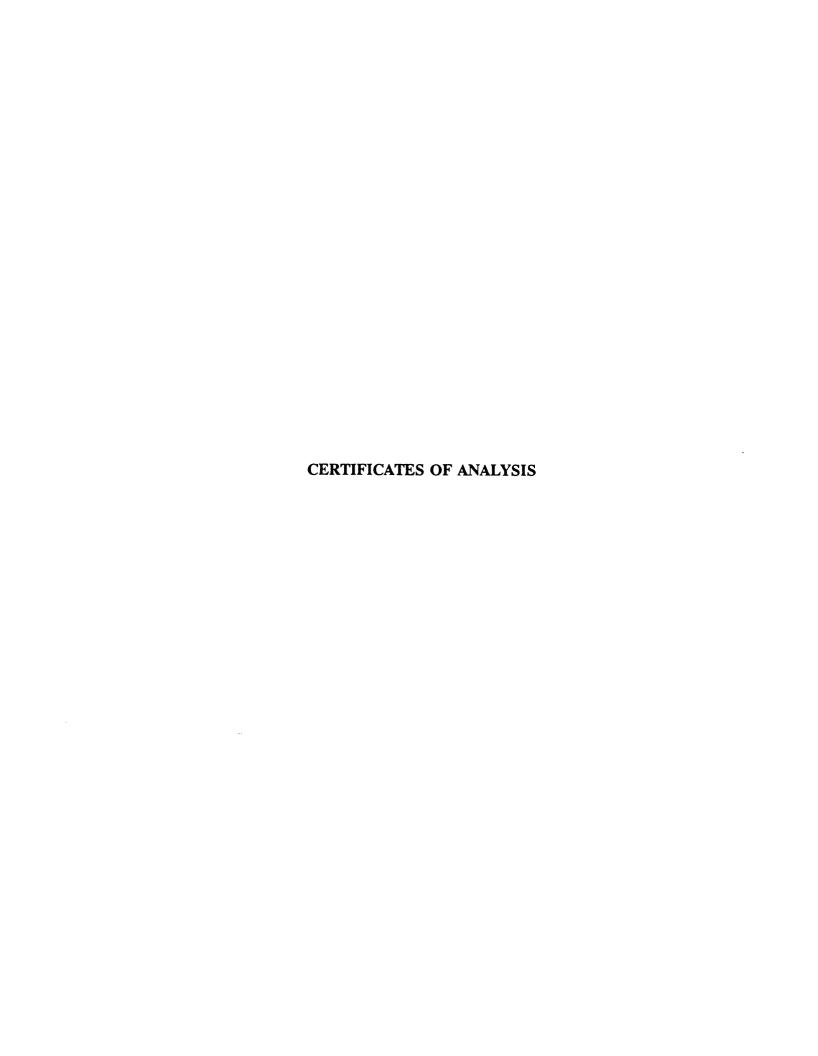
|                          | Well/Boring:<br>Sample ID:<br>Depth: | A16                                   | 2-65B<br>A1604-MSD<br>0 - 0 |                                         | H 40                                   | TELDOC<br>A1553<br>0 - 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ξ 🕶                                    | FIELDQC<br>A1554<br>0 - 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I KO                                   | TELDOC<br>A1560<br>0 - 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F.               | *IELDQC<br>A1566<br>0 - 0 |                                                                                                                                                      |
|--------------------------|--------------------------------------|---------------------------------------|-----------------------------|-----------------------------------------|----------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters               |                                      | Result                                | QFR                         | Units                                   | Result                                 | QFR                      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Result                                 | QFR                       | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Result                                 | A PR                     | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result           | QFR                       | Units                                                                                                                                                |
|                          | s e<br>Serie                         | % % % % % % % % % % % % % % % % % % % |                             | X X X X X X X X X Y Y Y Y Y Y Y Y Y Y Y | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |                          | % Lec<br>1 / 6n<br>1 / 6n | 50000000000000000000000000000000000000 |                           | 7 PEC<br>1 | 50000000000000000000000000000000000000 | 222222222222222222       | %rec<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1<br>ug/1 | \$&\$&\$&\$&\$\$ |                           | %rec<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1<br>ng/1 |
| trans-1,2-Dichloroethene | ene                                  |                                       |                             |                                         | ŵ                                      | <b>-</b>                 | ng/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ئ                                      | >                         | 1/gn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>ث</b>                               | <b>&gt;</b>              | 1/6n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .₽               | ) =                       | 1/6n                                                                                                                                                 |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
OFR = Qualifier
Analytical data has not been validated.

| FIELDQC FIELDQC A1606 0 - 0          | Result QFR Units Result QFR Units | Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Units                             | 1/6n<br>1/6n<br>1/6u<br>1/6u<br>1/6u<br>1/6u<br>1/6u<br>1/6u<br>1/6u<br>1/6u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FIELDQC<br>A1605<br>0 - 0            | Q F.R                             | ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| L 7.                                 | Result                            | 450<br>450<br>450<br>450<br>450<br>450<br>450<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                      | Units                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIELDQC<br>A1599<br>0 - 0            | QFR                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I.A.                                 | Result                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Well/Boring:<br>Sample ID:<br>Depth: | Parameters                        | Alkalinity, Titrimetric Chemical Oxygen Demand Chloride by Ion Chrom. Nitrate and Nitrite Phenolics Silica Sulfate by Ion Chrom. Total Phosphorus Aluminum Arsenic - Graphite Furnace Barium Baryllium Catcium Chromium Selenium Selenium Silver Sodium Cit. 2,4-Trichlorobenzene 1,2-Dichlorobenzene |

| DQC FIELDQC<br>06 A1666<br>0 0 - 0   | QFR Units Result QFR Units |                                              |                      |                                          |                                                                                 |                    |                    |                |                  |                |                  |                     |                |                |               |                    |                                               |                              |                         |                 |                            |                |                |               |              |
|--------------------------------------|----------------------------|----------------------------------------------|----------------------|------------------------------------------|---------------------------------------------------------------------------------|--------------------|--------------------|----------------|------------------|----------------|------------------|---------------------|----------------|----------------|---------------|--------------------|-----------------------------------------------|------------------------------|-------------------------|-----------------|----------------------------|----------------|----------------|---------------|--------------|
| FIELDQC<br>A1606<br>0 - 0            | Result                     |                                              |                      |                                          |                                                                                 |                    |                    |                |                  |                |                  |                     |                |                |               |                    |                                               |                              |                         |                 |                            |                |                |               |              |
|                                      | Units                      | 1/gu<br>1/gu                                 | y ec                 | 1/6n<br>1/6n                             | J/gn                                                                            | 1/6n               | J/Bn               | 1/6n           | %rec             | %rec           |                  | 1/00                | )/gn           | 1/gn           | 1/gn          | )<br>Bn            | ) fin                                         | 7                            | ) / Bil                 | 2               | )<br>Bn                    | )<br>Bn        | 1/gn           | l/gn          | )/gn         |
| FIELDOC<br>A1605<br>0 - 0            | OFR                        | ככ                                           | :                    | <b>-</b> -                               | <b>&gt;</b> :                                                                   | <b>&gt;</b>        | >=                 | <b>&gt;</b> =  | )                |                |                  | =                   | ) =            | <b>&gt;</b>    | <b>&gt;</b>   | <b>&gt;</b> :      | <b>&gt;</b> :                                 | <b>&gt;</b> =                | > =                     | ) =             | >                          | ⊃              | >              | <b>&gt;</b> : | >            |
| E 40                                 | Result                     | <10<br><10<br>53                             | y :                  | <del>\$</del> \$                         | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 9 <del>0</del>     | 5 7 7<br>0 7 7     | 200            | 2,72             | 11             |                  | ×10                 | <del>1</del> 0 | <b>4</b> 25    | <del>,</del>  | 5<br>5<br>6        | \$ <del>{</del>                               | 35                           | 200                     | <del>,</del>    | <del>1</del> 0             | <b>0</b> 5     | <10<br>1       | <b>\$</b> 25  | <b>1</b> 0   |
|                                      | Units                      |                                              |                      |                                          |                                                                                 |                    |                    |                |                  |                |                  |                     |                |                |               |                    |                                               |                              |                         |                 |                            |                |                |               |              |
| FIELDQC<br>A1599<br>0 - 0            | OFR                        |                                              |                      |                                          |                                                                                 |                    |                    |                |                  |                |                  |                     |                |                |               |                    |                                               |                              |                         |                 |                            |                |                |               |              |
| I                                    | Resul t                    |                                              |                      |                                          |                                                                                 |                    |                    |                |                  |                |                  |                     |                |                |               |                    |                                               |                              |                         |                 |                            |                |                |               |              |
| Well/Boring:<br>Sample ID:<br>Depth: |                            | ne<br>enol                                   | Jor<br>Jor           | enol<br>                                 |                                                                                 | <b>a</b> s         | w 9                | פֿ             |                  |                |                  | <u>ə</u>            |                |                | •             | laine              | lonoda lyn                                    | y pieno.                     | henol                   |                 | enyl ether                 |                |                |               |              |
|                                      | Parameters                 | 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol | 2,4,6-Tribromophenol | 2,4,6-Irichlorophe<br>2,4-Dichlorophenol | 2,4-Dimethylphenol                                                              | 2,4-Dinitrotoluene | 2,6-Dinitrotoluene | 2-Chlorophenol | 2-FLUOROBIPHENYL | 2-FLUOROPHENOL | 2-Fluorobiphenyl | 2-Methylnaphthalene | 2-Methylphenol | 2-Nitroaniline | 2-Nitrophenol | 3,3'-Ulchlorobenzi | 2-Nitroaniline<br>7. 4-Dinitro-2-mothylphonol | 4.8 Comphenyl - phenyl ether | 4-Chloro-3-methylphenol | 4-Chloroaniline | 4-Chlorophenyl-phenylether | 4-Methylphenol | 4-Nitroaniline | 4-Nitrophenol | Acenaphthene |

|                                      | Units      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|--------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| FIELDOC<br>A1666<br>0 - 0            | QFR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| <b>L</b>                             | Result     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                      | Units      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| FIELDQC<br>A1606<br>0 - 0            | QFR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| ir -                                 | Result     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                      | Uni ts     | 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n 1/6n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i               |
| FIELDOC<br>A1605<br>0 - 0            | QFR.       | ככ ככככככככככככככככככככ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| <u>.</u> ~0                          | Result     | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
|                                      | Units      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| FIELDOC<br>A1599<br>0 - 0            | QFR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                      | Result     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Well/Boring:<br>Sample ID:<br>Depth: | Parameters | Acenaphthylene Anthracene Benzo(a)authracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Benzo(c)fluoranthene Dibenzo(a)h)anthracene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzo(u,an) Diethylphthalate Fluoranthene Fluoranthene Hexachlorobutadiene Hexachlorobutadiene Hexachlorocethane Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene Indeno(1,2,1-od)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ene-05          |
|                                      | Para       | Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluoranth Benzo(b) fluoranth Benzo(b) fluoranth Benzo(c) fluoranth Benzo(c) fluoranth Benzo(c) fluoranth Benzo(c) fluoranth Benzo(c) fluoranth Benzo(c) fluoranth Di-n-butylphthala Di-n-butylp | Nitrobenzene-05 |


B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.

| Well/8 samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well/Boring:<br>Sample ID:<br>Depth: | E                                                        | FIELDQC<br>A1599<br>0 - 0 |                                                              | <b>L</b> | TELDOC<br>A1605<br>0 - 0 |                                                              |                                                                              | FIELDOC<br>A1606<br>0 - 0 |                                                      | <u> </u>                                                                     | FIELDQC<br>A1666<br>0 - 0 |                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------|---------------------------|--------------------------------------------------------------|----------|--------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------|------------------------------------------------------|------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | Result                                                   | QFR.                      | Units                                                        | Result   | OFR                      | Units                                                        | Result                                                                       | OFR                       | Units                                                | Result                                                                       | OFR                       | Units                                                        |
| PHENOL-D5 Pentachlorophenol Phenanthrene Phenol Phenol Phenol Phenol Pyrene IERPHENYL-D14 bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane lotal Dissolved Solids Total Dissolved Solids Iotal Carbon Total Organic Carbon Iotal Dissolved Solids I, 1, 1-Trichloroethane I, 1, 2, 2-Tetrachloroethane I, 1, 2, 2-Tetrachloroethane I, 1, 2, 2-Tetrachloroethane I, 1, 2, 2-Tetrachloroethane I, 2-Dichloroethane I, 2-Dichloroetha |                                      | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | כרככככ כככככ              | ng/l<br>ng/l<br>ng/l<br>ng/l<br>ng/l<br>ng/l<br>ng/l<br>ng/l | 86.000   |                          | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 22222 22222               | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 22222 22222               | 1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n<br>1/6n |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
GFR = Qualifier
Analytical data has not been validated.</pre>

|                                      |            | 822222222222222<br>8222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Units      | 1 / 6n 1 |
| TELDOC<br>A1666<br>0 - 0             | QFR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>L</b>                             | Result     | ్లాలు జాలు జాలు జాలు జాలు జాలు జాలు జాలు                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      | Units      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TELDQC<br>A1606<br>0 - 0             | QFR.       | 222272222222 222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>u.</b>                            | Result     | 505000;50500500805500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      | Units      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| : TELDQC<br>A1605<br>0 - 0           | QFR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u>.</u>                             | Result     | %&&&&&&&&&&&&&&&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      | Units      | % Lec<br>08/11/60<br>08/11/60<br>08/11/60<br>08/11/60<br>08/11/60<br>08/11/60<br>08/11/60<br>08/11/60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IELDQC<br>11599<br>) - 0             | QFR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u>.</u> ~0                          | Resul t    | <b>%</b> &\$\$&\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Well/Boring:<br>Sample ID:<br>Depth: |            | ene<br>Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | Parameters | Bromofluorobenzene Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroethane Chloroethane Chloromethane Chloromethane Ethylbenzene Ethylbenzene Methylene Chloride Styrene Tetrachloroethene Toluene Vinyl Acetate Vinyl Acetate Vinyl Chloride Xylenes (total) cis 1,3 Dichloropropene cis-1,2-Dichloroethene trans 1,3-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

B = Analyte was also found in sample blank
E = Concentration exceeds instrument calibration range for
that specific analysis
J = Concentration is an estimated value
N = Sample is outside of Matrix Spike QC limit
< = Not detected
QFR = Qualifier
Analytical data has not been validated.





ANALYTICAL Pouted to KH, TL, SERVICES 12/20/93

### CERTIFICATE OF ANALYSIS

IT CORPORATION 1250 CAPITAL OF TX HWY BLDG. 3, SUITE 200 AUSTIN, TX 78746-6443 TIM JENNINGS

Date: 12/17/93

Work Order: B3-11-191

This is the Certificate of Analysis for the following samples:

Client Work ID: D.O.5001 Date Received: 11/16/93 Number of Samples: 13 Sample Type: SOIL

409832-003-01

I. Introduction

Samples were labeled as follows:

| LABORATORY # |
|--------------|
| B3-11-191-01 |
| B3-11-191-02 |
| B3-11-191-03 |
| B3-11-191-04 |
| B3-11-191-05 |
| B3-11-191-06 |
| B3-11-191-07 |
| B3-11-191-08 |
| B3-11-191-09 |
| B3-11-191-10 |
| B3-11-191-11 |
| B3-11-191-12 |
| B3-11-191-13 |
|              |

Reviewed and Approved:

Jon Bartell

Laboratory Director

Page: 2 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 W

Work Order: B3-11-191

#### II. QA/QC

The results presented in this report meet the statement of work requirements in accordance with Quality Control and Quality Assurance protocol except as noted in Section IV or in an optional sample narrative at the end of Section III.

In the presented analytical data, 'ND' or '<' indicates that the compound is not detected at the specified limit.

#### III. Analytical Data

The following page(s) supply results for requested analyses performed on the samples listed above.

The test results relate to tested items only. ITAS-Austin reserves the right to control report production except in whole.

Page: 3 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01

Work Order: B3-11-191

SAMPLE ID: A1540

SAMPLE DATE: 11/15/93 10:52:00

SAMPLE MATRIX: SOIL

|             | Note       |        | Reporting |       | Date     | Method    |
|-------------|------------|--------|-----------|-------|----------|-----------|
| Test Name   | <u>Ref</u> | Result | Limit     | Units | Analyzed | Reference |
| Chromium VI |            | 0.49U  | 0.49      | MG/KG | 11/23/93 | EPA7196   |

Page: 4 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1540

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 11/29/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                        |        |      | Report | ing |                           |        |     | Re | porting |
|------------------------|--------|------|--------|-----|---------------------------|--------|-----|----|---------|
|                        | Result | Qual | Limi   | .t  |                           | Result | Qua | 1  | Limit   |
| Chloromethane          | :      | 10   | บ 1    | .0  | 1,2-Dichloropropane       |        | 5   | U  | 5       |
| Bromomethane           |        | LO   | บ 1    | .0  | trans-1,3-Dichloropropene |        | 5   | U  | 5       |
| Vinyl chloride         |        | .0   | U 1    | .0  | Trichloroethene           |        | 5   | U  | 5       |
| Chloroethane           | 1      | LO   | บ 1    | .0  | Chlorodibromomethane      |        | 5   | U  | 5       |
| Methylene chloride     | 5.     | 6 J  | в 1    | .0  | 1,1,2-Trichloroethane     |        | 5   | U  | 5       |
| Acetone                | 5.     | 4 J  | B 10   | 0   | Benzene                   |        | 5   | U  | 5       |
| Carbon disulfide       |        | 5    | U      | 5   | cis-1,3-Dichloropropene   |        | 5   | U  | 5       |
| 1,1-Dichloroethene     |        | 5    | ט      | 5   | 2-Chloroethylvinyl ether  |        | 10  | U  | 10      |
| -Dichloroethane        |        | 5    | บ      | 5   | Bromoform                 |        | 5   | U  | 5       |
| .us-1,2-Dichloroethene |        | 5    | U      | 5   | 2-Hexanone                | !      | 50  | U  | 50      |
| cis-1,2-Dichloroethene |        | 5    | U      | 5   | 4-Methyl-2-pentanone      | 1      | 50  | U  | 50      |
| Chloroform             |        | 5    | U      | 5   | Tetrachloroethene         |        | 5   | U  | 5       |
| 1,2-Dichloroethane     |        | 5    | U      | 5   | 1,1,2,2-Tetrachloroethane |        | 5   | U  | 5       |
| 2-Butanone             | 4.     | 4    | J 10   | 0   | Toluene                   |        | 5   | U  | 5       |
| 1,1,1-Trichloroethane  | 1.     | 1 B  | J      | 5   | Chlorobenzene             |        | 5   | U  | 5       |
| Carbon tetrachloride   |        | 5    | U      | 5   | Ethylbenzene              |        | 5   | U  | 5       |
| Vinyl acetate          | 1      | .0   | U 1    | .0  | Styrene                   |        | 5   | บ  | 5       |
| Dichlorobromomethane   |        | 5    | U      | 5   | Xylenes, total            |        | 5   | U  | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 103        | 81 - 117 |
| BROMOFLUOROBENZENE    | 102        | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 107        | 70 - 120 |

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 5 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1540
SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/27/93
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                          |       | Re | porting |                            |        | I | Reportin |
|---------------------------------------|-------|----|---------|----------------------------|--------|---|----------|
| •                                     | esult |    | Limit   |                            | Result |   | _        |
|                                       |       | -  |         |                            |        | - |          |
| Phenol                                | 0.330 | U  | 0.330   | 2,6-Dinitrotoluene         | 0.330  | U | 0.330    |
| bis(2-Chloroethyl)ether               | 0.330 | U  | 0.330   | 3-Nitroaniline             | 0.825  | U | 0.825    |
| 2-Chlorophenol                        | 0.330 | υ  | 0.330   | Acenaphthene               | 0.330  | U | 0.330    |
| 1,3-Dichlorobenzene                   | 0.330 | U  | 0.330   | 2,4-Dinitrophenol          | 0.825  | U | 0.825    |
| 1,4-Dichlorobenzene                   | 0.330 | υ  | 0.330   | 4-Nitrophenol              | 0.825  | U | 0.825    |
| Benzyl alcohol                        | 0.330 | υ  | 0.330   | Dibenzofuran               | 0.330  | U | 0.330    |
| 1,2-Dichlorobenzene                   | 0.330 | σ  | 0.330   | 2,4-Dinitrotoluene         | 0.330  | U | 0.330    |
| 2-Methylphenol                        | 0.330 | υ  | 0.330   | Diethylphthalate           | 0.330  | U | 0.330    |
| <pre>' (2-Chloroisopropyl)ether</pre> | 0.330 | υ  | 0.330   | 4-Chlorophenyl-phenylether | 0.330  | U | 0.330    |
| ≥thylphenol                           | 0.330 | U  | 0.330   | Fluorene                   | 0.330  | ប | 0.330    |
| N-Nitroso-di-n-propylamine            | 0.330 | υ  | 0.330   | 4-Nitroaniline             | 0.825  | U | 0.825    |
| Hexachloroethane                      | 0.330 | U  | 0.330   | 4,6-Dinitro-2-methylphenol | 0.825  | U | 0.825    |
| Nitrobenzene                          | 0.330 | υ  | 0.330   | N-Nitrosodiphenylamine (1) | 0.330  | U | 0.330    |
| Isophorone                            | 0.330 | υ  | 0.330   | 4-Bromophenyl-phenylether  | 0.330  | U | 0.330    |
| 2-Nitrophenol                         | 0.330 | σ  | 0.330   | Hexachlorobenzene          | 0.330  | U | 0.330    |
| 2,4-Dimethylphenol                    | 0.330 | υ  | 0.330   | Pentachlorophenol          | 0.825  | U | 0.825    |
| Benzoic Acid                          | 0.330 | σ  | 0.330   | Phenanthrene               | 0.330  | U | 0.330    |
| bis(2-Chloroethoxy)methane            | 0.330 | υ  | 0.330   | Anthracene                 | 0.330  | U | 0.330    |
| 2,4-Dichlorophenol                    | 0.330 | υ  | 0.330   | Di-n-butylphthalate        | 0.330  | U | 0.330    |
| 1,2,4-Trichlorobenzene                | 0.330 | υ  | 0.330   | Fluoranthene               | 0.330  | U | 0.330    |
| Naphthalene                           | 0.330 | υ  | 0.330   | Pyrene                     | 0.330  | U | 0.330    |
| 4-Chloroaniline                       | 0.330 | U  | 0.330   | Butylbenzylphthalate       | 0.330  | U | 0.330    |
| Hexachlorobutadiene                   | 0.330 | υ  | 0.330   | 3,3'-Dichlorobenzidine     | 0.330  | U | 0.330    |
| 4-Chloro-3-methylphenol               | 0.330 | U  | 0.330   | Benzo(a)anthracene         | 0.330  | U | 0.330    |
| 2-Methylnaphthalene                   | 0.330 | υ  | 0.330   | Chrysene                   | 0.330  | U | 0.330    |
| Hexachlorocyclopentadiene             | 0.330 | υ  | 0.330   | bis(2-Ethylhexyl)phthalate | 0.330  | U | 0.330    |
| 2,4,6-Trichlorophenol                 | 0.330 | υ  | 0.330   | Di-n-octylphthalate        | 0.330  | บ | 0.330    |
| 2,4,5-Trichlorophenol                 | 0.825 | U  | 0.825   | Benzo(b) fluoranthene      | 0.330  | U | 0.330    |
| 2-Chloronaphthalene                   | 0.330 | U  | 0.330   | Benzo(k)fluoranthene       | 0.330  | U | 0.330    |
| 2-Nitroaniline                        | 0.825 | U  | 0.825   | Benzo(a)pyrene             | 0.330  | U | 0.330    |
| Dimethylphthalate                     | 0.330 |    | 0.330   | Indeno(1,2,3-cd)pyrene     | 0.330  | U | 0.330    |
| Acenaphthylene                        | 0.330 | U  | 0.330   | Dibenzo(a,h)anthracene     | 0.330  | บ | 0.330    |
|                                       |       |    |         | Benzo(g,h,i)perylene       | 0.330  | Ŭ | 0.330    |
|                                       |       |    |         |                            |        |   |          |

Page: 6 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1540 SAMPLE DATE: 11/15/93 SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 77         | 23 - 120 |
| 2-Fluorobiphenyl     | 94         | 30 - 115 |
| Terphenyl-D14        | 79         | 18 - 137 |
| Phenol-D5            | 75         | 24 - 113 |
| 2-Fluorophenol       | 65         | 25 - 121 |
| 2,4,6-Tribromophenol | 79         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' - positive result
  - - \* Surrogate recovery is outside QC limit
    - D compound identified at a secondary dilution factor
    - E concentration exceeds calibration range

Page: 7 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work order: B3-11-191

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1540

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 85.4700

UNITS: MG/KG

| <br>      |        |                |                    |                     |                  |
|-----------|--------|----------------|--------------------|---------------------|------------------|
|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
| Arsenic   | 2.8    |                | 0.86               | 7060                | 12/06/93         |
| Aluminum  | 8400   | N              | 17                 | 6010                | 12/05/93         |
| Barium    | 150    | N              | 17                 | 6010                | 12/05/93         |
| Beryllium | 1.1    |                | 0.43               | 6010                | 12/05/93         |
| Cadmium   | 0.74   |                | 0.43               | 6010                | 12/05/93         |
| Chromium  | 9.4    |                | 0.85               | 6010                | 12/05/93         |
| Copper    | 5.2    |                | 2.1                | 6010                | 12/05/93         |
| Iron      | 10000  | N              | 8.5                | 6010                | 12/05/93         |
| Nickel    | 12     | *              | 3.4                | 6010                | 12/05/93         |
| Lead      | 8.8    | N              | 1.0                | 7421                | 12/06/93         |
| Mercury   | 0.025  | U              | 0.025              | 7471                | 12/03/93         |
| Silver    | 0.85   | U              | 0.85               | 6010                | 12/05/93         |
| Zinc      | 12     |                | 1.7                | 6010                | 12/05/93         |
|           |        |                |                    |                     |                  |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

### Referenced notes for these results:

Duplicate analysis outside control limits due to matrix interference on nickel analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

Page: 8 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

SAMPLE ID: A1540-MS

SAMPLE DATE: 11/15/93 10:52:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting    |       | Date     | Method    |
|-------------|------|--------|--------------|-------|----------|-----------|
| Test Name   | Ref  | Result | <u>Limit</u> | Units | Analyzed | Reference |
| Chromium VI |      | 92     |              | % REC | 11/23/93 | EPA7196   |

Page: 9 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1540-MS
SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 11/24/93
DILUTION FACTOR: 1.0

UNITS: % REC

| Result             |    |                 | Result |
|--------------------|----|-----------------|--------|
| 1,1-Dichloroethene | 95 | Trichloroethene | 85     |
|                    |    | Benzene         | 104    |
|                    |    | Toluene         | 105    |
|                    |    | Chlorobenzene   | 107    |
|                    |    |                 |        |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 103        | 81 - 117 |
| BROMOFLUOROBENZENE    | 93         | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 105        | 70 - 120 |

### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 10 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1540-MS
SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/27/93
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 0.033

UNITS: % REC

Result Result Phenol 76 Acenaphthene 56 2-Chlorophenol 98 77 4-Nitrophenol 1,4-Dichlorobenzene 40 2,4-Dinitrotoluene 40 N-Nitroso-di-n-propylamine 52 Pentachlorophenol 80 1,2,4-Trichlorobenzene 46 45 Pyrene 4-Chloro-3-methylphenol 97

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 90         | 23 - 120 |
| 2-Fluorobiphenyl     | 101        | 30 - 115 |
| Terphenyl-D14        | 80         | 18 - 137 |
| Phenol-D5            | 81         | 24 - 113 |
| 2-Fluorophenol       | 75         | 25 - 121 |
| 2,4,6-Tribromophenol | 83         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\ensuremath{\mathtt{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 11 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1540-MS
SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 116.279

UNITS: % REC

| <br>      | ·      |                     |                  |
|-----------|--------|---------------------|------------------|
| <br>      | Result | Method<br>Reference | Analysis<br>Date |
| Arsenic   | 116    | 7060                | 12/06/93         |
| Aluminum  | 1296   | 6010                | 12/05/93         |
| Barium    | 338    | 6010                | 12/05/93         |
| Beryllium | 87     | 6010                | 12/05/93         |
| Cadmium   | 82     | 6010                | 12/05/93         |
| Chromium  | 95     | 6010                | 12/05/93         |
| Copper    | 87     | 6010                | 12/05/93         |
| Iron      | 789    | 6010                | 12/05/93         |
| Nickel    | 86     | 6010                | 12/05/93         |
| Lead      | 190    | 7421                | 12/06/93         |
| Mercury   | 110    | 7471                | 12/03/93         |
| Silver    | 82     | 6010                | 12/05/93         |
| Zinc      | 92     | 6010                | 12/05/93         |
|           |        |                     |                  |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

# Referenced notes for these results:

Matrix spike outside control limits due to matrix interference on aluminum, barium and iron analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

% RPD for matrix spikes outside control limits due to matrix interference on barium analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

Page: 12 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

SAMPLE ID: A1540-MSD

SAMPLE DATE: 11/15/93 10:52:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting |       | Date     | Method    |
|-------------|------|--------|-----------|-------|----------|-----------|
| Test Name   | Ref  | Result | Limit     | Units | Analyzed | Reference |
| Chromium VI |      | 92     |           | % REC | 11/23/93 | EPA7196   |

Page: 13 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work

Work Order: B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1540-MSD
SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 11/24/93

DILUTION FACTOR: 1.0

UNITS: % REC

|                    | Result |                 |     |
|--------------------|--------|-----------------|-----|
| 1,1-Dichloroethene | 94     | Trichloroethene | 87  |
|                    |        | Benzene         | 105 |
|                    |        | Toluene         | 108 |
|                    |        | Chlorobenzene   | 108 |

| Surrogates            | % Recovery | Limits   |  |  |  |
|-----------------------|------------|----------|--|--|--|
| TOLUENE-D8            | 108        | 81 - 117 |  |  |  |
| BROMOFLUOROBENZENE    | 92         | 74 - 121 |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 107        | 70 - 120 |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 14 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

Regult

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

Regult

METHOD REFERENCE: EPA8270

SAMPLE ID: A1540-MSD SAMPLE DATE: 11/15/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/27/93
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 0.033

UNITS: % REC

| 2.0                        |    | Nebure             |    |
|----------------------------|----|--------------------|----|
| Phenol                     | 69 | Acenaphthene       | 49 |
| 2-Chlorophenol             | 76 | 4-Nitrophenol      | 56 |
| 1,4-Dichlorobenzene        | 29 | 2,4-Dinitrotoluene | 36 |
| N-Nitroso-di-n-propylamine | 39 | Pentachlorophenol  | 63 |
| 1,2,4-Trichlorobenzene     | 34 | Pyrene             | 43 |
| 4-Chloro-3-methylphenol    | 79 |                    |    |

| Surrogates           | % Recovery | Limits   |  |  |  |
|----------------------|------------|----------|--|--|--|
| Nitrobenzene-D5      | 68         | 23 - 120 |  |  |  |
| 2-Fluorobiphenyl     | 85         | 30 - 115 |  |  |  |
| Terphenyl-D14        | 76         | 18 - 137 |  |  |  |
| Phenol-D5            | 70         | 24 - 113 |  |  |  |
| 2-Fluorophenol       | 63         | 25 - 121 |  |  |  |
| 2,4,6-Tribromophenol | 73         | 19 - 122 |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 15 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1540-MSD SAMPLE DATE: 11/15/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 86.2068

UNITS: % REC

|           | Result | Method<br>Reference | Analysis<br>Date |
|-----------|--------|---------------------|------------------|
| Arsenic   | 117    | 7060                | 12/06/93         |
| Aluminum  | 1122   | 6010                | 12/05/93         |
| Barium    | 124    | 6010                | 12/05/93         |
| Beryllium | 87     | 6010                | 12/05/93         |
| Cadmium   | 82     | 6010                | 12/05/93         |
| Chromium  | 94     | 6010                | 12/05/93         |
| Copper    | 87     | 6010                | 12/05/93         |
| Iron      | 688    | 6010                | 12/05/93         |
| Nickel    | 83     | 6010                | 12/05/93         |
| Lead      | 256    | 7421                | 12/06/93         |
| Mercury   | 120    | 7471                | 12/03/93         |
| Silver    | 82     | 6010                | 12/05/93         |
| Zinc      | 90     | 6010                | 12/05/93         |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

## Referenced notes for these results:

Matrix spike duplicate outside control limits due to matrix interference on aluminum, barium and iron analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

% RPD for matrix spikes outside control limits due to matrix interference on barium analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable. Page: 16 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

(512) 892-6684 409832-003-01 Work Order: B3-11-191

SAMPLE ID: A1541

SAMPLE DATE: 11/15/93 11:00:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting |       | Date     | Method    |
|-------------|------|--------|-----------|-------|----------|-----------|
| Test Name   | Ref  | Result | Limit     | Units | Analyzed | Reference |
| Chromium VI |      | 0.510  | 0.51      | MG/KG | 11/23/93 | EPA7196   |

Page: 17 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1541
SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

ANALYSIS DATE: 11/29/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                        |        | 1    | Reporting |                           |        |      | Report     | ing |
|------------------------|--------|------|-----------|---------------------------|--------|------|------------|-----|
|                        | Result | Qual | Limit     |                           | Result | Qual | Limi       | Lt  |
| Chloromethane          | 1      | .0 1 | J 10      | 1,2-Dichloropropane       |        | 5    | U          | 5   |
| Bromomethane           | 1      | .0 1 | J 10      | trans-1,3-Dichloropropene |        | 5    | บ          | 5   |
| Vinyl chloride         | 1      | .0 1 | J 10      | Trichloroethene           |        | 5    | U          | 5   |
| Chloroethane           | 1      | .0 1 | J 10      | Chlorodibromomethane      |        | 5    | U          | 5   |
| Methylene chloride     | 6.     | 8 J  | 3 10      | 1,1,2-Trichloroethane     |        | 5    | U          | 5   |
| Acetone                | 8.     | 7 J  | 3 100     | Benzene                   |        | 5    | บ          | 5   |
| Carbon disulfide       |        | 5 1  | J 5       | cis-1,3-Dichloropropene   |        | 5    | U          | 5   |
| 1,1-Dichloroethene     |        | 5 1  | J 5       | 2-Chloroethylvinyl ether  |        | 10   | <b>U</b> 1 | LO  |
| 1 '-Dichloroethane     |        | 5    | J 5       | Bromoform                 |        | 5    | ប          | 5   |
| s-1,2-Dichloroethene   |        | 5 1  | J 5       | 2-Hexanone                |        | 50   | U 5        | 50  |
| cis-1,2-Dichloroethene |        | 5 1  | J 5       | 4-Methyl-2-pentanone      |        | 50   | U 5        | 50  |
| Chloroform             |        | 5 1  | J 5       | Tetrachloroethene         |        | 5    | U          | 5   |
| 1,2-Dichloroethane     |        | 5 1  | J 5       | 1,1,2,2-Tetrachloroethane |        | 5    | ប          | 5   |
| 2-Butanone             | 3.     | 5 .  | 100       | Toluene                   |        | 5    | U          | 5   |
| 1,1,1-Trichloroethane  |        | 5    | J 5       | Chlorobenzene             |        | 5    | U          | 5   |
| Carbon tetrachloride   |        | 5    | J 5       | Ethylbenzene              |        | 5    | U          | 5   |
| Vinyl acetate          | 1      | .0 1 | J 10      | Styrene                   |        | 5    | U          | 5   |
| Dichlorobromomethane   |        | 5    | J 5       | Xylenes, total            |        | 5    | U          | 5   |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 103        | 81 - 117 |
| BROMOFLUOROBENZENE    | 102        | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 110        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 18 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX
(512) 802-6684

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1541
SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/27/93
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                          | .033   | Re | porting |                            |        | Ţ        | Reportin |
|---------------------------------------|--------|----|---------|----------------------------|--------|----------|----------|
| · · · · · · · · · · · · · · · · · · · | sult ( |    | Limit   |                            | Result |          | Limit    |
|                                       | ,      |    |         |                            |        | <b>*</b> |          |
| Phenol                                | 0.330  | U  | 0.330   | 2,6-Dinitrotoluene         | 0.330  | U        | 0.330    |
| bis(2-Chloroethyl)ether               | 0.330  | U  | 0.330   | 3-Nitroaniline             | 0.825  | U        | 0.825    |
| 2-Chlorophenol                        | 0.330  | U  | 0.330   | Acenaphthene               | 0.330  | U        | 0.330    |
| 1,3-Dichlorobenzene                   | 0.330  | U  | 0.330   | 2,4-Dinitrophenol          | 0.825  | U        | 0.825    |
| 1,4-Dichlorobenzene                   | 0.330  | U  | 0.330   | 4-Nitrophenol              | 0.825  | U        | 0.825    |
| Benzyl alcohol                        | 0.330  | U  | 0.330   | Dibenzofuran               | 0.330  | U        | 0.330    |
| 1,2-Dichlorobenzene                   | 0.330  | U  | 0.330   | 2,4-Dinitrotoluene         | 0.330  | U        | 0.330    |
| 2-Methylphenol                        | 0.330  | U  | 0.330   | Diethylphthalate           | 0.330  | U        | 0.330    |
| '' (2-Chloroisopropyl)ether           | 0.330  | U  | 0.330   | 4-Chlorophenyl-phenylether | 0.330  | U        | 0.330    |
| ≥thylphenol                           | 0.330  | บ  | 0.330   | Fluorene                   | 0.330  | U        | 0.330    |
| N-Nitroso-di-n-propylamine            | 0.330  | U  | 0.330   | 4-Nitroaniline             | 0.825  | U        | 0.825    |
| Hexachloroethane                      | 0.330  | U  | 0.330   | 4,6-Dinitro-2-methylphenol | 0.825  | U        | 0.825    |
| Nitrobenzene                          | 0.330  | U  | 0.330   | N-Nitrosodiphenylamine (1) | 0.330  | U        | 0.330    |
| Isophorone                            | 0.330  | U  | 0.330   | 4-Bromophenyl-phenylether  | 0.330  | U        | 0.330    |
| 2-Nitrophenol                         | 0.330  | U  | 0.330   | Hexachlorobenzene          | 0.330  | U        | 0.330    |
| 2,4-Dimethylphenol                    | 0.330  | U  | 0.330   | Pentachlorophenol          | 0.825  | U        | 0.825    |
| Benzoic Acid                          | 0.330  | U  | 0.330   | Phenanthrene               | 0.330  | U        | 0.330    |
| bis(2-Chloroethoxy)methane            | 0.330  | U  | 0.330   | Anthracene                 | 0.330  | U        | 0.330    |
| 2,4-Dichlorophenol                    | 0.330  | U  | 0.330   | Di-n-butylphthalate        | 0.330  | U        | 0.330    |
| 1,2,4-Trichlorobenzene                | 0.330  | U  | 0.330   | Fluoranthene               | 0.330  | U        | 0.330    |
| Naphthalene                           | 0.330  | U  | 0.330   | Pyrene                     | 0.330  | U        | 0.330    |
| 4-Chloroaniline                       | 0.330  | บ  | 0.330   | Butylbenzylphthalate       | 0.330  | U        | 0.330    |
| Hexachlorobutadiene                   | 0.330  | U  | 0.330   | 3,3'-Dichlorobenzidine     | 0.330  | U        | 0.330    |
| 4-Chloro-3-methylphenol               | 0.330  | U  | 0.330   | Benzo(a)anthracene         | 0.330  | U        | 0.330    |
| 2-Methylnaphthalene                   | 0.330  | U  | 0.330   | Chrysene                   | 0.330  | บ        | 0.330    |
| Hexachlorocyclopentadiene             | 0.330  | U  | 0.330   | bis(2-Ethylhexyl)phthalate | 0.330  | U        | 0.330    |
| 2,4,6-Trichlorophenol                 | 0.330  | U  | 0.330   | Di-n-octylphthalate        | 0.330  | U        | 0.330    |
| 2,4,5-Trichlorophenol                 | 0.825  | U  | 0.825   | Benzo(b)fluoranthene       | 0.330  | บ        | 0.330    |
| 2-Chloronaphthalene                   | 0.330  | U  | 0.330   | Benzo(k)fluoranthene       | 0.330  | U        | 0.330    |
| 2-Nitroaniline                        | 0.825  | บ  | 0.825   | Benzo(a)pyrene             | 0.330  | U        | 0.330    |
| Dimethylphthalate                     | 0.330  | U  | 0.330   | Indeno(1,2,3-cd)pyrene     | 0.330  | U        | 0.330    |
| Acenaphthylene                        | 0.330  | U  | 0.330   | Dibenzo(a,h)anthracene     | 0.330  |          | 0.330    |
|                                       |        |    |         | Benzo(g,h,i)perylene       | 0.330  | U        | 0.330    |

Page: 19 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1541
SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 78         | 23 - 120 |
| 2-Fluorobiphenyl     | 96         | 30 - 115 |
| Terphenyl-D14        | 7 <b>7</b> | 18 - 137 |
| Phenol-D5            | 74         | 24 - 113 |
| 2-Fluorophenol       | 66         | 25 - 121 |
| 2,4,6-Tribromophenol | 76         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 20 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1541

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 91.7431

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 3.3    |                | 0.92               | 7060                | 12/06/93         |
| Aluminum  | 5900   | N              | 18                 | 6010                | 12/05/93         |
| Barium    | 69     | N              | 18                 | 6010                | 12/05/93         |
| Beryllium | 0.88   |                | 0.46               | 6010                | 12/05/93         |
| Cadmium   | 0.46   | U              | 0.46               | 6010                | 12/05/93         |
| Chromium  | 8.2    |                | 0.92               | 6010                | 12/05/93         |
| Copper    | 5.5    |                | 2.3                | 6010                | 12/05/93         |
| Iron      | 7200   | N              | 9.2                | 6010                | 12/05/93         |
| Nickel    | 12     | *              | 3.7                | 6010                | 12/05/93         |
| Lead      | 5.5    | N              | 0.28               | 7421                | 12/06/93         |
| Mercury   | 0.020  | Ū              | 0.020              | 7471                | 12/03/93         |
| Silver    | 0.92   | Ü              | 0.92               | 6010                | 12/05/93         |
| Zinc      | 15     |                | 1.8                | 6010                | 12/05/93         |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 21 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01

(512) 892-6684 Work Order: B3-11-191

SAMPLE ID: A1542

SAMPLE DATE: 11/15/93 11:24:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting Date |       |                 |           |
|-------------|------|--------|----------------|-------|-----------------|-----------|
| Test Name   | Ref  | Result | Limit          | Units | <u>Analyzed</u> | Reference |
| Chromium VI |      | 0.500  | 0.50           | MG/KG | 11/23/93        | EPA7196   |

Page: 22 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1542

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

ANALYSIS DATE: 11/29/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                               |          | R   | eporting |                           |        |      | Re | porting |
|-------------------------------|----------|-----|----------|---------------------------|--------|------|----|---------|
|                               | Result Q | ual | Limit    |                           | Result | Qua: | 1  | Limit   |
| Chloromethane                 | 10       | U   | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane                  | 10       | U   | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride                | 10       | U   | 10       | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane                  | 10       | U   | 10       | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride            | 6.8      | JB  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                       | 9.1      | JB  | 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide              | 5        | U   | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene            | 5        | U   | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| <pre>1 `-Dichloroethane</pre> | 5        | U   | 5        | Bromoform                 |        | 5    | U  | 5       |
| us-1,2-Dichloroethene         | 5        | U   | 5        | 2-Hexanone                |        | 50   | U  | 50      |
| cis-1,2-Dichloroethene        | 5        | U   | 5        | 4-Methyl-2-pentanone      |        | 50   | U  | 50      |
| Chloroform                    | 5        | U   | 5        | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane            | 5        | U   | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone                    | 100      | U   | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane         | 5        | U   | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride          | 5        | U   | 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate                 | 10       | U   | 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane          | 5        | Ü   | 5        | Xvlenes, total            |        | 5    | U  | 5       |

| Surrogates            |  | Recovery | L  | Lmi | ts  |
|-----------------------|--|----------|----|-----|-----|
| TOLUENE-D8            |  | 103      | 81 | _   | 117 |
| BROMOFLUOROBENZENE    |  | 100      | 74 | -   | 121 |
| 1.2-DICHLOROETHANE-D4 |  | 110      | 70 | _   | 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 23 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1542 SAMPLE DATE: 11/15/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/27/93
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                | 0.033  |      |         |                            |        |      |          |
|-----------------------------|--------|------|---------|----------------------------|--------|------|----------|
| 110/110                     | Result |      | porting |                            | _      |      | Reportin |
| r                           | Kesuit | Quar | Limit   |                            | Result | Qual | Limit    |
| Phenol                      | 0.330  | υ (  | 0.330   | 2,6-Dinitrotoluene         | 0.330  | ) [[ | 0.330    |
| bis(2-Chloroethyl)ether     | 0.330  |      | 0.330   | 3-Nitroaniline             | 0.825  |      | 0.825    |
| 2-Chlorophenol              | 0.330  |      | 0.330   | Acenaphthene               | 0.330  |      | 0.330    |
| 1,3-Dichlorobenzene         | 0.330  |      | 0.330   | 2,4-Dinitrophenol          | 0.825  | _    | 0.825    |
| 1,4-Dichlorobenzene         | 0.330  |      | 0.330   | 4-Nitrophenol              | 0.825  |      | 0.825    |
| Benzyl alcohol              | 0.330  |      | 0.330   | Dibenzofuran               | 0.330  |      | 0.330    |
| 1,2-Dichlorobenzene         | 0.330  | U    | 0.330   | 2,4-Dinitrotoluene         | 0.330  | _    | 0.330    |
| 2-Methylphenol              | 0.330  |      | 0.330   | Diethylphthalate           | 0.330  |      | 0.330    |
| hiq(2-Chloroisopropyl)ether | 0.330  | ט י  | 0.330   | 4-Chlorophenyl-phenylether |        |      | 0.330    |
| <pre>≥thylphenol</pre>      | 0.330  |      | 0.330   | Fluorene                   | 0.330  | _    | 0.330    |
| N-Nitroso-di-n-propylamine  | 0.330  |      | 0.330   | 4-Nitroaniline             | 0.825  |      | 0.825    |
| Hexachloroethane            | 0.330  |      | 0.330   | 4,6-Dinitro-2-methylphenol |        |      | 0.825    |
| Nitrobenzene                | 0.330  |      | 0.330   | N-Nitrosodiphenylamine (1) |        | _    | 0.330    |
| Isophorone                  | 0.330  |      | 0.330   | 4-Bromophenyl-phenylether  | 0.330  |      | 0.330    |
| 2-Nitrophenol               | 0.330  | U    | 0.330   | Hexachlorobenzene          | 0.330  | _    | 0.330    |
| 2,4-Dimethylphenol          | 0.330  | υ    | 0.330   | Pentachlorophenol          | 0.825  | -    | 0.825    |
| Benzoic Acid                | 0.330  | U    | 0.330   | Phenanthrene               | 0.330  |      | 0.330    |
| bis(2-Chloroethoxy)methane  | 0.330  | U    | 0.330   | Anthracene                 | 0.330  | _    | 0.330    |
| 2,4-Dichlorophenol          | 0.330  | υ    | 0.330   | Di-n-butylphthalate        | 0.330  |      | 0.330    |
| 1,2,4-Trichlorobenzene      | 0.330  | υ    | 0.330   | Fluoranthene               | 0.330  | _    | 0.330    |
| Naphthalene                 | 0.330  | U    | 0.330   | Pyrene                     | 0.330  | _    | 0.330    |
| 4-Chloroaniline             | 0.330  | U    | 0.330   | Butylbenzylphthalate       | 0.330  |      | 0.330    |
| Hexachlorobutadiene         | 0.330  | U    | 0.330   | 3,3'-Dichlorobenzidine     | 0.330  |      | 0.330    |
| 4-Chloro-3-methylphenol     | 0.330  | U    | 0.330   | Benzo(a)anthracene         | 0.330  |      | 0.330    |
| 2-Methylnaphthalene         | 0.330  | U    | 0.330   | Chrysene                   | 0.330  | _    | 0.330    |
| Hexachlorocyclopentadiene   | 0.330  | บ    | 0.330   | bis(2-Ethylhexyl)phthalate |        |      | 0.330    |
| 2,4,6-Trichlorophenol       | 0.330  | บ    | 0.330   | Di-n-octylphthalate        | 0.330  | _    | 0.330    |
| 2,4,5-Trichlorophenol       | 0.825  | U    | 0.825   | Benzo(b)fluoranthene       | 0.330  |      | 0.330    |
| 2-Chloronaphthalene         | 0.330  | U    | 0.330   | Benzo(k)fluoranthene       | 0.330  |      | 0.330    |
| 2-Nitroaniline              | 0.825  | ั บ  | 0.825   | Benzo(a)pyrene             | 0.330  |      | 0.330    |
| Dimethylphthalate           | 0.330  | Ū    | 0.330   | Indeno(1,2,3-cd)pyrene     | 0.330  |      | 0.330    |
| Acenaphthylene              | 0.330  | U    | 0.330   | Dibenzo(a,h)anthracene     | 0.330  |      | 0.330    |
|                             |        |      |         | Benzo(g,h,i)perylene       | 0.330  |      | 0.330    |
|                             |        |      |         | - · · •                    |        |      |          |

Page: 24 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1542

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 69         | 23 - 120 |
| 2-Fluorobiphenyl     | 90         | 30 - 115 |
| Terphenyl-D14        | 74         | 18 - 137 |
| Phenol-D5            | 73         | 24 - 113 |
| 2-Fluorophenol       | 64         | 25 - 121 |
| 2,4,6-Tribromophenol | 71         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 25 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1542

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 109.890

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 1.2    |                | 1.1                | 7060                | 12/06/93         |
| Aluminum  | 19000  | N              | 22                 | 6010                | 12/05/93         |
| Barium    | 27     | N              | 22                 | 6010                | 12/05/93         |
| Beryllium | 2.0    |                | 0.55               | 6010                | 12/05/93         |
| Cadmium   | 0.55   | υ              | 0.55               | 6010                | 12/05/93         |
| Chromium  | 24     |                | 1.1                | 6010                | 12/05/93         |
| Copper    | 22     |                | 2.7                | 6010                | 12/05/93         |
| Iron      | 16000  | N              | 11                 | 6010                | 12/05/93         |
| Nickel    | 26     | *              | 4.4                | 6010                | 12/05/93         |
| Lead      | 3.5    | N              | 0.33               | 7421                | 12/06/93         |
| Mercury   | 0.023  | บ              | 0.023              | 7471                | 12/03/93         |
| Silver    | 1.1    | U              | 1.1                | 6010                | 12/05/93         |
| Zinc      | 35     |                | 2.2                | 6010                | 12/05/93         |

## Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA < 0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 26 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

SAMPLE ID: A1543

SAMPLE DATE: 11/15/93 11:38:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting | Date  | Method   |           |
|-------------|------|--------|-----------|-------|----------|-----------|
| Test Name   | Ref  | Result | Limit     | Units | Analyzed | Reference |
| Chromium VI |      | 0.500  | 0.50      | MG/KG | 11/23/93 | EPA7196   |

Page: 27 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1543

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 11/29/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                        |        | 1    | Reporting | J                         |        |      | Re | porting |
|------------------------|--------|------|-----------|---------------------------|--------|------|----|---------|
|                        | Result | Qual | Limit     |                           | Result | Qua. | L  | Limit   |
| Chloromethane          | 1      | .0 1 | J 10      | 1,2-Dichloropropane       |        | 5    | บ  | 5       |
| Bromomethane           | 1      | .0.  | J 10      | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride         | 1      | .0 1 | J 10      | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane           | 1      | .0 1 | J 10      | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride     | 3.     | 3 J  | 3 10      | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                | 5.     | 7 JI | 3 100     | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide       |        | 5 τ  | J 5       | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene     |        | 5 τ  | J 5       | 2-Chloroethylvinyl ether  |        | LO   | U  | 10      |
| 1 '-Dichloroethane     |        | 5 t  | J 5       | Bromoform                 |        | 5    | U  | 5       |
| .s-1,2-Dichloroethene  |        | 5 τ  | J 5       | 2-Hexanone                |        | 50   | U  | 50      |
| cis-1,2-Dichloroethene |        | 5 t  | J 5       | 4-Methyl-2-pentanone      | 9      | 50   | U  | 50      |
| Chloroform             |        | 5 τ  | J 5       | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane     |        | 5 t  | J 5       | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone             | 10     | 0 τ  | J 100     | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane  |        | 5 τ  | J 5       | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride   |        | 5 t  | J 5       | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate          | 1      | .Ο τ | J 10      | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane   |        | 5 t  | J 5       | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 104        | 81 - 117 |
| BROMOFLUOROBENZENE    | 101        | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 108        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 28 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1543 SAMPLE DATE: 11/15/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/27/93 ANALYSIS DATE: 12/02/93 DILUTION FACTOR: 0.033

| UNITS: MG/KG                |       | Re       | eporting |                            |        | I        | Reportin |
|-----------------------------|-------|----------|----------|----------------------------|--------|----------|----------|
| R                           | esult | Qual     | Limit    |                            | Result | Qual     | Limit    |
|                             |       |          | •        |                            |        |          |          |
| Phenol                      | 0.330 | _        | 0.330    | 2,6-Dinitrotoluene         | 0.330  |          | 0.330    |
| bis(2-Chloroethyl)ether     | 0.330 |          | 0.330    | 3-Nitroaniline             | 0.825  |          | 0.825    |
| 2-Chlorophenol              | 0.330 | -        | 0.330    | Acenaphthene               | 0.330  |          | 0.330    |
| 1,3-Dichlorobenzene         | 0.330 | ט כ      | 0.330    | 2,4-Dinitrophenol          | 0.825  | U        | 0.825    |
| 1,4-Dichlorobenzene         | 0.330 |          | 0.330    | 4-Nitrophenol              | 0.825  | -        | 0.825    |
| Benzyl alcohol              | 0.330 | ט כ      | 0.330    | Dibenzofuran               | 0.330  | U        | 0.330    |
| 1,2-Dichlorobenzene         | 0.330 | <b>U</b> | 0.330    | 2,4-Dinitrotoluene         | 0.330  | U        | 0.330    |
| 2-Methylphenol              | 0.330 | <b>U</b> | 0.330    | Diethylphthalate           | 0.330  | U        | 0.330    |
| ליק(2-Chloroisopropyl)ether | 0.330 | ט כ      | 0.330    | 4-Chlorophenyl-phenylether | 0.330  | ט (      | 0.330    |
| ≥thylphenol                 | 0.330 | <b>U</b> | 0.330    | Fluorene                   | 0.330  | U        | 0.330    |
| N-Nitroso-di-n-propylamine  | 0.330 | <b>U</b> | 0.330    | 4-Nitroaniline             | 0.825  | U        | 0.825    |
| Hexachloroethane            | 0.330 | ט כ      | 0.330    | 4,6-Dinitro-2-methylphenol | 0.825  | U        | 0.825    |
| Nitrobenzene                | 0.330 | ט כ      | 0.330    | N-Nitrosodiphenylamine (1) | 0.330  | U        | 0.330    |
| Isophorone                  | 0.330 | <b>U</b> | 0.330    | 4-Bromophenyl-phenylether  | 0.330  | ט ט      | 0.330    |
| 2-Nitrophenol               | 0.330 | ט כ      | 0.330    | Hexachlorobenzene          | 0.330  | U        | 0.330    |
| 2,4-Dimethylphenol          | 0.330 | υ (      | 0.330    | Pentachlorophenol          | 0.825  | ט        | 0.825    |
| Benzoic Acid                | 0.330 | ט כ      | 0.330    | Phenanthrene               | 0.330  | U        | 0.330    |
| bis(2-Chloroethoxy)methane  | 0.330 | ט כ      | 0.330    | Anthracene                 | 0.330  | ט (      | 0.330    |
| 2,4-Dichlorophenol          | 0.330 | ט כ      | 0.330    | Di-n-butylphthalate        | 0.330  | U        | 0.330    |
| 1,2,4-Trichlorobenzene      | 0.330 | ט כ      | 0.330    | Fluoranthene               | 0.330  | U        | 0.330    |
| Naphthalene                 | 0.330 | <b>U</b> | 0.330    | Pyrene                     | 0.330  | U        | 0.330    |
| 4-Chloroaniline             | 0.330 | υ (      | 0.330    | Butylbenzylphthalate       | 0.330  | ט ט      | 0.330    |
| Hexachlorobutadiene         | 0.330 | ט כ      | 0.330    | 3,3'-Dichlorobenzidine     | 0.330  | ט ט      | 0.330    |
| 4-Chloro-3-methylphenol     | 0.330 | U C      | 0.330    | Benzo(a)anthracene         | 0.330  | U        | 0.330    |
| 2-Methylnaphthalene         | 0.330 | ט כ      | 0.330    | Chrysene                   | 0.330  | U        | 0.330    |
| Hexachlorocyclopentadiene   | 0.330 | ט כ      | 0.330    | bis(2-Ethylhexyl)phthalate | 0.330  | U        | 0.330    |
| 2,4,6-Trichlorophenol       | 0.330 | ט כ      | 0.330    | Di-n-octylphthalate        | 0.330  | <b>U</b> | 0.330    |
| 2,4,5-Trichlorophenol       | 0.825 | <b>U</b> | 0.825    | Benzo(b) fluoranthene      | 0.330  | U        | 0.330    |
| 2-Chloronaphthalene         | 0.330 | υ (      | 0.330    | Benzo(k) fluoranthene      | 0.330  | U        | 0.330    |
| 2-Nitroaniline              | 0.825 | <b>U</b> | 0.825    | Benzo(a)pyrene             | 0.330  | U        | 0.330    |
| Dimethylphthalate           | 0.330 | υ (      | 0.330    | Indeno(1,2,3-cd)pyrene     | 0.330  |          | 0.330    |
| Acenaphthylene              | 0.330 |          | 0.330    | Dibenzo(a,h)anthracene     | 0.330  |          | 0.330    |
|                             |       |          |          | Benzo(g,h,i)perylene       | 0.330  | U        | 0.330    |
|                             |       |          |          |                            |        |          |          |

Page: 29 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1543 SAMPLE DATE: 11/15/93 SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 61         | 23 - 120 |
| 2-Fluorobiphenyl     | 81         | 30 - 115 |
| Terphenyl-D14        | 65         | 18 - 137 |
| Phenol-D5            | 64         | 24 - 113 |
| 2-Fluorophenol       | 56         | 25 - 121 |
| 2,4,6-Tribromophenol | 59         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' - positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 30 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order:

Work Order: B3-11-191

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1543
SAMPLE DATE: 11/15/93

SAMPLE DATE: 11/15/9: SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 92.5925

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |   |
|-----------|--------|----------------|--------------------|---------------------|------------------|---|
| Arsenic   | 4.1    |                | 0.93               | 7060                | 12/06/93         | - |
| Aluminum  | 6300   | N              | 19                 | 6010                | 12/05/93         |   |
| Barium    | 32     | N              | 19                 | 6010                | 12/05/93         |   |
| Beryllium | 1.0    |                | 0.46               | 6010                | 12/05/93         |   |
| Cadmium   | 0.46   | U              | 0.46               | 6010                | 12/05/93         |   |
| Chromium  | 11     |                | 0.93               | 6010                | 12/05/93         |   |
| Copper    | 9.2    |                | 2.3                | 6010                | 12/05/93         |   |
| Iron      | 11000  | N              | 9.3                | 6010                | 12/05/93         |   |
| Nickel    | 13     | *              | 3.7                | 6010                | 12/05/93         |   |
| Lead      | 9.1    | N              | 1.1                | 7421                | 12/06/93         |   |
| Mercury   | 0.024  | U              | 0.024              | 7471                | 12/03/93         |   |
| Silver    | 0.93   | U              | 0.93               | 6010                | 12/05/93         |   |
| Zinc      | 17     |                | 1.9                | 6010                | 12/05/93         |   |
|           |        |                |                    |                     | • •              |   |

## Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 31 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

SAMPLE ID: A1544

SAMPLE DATE: 11/15/93 12:25:00

SAMPLE MATRIX: SOIL

|             | Note  |        | Reporting |       | Date     | Method    |
|-------------|-------|--------|-----------|-------|----------|-----------|
| Test Name   | _ Ref | Result | Limit     | Units | Analyzed | Reference |
| Chromium VI |       | 0.500  | 0.50      | MG/KG | 11/23/93 | EPA7196   |

Page: 32 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1544

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 11/29/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                        |           | R  | eporting |                           |        |      | Repo | rting |
|------------------------|-----------|----|----------|---------------------------|--------|------|------|-------|
|                        | Result Qu | al | Limit    |                           | Result | Qual | . Li | nit   |
| Chloromethane          | 10        | U  | 10       | 1,2-Dichloropropane       |        | 5    | U    | 5     |
| Bromomethane           | 10        | บ  | 10       | trans-1,3-Dichloropropene |        | 5    | U    | 5     |
| Vinyl chloride         | 10        | U  | 10       | Trichloroethene           |        | 5    | U    | 5     |
| Chloroethane           | 10        | บ  | 10       | Chlorodibromomethane      |        | 5    | U    | 5     |
| Methylene chloride     | 2.8       | JB | 10       | 1,1,2-Trichloroethane     |        | 5    | U    | 5     |
| Acetone                | 7.6       | JB | 100      | Benzene                   |        | 5    | U    | 5     |
| Carbon disulfide       | 5         | บ  | 5        | cis-1,3-Dichloropropene   |        | 5    | υ    | 5     |
| 1,1-Dichloroethene     | 5         | U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U    | 10    |
| 1 1-Dichloroethane     | 5         | U  | 5        | Bromoform                 |        | 5    | U    | 5     |
| s-1,2-Dichloroethene   | 5         | U  | 5        | 2-Hexanone                | !      | 50   | U    | 50    |
| cis-1,2-Dichloroethene | 5         | U  | 5        | 4-Methyl-2-pentanone      | !      | 50   | U    | 50    |
| Chloroform             | 5         | U  | 5        | Tetrachloroethene         |        | 5    | U    | 5     |
| 1,2-Dichloroethane     | 5         | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U    | 5     |
| 2-Butanone             | 2.8       | J  | 100      | Toluene                   |        | 5    | U    | 5     |
| 1,1,1-Trichloroethane  | 5         | U  | 5        | Chlorobenzene             |        | 5    | U    | 5     |
| Carbon tetrachloride   | 5         | U  | 5        | Ethylbenzene              |        | 5    | U    | 5     |
| Vinyl acetate          | 10        | U  | 10       | Styrene                   |        | 5    | U    | 5     |
| Dichlorobromomethane   | 5         | U  | 5        | Xylenes, total            |        | 5    | U    | 5     |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 103        | 81 - 117 |
| BROMOFLUOROBENZENE    | 101        | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 111        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 33 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1544
SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/27/93
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG               | 7.033   | Re | eporting |                            |        | 1 | Reportin |
|----------------------------|---------|----|----------|----------------------------|--------|---|----------|
| <b>/</b>                   | esult O |    | Limit    |                            | Result |   |          |
| 200                        | Surr y  |    | DIMI C   |                            | NCD410 | ¥ |          |
| Phenol                     | 0.330   | U  | 0.330    | 2,6-Dinitrotoluene         | 0.330  | U | 0.330    |
| bis(2-Chloroethyl)ether    | 0.330   | U  | 0.330    | 3-Nitroaniline             | 0.825  | U | 0.825    |
| 2-Chlorophenol             | 0.330   | บ  | 0.330    | Acenaphthene               | 0.330  | U | 0.330    |
| 1,3-Dichlorobenzene        | 0.330   | U  | 0.330    | 2,4-Dinitrophenol          | 0.825  | U | 0.825    |
| 1,4-Dichlorobenzene        | 0.330   | U  | 0.330    | 4-Nitrophenol              | 0.825  | U | 0.825    |
| Benzyl alcohol             | 0.330   | U  | 0.330    | Dibenzofuran               | 0.330  | U | 0.330    |
| 1,2-Dichlorobenzene        | 0.330   | U  | 0.330    | 2,4-Dinitrotoluene         | 0.330  | U | 0.330    |
| 2-Methylphenol             | 0.330   | U  | 0.330    | Diethylphthalate           | 0.330  | U | 0.330    |
| r (2-Chloroisopropyl)ether | 0.330   | U  | 0.330    | 4-Chlorophenyl-phenylether | 0.330  | U | 0.330    |
| <pre>thylphenol</pre>      | 0.330   | U  | 0.330    | Fluorene                   | 0.330  | U | 0.330    |
| N-Nitroso-di-n-propylamine | 0.330   | U  | 0.330    | 4-Nitroaniline             | 0.825  | U | 0.825    |
| Hexachloroethane           | 0.330   | U  | 0.330    | 4,6-Dinitro-2-methylphenol | 0.825  | U | 0.825    |
| Nitrobenzene               | 0.330   | U  | 0.330    | N-Nitrosodiphenylamine (1) | 0.330  | U | 0.330    |
| Isophorone                 | 0.330   | U  | 0.330    | 4-Bromophenyl-phenylether  | 0.330  | บ | 0.330    |
| 2-Nitrophenol              | 0.330   | U  | 0.330    | Hexachlorobenzene          | 0.330  | U | 0.330    |
| 2,4-Dimethylphenol         | 0.330   | U  | 0.330    | Pentachlorophenol          | 0.825  | U | 0.825    |
| Benzoic Acid               | 0.330   | U  | 0.330    | Phenanthrene               | 0.330  | U | 0.330    |
| bis(2-Chloroethoxy)methane | 0.330   | U  | 0.330    | Anthracene                 | 0.330  | U | 0.330    |
| 2,4-Dichlorophenol         | 0.330   | U  | 0.330    | Di-n-butylphthalate        | 0.330  | U | 0.330    |
| 1,2,4-Trichlorobenzene     | 0.330   | U  | 0.330    | Fluoranthene               | 0.330  | U | 0.330    |
| Naphthalene                | 0.330   | U  | 0.330    | Pyrene                     | 0.330  | U | 0.330    |
| 4-Chloroaniline            | 0.330   | U  | 0.330    | Butylbenzylphthalate       | 0.330  | U | 0.330    |
| Hexachlorobutadiene        | 0.330   | U  | 0.330    | 3,3'-Dichlorobenzidine     | 0.330  | U | 0.330    |
| 4-Chloro-3-methylphenol    | 0.330   | U  | 0.330    | Benzo(a)anthracene         | 0.330  | U | 0.330    |
| 2-Methylnaphthalene        | 0.330   | U  | 0.330    | Chrysene                   | 0.330  | U | 0.330    |
| Hexachlorocyclopentadiene  | 0.330   | U  | 0.330    | bis(2-Ethylhexyl)phthalate | 0.330  | U | 0.330    |
| 2,4,6-Trichlorophenol      | 0.330   | U  | 0.330    | Di-n-octylphthalate        | 0.330  | U | 0.330    |
| 2,4,5-Trichlorophenol      | 0.825   | U  | 0.825    | Benzo(b) fluoranthene      | 0.330  | U | 0.330    |
| 2-Chloronaphthalene        | 0.330   | U  | 0.330    | Benzo(k)fluoranthene       | 0.330  | U | 0.330    |
| 2-Nitroaniline             | 0.825   | U  | 0.825    | Benzo(a)pyrene             | 0.330  | U | 0.330    |
| Dimethylphthalate          | 0.330   | U  | 0.330    | Indeno(1,2,3-cd)pyrene     | 0.330  | U | 0.330    |
| Acenaphthylene             | 0.330   | U  | 0.330    | Dibenzo(a,h)anthracene     | 0.330  | U | 0.330    |
|                            |         |    |          | Benzo(g,h,i)perylene       | 0.330  | U | 0.330    |
|                            |         |    |          |                            |        |   |          |

Page: 34 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1544

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 62         | 23 - 120 |
| 2-Fluorobiphenyl     | 79         | 30 - 115 |
| Terphenyl-D14        | 64         | 18 - 137 |
| Phenol-D5            | 62         | 24 - 113 |
| 2-Fluorophenol       | 55         | 25 - 121 |
| 2,4,6-Tribromophenol | 56         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 35 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1544

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 98.0392

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |  |
|-----------|--------|----------------|--------------------|---------------------|------------------|--|
| Arsenic   | 2.5    |                | 0.98               | 7060                | 12/06/93         |  |
| Aluminum  | 9000   | N              | 20                 | 6010                | 12/05/93         |  |
| Barium    | 54     | N              | 20                 | 6010                | 12/05/93         |  |
| Beryllium | 1.9    |                | 0.49               | 6010                | 12/05/93         |  |
| Cadmium   | 1.1    |                | 0.49               | 6010                | 12/05/93         |  |
| Chromium  | 37     |                | 0.98               | 6010                | 12/05/93         |  |
| Copper    | 11     |                | 2.5                | 6010                | 12/05/93         |  |
| Iron      | 22000  | N              | 9.8                | 6010                | 12/05/93         |  |
| Nickel    | 22     | *              | 3.9                | 6010                | 12/05/93         |  |
| Lead      | 5.7    | N              | 0.29               | 7421                | 12/06/93         |  |
| Mercury   | 0.024  | Ŭ              | 0.024              | 7471                | 12/03/93         |  |
| Silver    | 0.98   | ប              | 0.98               | 6010                | 12/05/93         |  |
| Zinc      | 26     |                | 2.0                | 6010                | 12/05/93         |  |
|           |        |                |                    |                     |                  |  |

## Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 36 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684 409832-003-01 Work Order: B3-11-191

SAMPLE ID: A1545

SAMPLE DATE: 11/15/93 16:10:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting | Date Method |                    |
|-------------|------|--------|-----------|-------------|--------------------|
| Test Name   | Ref  | Result | Limit     | Units       | Analyzed Reference |
| Chromium VI |      | 0.51U  | 0.51      | MG/KG       | 11/23/93 EPA7196   |

Page: 37 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1545

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 11/29/93

DILUTION FACTOR: 1.0

UNITS: UG/KG

|                        |            | Re | eporting |                           |        |      | Reporting    |
|------------------------|------------|----|----------|---------------------------|--------|------|--------------|
|                        | Result Qua | al | Limit    |                           | Result | Qual | Limit        |
| Chloromethane          | 10         | U  | 10       | 1,2-Dichloropropane       |        | 5    | υ 5          |
| Bromomethane           | 10         | U  | 10       | trans-1,3-Dichloropropene |        | 5    | ບ 5          |
| Vinyl chloride         | 10         | U  | 10       | Trichloroethene           |        | 5    | บ 5          |
| Chloroethane           | 10         | U  | 10       | Chlorodibromomethane      |        | 5    | ប 5          |
| Methylene chloride     | 1.3        | JB | 10       | 1,1,2-Trichloroethane     |        | 5    | บ 5          |
| Acetone                | 6.7        | JB | 100      | Benzene                   |        | 5    | υ 5          |
| Carbon disulfide       | 5          | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | บ 5          |
| 1,1-Dichloroethene     | 5          | U  | 5        | 2-Chloroethylvinyl ether  | •      | 10   | U 10         |
| ' -Dichloroethane      | 5          | U  | 5        | Bromoform                 |        | 5    | U 5          |
| .is-1,2-Dichloroethene | 5          | U  | 5        | 2-Hexanone                | !      | 50   | ប 50         |
| cis-1,2-Dichloroethene | 5          | U  | 5        | 4-Methyl-2-pentanone      | !      | 50   | υ 5 <b>0</b> |
| Chloroform             | 5          | U  | 5        | Tetrachloroethene         |        | 5    | ບ 5          |
| 1,2-Dichloroethane     | 5          | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | υ 5          |
| 2-Butanone             | 5.1        | J  | 100      | Toluene                   |        | 5    | U 5          |
| 1,1,1-Trichloroethane  | 5          | U  | 5        | Chlorobenzene             |        | 5    | U 5          |
| Carbon tetrachloride   | 5          | U  | 5        | Ethylbenzene              |        | 5    | υ 5          |
| Vinyl acetate          | 10         | U  | 10       | Styrene                   |        | 5    | บ 5          |
| Dichlorobromomethane   | 5          | Ŭ  | 5        | Xylenes, total            |        | 5    | υ 5          |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 102        | 81 - 117 |
| BROMOFLUOROBENZENE    | 104        | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 107        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 38 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1545 SAMPLE DATE: 11/15/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/27/93
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |       | Re       | porting |                            |        | I    | Reportin |
|-----------------------------|-------|----------|---------|----------------------------|--------|------|----------|
| Re                          | sult  | Qual     | Limit   |                            | Result | Qual | Limit    |
|                             |       |          |         |                            |        |      |          |
| Phenol                      | 0.330 |          | 0.330   | 2,6-Dinitrotoluene         | 0.33   | -    | 0.330    |
| bis(2-Chloroethyl)ether     | 0.330 |          | 0.330   | 3-Nitroaniline             | 0.82   | _    | 0.825    |
| 2-Chlorophenol              | 0.330 |          | 0.330   | Acenaphthene               | 0.33   | -    | 0.330    |
| 1,3-Dichlorobenzene         | 0.330 |          | 0.330   | 2,4-Dinitrophenol          | 0.82   |      | 0.825    |
| 1,4-Dichlorobenzene         | 0.330 |          | 0.330   | 4-Nitrophenol              | 0.82   |      | 0.825    |
| Benzyl alcohol              | 0.330 |          | 0.330   | Dibenzofuran               | 0.33   |      | 0.330    |
| 1,2-Dichlorobenzene         | 0.330 | U        | 0.330   | 2,4-Dinitrotoluene         | 0.33   | -    | 0.330    |
| 2-Methylphenol              | 0.330 | U        | 0.330   | Diethylphthalate           | 0.33   | _    | 0.330    |
| ۲ ع(2-Chloroisopropyl)ether | 0.330 | U        | 0.330   | 4-Chlorophenyl-phenylether | 0.33   | -    | 0.330    |
| ethylphenol                 | 0.330 | U        | 0.330   | Fluorene                   | 0.33   | ט כ  | 0.330    |
| N-Nitroso-di-n-propylamine  | 0.330 | U        | 0.330   | 4-Nitroaniline             | 0.82   | 5 U  | 0.825    |
| Hexachloroethane            | 0.330 | U        | 0.330   | 4,6-Dinitro-2-methylphenol | 0.82   | 5 U  | 0.825    |
| Nitrobenzene                | 0.330 | υ        | 0.330   | N-Nitrosodiphenylamine (1) | 0.33   | ט כ  | 0.330    |
| Isophorone                  | 0.330 | U        | 0.330   | 4-Bromophenyl-phenylether  | 0.33   | ט כ  | 0.330    |
| 2-Nitrophenol               | 0.330 | U        | 0.330   | Hexachlorobenzene          | 0.33   | ט כ  | 0.330    |
| 2,4-Dimethylphenol          | 0.330 | U        | 0.330   | Pentachlorophenol          | 0.82   | 5 U  | 0.825    |
| Benzoic Acid                | 0.330 | U        | 0.330   | Phenanthrene               | 0.33   | ט כ  | 0.330    |
| bis(2-Chloroethoxy)methane  | 0.330 | U        | 0.330   | Anthracene                 | 0.33   | ט כ  | 0.330    |
| 2,4-Dichlorophenol          | 0.330 | <b>U</b> | 0.330   | Di-n-butylphthalate        | 0.33   | U C  | 0.330    |
| 1,2,4-Trichlorobenzene      | 0.330 | <b>U</b> | 0.330   | Fluoranthene               | 0.33   | U C  | 0.330    |
| Naphthalene                 | 0.330 | U (      | 0.330   | Pyrene                     | 0.33   | U C  | 0.330    |
| 4-Chloroaniline             | 0.330 | U (      | 0.330   | Butylbenzylphthalate       | 0.33   | ט כ  | 0.330    |
| Hexachlorobutadiene         | 0.330 | U (      | 0.330   | 3,3'-Dichlorobenzidine     | 0.33   | U C  | 0.330    |
| 4-Chloro-3-methylphenol     | 0.330 | U (      | 0.330   | Benzo(a)anthracene         | 0.33   | U C  | 0.330    |
| 2-Methylnaphthalene         | 0.330 | U (      | 0.330   | Chrysene                   | 0.33   | U C  | 0.330    |
| Hexachlorocyclopentadiene   | 0.330 | ט (      | 0.330   | bis(2-Ethylhexyl)phthalate | 0.0    | 7 J  | 0.330    |
| 2,4,6-Trichlorophenol       | 0.330 | ט (      | 0.330   | Di-n-octylphthalate        | 0.33   | υ 0  | 0.330    |
| 2,4,5-Trichlorophenol       | 0.825 | U        | 0.825   | Benzo(b)fluoranthene       | 0.33   | ט כ  | 0.330    |
| 2-Chloronaphthalene         | 0.330 | <b>U</b> | 0.330   | Benzo(k)fluoranthene       | 0.33   | ט כ  | 0.330    |
| 2-Nitroaniline              | 0.825 | U        | 0.825   | Benzo(a)pyrene             | 0.33   | ט כ  | 0.330    |
| Dimethylphthalate           | 0.330 | <b>U</b> | 0.330   | Indeno(1,2,3-cd)pyrene     | 0.33   | υ 0  | 0.330    |
| Acenaphthylene              | 0.330 | U (      | 0.330   | Dibenzo(a,h)anthracene     | 0.33   | υ σ  | 0.330    |
| -                           |       |          |         | Benzo(g,h,i)perylene       | 0.33   | υ c  | 0.330    |
|                             |       |          |         | • • • •                    |        |      |          |

Page: 39 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 802-6684: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1545

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|
| Nitrobenzene-D5      | 81         | 23 - 120 |  |  |  |  |
| 2-Fluorobiphenyl     | 99         | 30 - 115 |  |  |  |  |
| Terphenyl-D14        | 77         | 18 - 137 |  |  |  |  |
| Phenol-D5            | 78         | 24 - 113 |  |  |  |  |
| 2-Fluorophenol       | 66         | 25 - 121 |  |  |  |  |
| 2,4,6-Tribromophenol | 72         | 19 - 122 |  |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 40 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-11-191

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1545

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 108.695

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 1.1    | ט              | 1.1                | 7060                | 12/06/93         |
| Aluminum  | 2300   | N              | 22                 | 6010                | 12/05/93         |
| Barium    | 22     | UN             | 22                 | 6010                | 12/05/93         |
| Beryllium | 0.54   | U              | 0.54               | 6010                | 12/05/93         |
| Cadmium   | 0.54   | U              | 0.54               | 6010                | 12/05/93         |
| Chromium  | 8.8    |                | 1.1                | 6010                | 12/05/93         |
| Copper    | 2.7    | ប              | 2.7                | 6010                | 12/05/93         |
| Iron      | 6100   | N              | 11                 | 6010                | 12/05/93         |
| Nickel    | 7.9    | *              | 4.3                | 6010                | 12/05/93         |
| Lead      | 3.1    | N              | 0.33               | 7421                | 12/06/93         |
| Mercury   | 0.024  | บ              | 0.024              | 7471                | 12/03/93         |
| Silver    | 1.1    | U              | 1.1                | 6010                | 12/05/93         |
| Zinc      | 7.8    |                | 2.2                | 6010                | 12/05/93         |

## Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 41 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-11-191

SAMPLE ID: A1546

SAMPLE DATE: 11/15/93 16:25:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting    | Date  | Method   |           |
|-------------|------|--------|--------------|-------|----------|-----------|
| Test Name   | Ref  | Result | <u>Limit</u> | Units | Analyzed | Reference |
| Chromium VI |      | 0.510  | 0.51         | MG/KG | 11/23/93 | EPA7196   |

Page: 42 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1546

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 11/29/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                        |           | R   | eporting |                           |        |      | Re | porting |
|------------------------|-----------|-----|----------|---------------------------|--------|------|----|---------|
|                        | Result Qu | ıal | Limit    |                           | Result | Qua] | L  | Limit   |
| Chloromethane          | 10        | ט   | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane           | 10        | U   | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride         | 10        | U   | 10       | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane           | 10        | U   | 10       | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride     | 10        | U   | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                | 8.0       | JB  | 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide       | 5         | U   | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene     | 5         | U   | 5        | 2-Chloroethylvinyl ether  |        | LO   | U  | 10      |
| J '-Dichloroethane     | 5         | U   | 5        | Bromoform                 |        | 5    | U  | 5       |
| is-1,2-Dichloroethene  | 5         | U   | 5        | 2-Hexanone                | ,      | 50   | U  | 50      |
| cis-1,2-Dichloroethene | 5         | U   | 5        | 4-Methyl-2-pentanone      | •      | 50   | U  | 50      |
| Chloroform             | 5         | U   | 5        | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane     | 5         | U   | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone             | 2.4       | J   | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane  | 5         | U   | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride   | 5         | U   | 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate          | 10        | U   | 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane   | 5         | U   | 5        | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |  |  |  |  |
|-----------------------|------------|----------|--|--|--|--|
| TOLUENE-D8            | 102        | 81 - 117 |  |  |  |  |
| BROMOFLUOROBENZENE    | 103        | 74 - 121 |  |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 112        | 70 - 120 |  |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 43 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1546
SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/27/93
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG               |          | Re   | eporting |                            |        | I    | Reportin |
|----------------------------|----------|------|----------|----------------------------|--------|------|----------|
|                            | Result   | Qual | Limit    |                            | Result | Qual | Limit    |
| Phone                      |          |      |          |                            |        |      |          |
| Phenol                     | 0.330    | -    | 0.330    | 2,6-Dinitrotoluene         | 0.330  |      | 0.330    |
| bis(2-Chloroethyl)ether    | 0.330    |      | 0.330    | 3-Nitroaniline             | 0.825  | _    | 0.825    |
| 2-Chlorophenol             | 0.330    |      | 0.330    | Acenaphthene               | 0.330  |      | 0.330    |
| 1,3-Dichlorobenzene        | 0.330    |      | 0.330    | 2,4-Dinitrophenol          | 0.825  |      | 0.825    |
| 1,4-Dichlorobenzene        | 0.330    | _    | 0.330    | 4-Nitrophenol              | 0.825  |      | 0.825    |
| Benzyl alcohol             | 0.330    |      | 0.330    | Dibenzofuran               | 0.330  | _    | 0.330    |
| 1,2-Dichlorobenzene        | 0.330    |      | 0.330    | 2,4-Dinitrotoluene         | 0.330  |      | 0.330    |
| 2-Methylphenol             | 0.330    |      | 0.330    | Diethylphthalate           | 0.330  |      | 0.330    |
| h'~(2-Chloroisopropyl)ethe | er 0.330 | U    | 0.330    | 4-Chlorophenyl-phenylether | 0.330  | U    | 0.330    |
| thylphenol                 | 0.330    |      | 0.330    | Fluorene                   | 0.330  | U    | 0.330    |
| N-Nitroso-di-n-propylamine | 0.330    | U    | 0.330    | 4-Nitroaniline             | 0.825  | U    | 0.825    |
| Hexachloroethane           | 0.330    | U    | 0.330    | 4,6-Dinitro-2-methylphenol | 0.825  | U    | 0.825    |
| Nitrobenzene               | 0.330    | U    | 0.330    | N-Nitrosodiphenylamine (1) | 0.330  | U    | 0.330    |
| Isophorone                 | 0.330    | U    | 0.330    | 4-Bromophenyl-phenylether  | 0.330  | U    | 0.330    |
| 2-Nitrophenol              | 0.330    | U    | 0.330    | Hexachlorobenzene          | 0.330  | U    | 0.330    |
| 2,4-Dimethylphenol         | 0.330    | U    | 0.330    | Pentachlorophenol          | 0.825  | U    | 0.825    |
| Benzoic Acid               | 0.330    | U    | 0.330    | Phenanthrene               | 0.330  | ប    | 0.330    |
| bis(2-Chloroethoxy)methane | 0.330    | U    | 0.330    | Anthracene                 | 0.330  | ט י  | 0.330    |
| 2,4-Dichlorophenol         | 0.330    | U    | 0.330    | Di-n-butylphthalate        | 0.330  | U    | 0.330    |
| 1,2,4-Trichlorobenzene     | 0.330    | U    | 0.330    | Fluoranthene               | 0.330  | U    | 0.330    |
| Naphthalene                | 0.330    | U    | 0.330    | Pyrene                     | 0.330  | U    | 0.330    |
| 4-Chloroaniline            | 0.330    | U    | 0.330    | Butylbenzylphthalate       | 0.330  | U    | 0.330    |
| Hexachlorobutadiene        | 0.330    | U    | 0.330    | 3,3'-Dichlorobenzidine     | 0.330  | Ū    | 0.330    |
| 4-Chloro-3-methylphenol    | 0.330    | U    | 0.330    | Benzo(a)anthracene         | 0.330  | υ    | 0.330    |
| 2-Methylnaphthalene        | 0.330    | U    | 0.330    | Chrysene                   | 0.330  | U    | 0.330    |
| Hexachlorocyclopentadiene  | 0.330    | U    | 0.330    | bis(2-Ethylhexyl)phthalate | 0.330  | U    | 0.330    |
| 2,4,6-Trichlorophenol      | 0.330    | U    | 0.330    | Di-n-octylphthalate        | 0.330  | υ    | 0.330    |
| 2,4,5-Trichlorophenol      | 0.825    |      | 0.825    | Benzo(b)fluoranthene       | 0.330  | υ    | 0.330    |
| 2-Chloronaphthalene        | 0.330    |      | 0.330    | Benzo(k)fluoranthene       | 0.330  |      | 0.330    |
| 2-Nitroaniline             | 0.825    |      | 0.825    | Benzo(a)pyrene             | 0.330  |      | 0.330    |
| Dimethylphthalate          | 0.330    |      | 0.330    | Indeno(1,2,3-cd)pyrene     | 0.330  |      | 0.330    |
| Acenaphthylene             | 0.330    |      | 0.330    | Dibenzo(a,h)anthracene     | 0.330  |      | 0.330    |
|                            |          |      |          | Benzo(g,h,i)perylene       | 0.330  | U    | 0.330    |
|                            |          |      |          |                            |        |      |          |

Page: 44 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1546
SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|--|
| Nitrobenzene-D5      | 81         | 23 - 120 |  |  |  |  |  |
| 2-Fluorobiphenyl     | 94         | 30 - 115 |  |  |  |  |  |
| Terphenyl-D14        | 77         | 18 - 137 |  |  |  |  |  |
| Phenol-D5            | 76         | 24 - 113 |  |  |  |  |  |
| 2-Fluorophenol       | 65         | 25 - 121 |  |  |  |  |  |
| 2,4,6-Tribromophenol | 77         | 19 - 122 |  |  |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\ensuremath{\mathtt{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 45 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1546

SAMPLE DATE: 11/15/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 111.111

UNITS: MG/KG

| <br>      |        |                |                    |                     |                  |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| <br>      | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
| Arsenic   | 2.3    |                | 1.1                | 7060                | 12/06/93         |
| Aluminum  | 1500   | N              | 22                 | 6010                | 12/05/93         |
| Barium    | 22     | UN             | 22                 | 6010                | 12/05/93         |
| Beryllium | 0.56   | U              | 0.56               | 6010                | 12/05/93         |
| Cadmium   | 0.56   | U              | 0.56               | 6010                | 12/05/93         |
| Chromium  | 6.7    |                | 1.1                | 6010                | 12/05/93         |
| Copper    | 2.8    | U              | 2.8                | 6010                | 12/05/93         |
| Iron      | 4600   | N              | 11                 | 6010                | 12/05/93         |
| Nickel    | 6.0    | *              | 4.4                | 6010                | 12/05/93         |
| Lead      | 2.9    | N              | 0.33               | 7421                | 12/06/93         |
| Mercury   | 0.022  | U              | 0.022              | 7471                | 12/03/93         |
| Silver    | 1.1    | U              | 1.1                | 6010                | 12/05/93         |
| Zinc      | 5.9    |                | 2.2                | 6010                | 12/05/93         |
|           |        |                |                    |                     |                  |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 46 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1547 SAMPLE DATE: 10/20/93 SAMPLE MATRIX: WATER ANALYSIS DATE: 11/22/93 DILUTION FACTOR: 1.0

UNITS: UG/L

|                               |        | 1    | Report | ing |                           |        |      | Re | porting |
|-------------------------------|--------|------|--------|-----|---------------------------|--------|------|----|---------|
|                               | Result | Qual | Limi   | .t  |                           | Result | Qual |    | Limit   |
| Chloromethane                 |        | 10 1 | J 1    | .0  | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane                  |        | 10 t | J 1    | .0  | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride                |        | 10 1 | ז 1    | .0  | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane                  |        | 10 t | J 1    | .0  | Chlorodibromomethane      | 3.     | 4    | J  | 5       |
| Methylene chloride            |        | 10 1 | J 1    | .0  | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                       | 10     | 7 OC | J 10   | 0   | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide              |        | 5 1  | J      | 5   | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene            |        | 5 1  | J      | 5   | 2-Chloroethylvinyl ether  | 1      | .0   | U  | 10      |
| <pre>1 '-Dichloroethane</pre> |        | 5 1  | J      | 5   | Bromoform                 |        | 5    | U  | 5       |
| s-1,2-Dichloroethene          |        | 5 1  | J      | 5   | 2-Hexanone                | 5      | 0    | U  | 50      |
| cis-1,2-Dichloroethene        |        | 5 t  | J      | 5   | 4-Methyl-2-pentanone      | 5      | 0    | U  | 50      |
| Chloroform                    |        | 5 (  | J      | 5   | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane            |        | 5 (  | J      | 5   | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone                    | 10     | 00 t | J 10   | 0   | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane         |        | 5 (  | J      | 5   | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride          |        | 5 (  | J      | 5   | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate                 |        | 10 ( | J 1    | .0  | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane          |        | 5 t  | J      | 5   | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 96         | 88 - 110 |
| BROMOFLUOROBENZENE    | 92         | 86 - 115 |
| 1,2-DICHLOROETHANE-D4 | 102        | 76 - 114 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 47 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-11-191

SAMPLE ID: LAB BLANK

SAMPLE DATE:

SAMPLE MATRIX: SOIL

|             | Note  | Reporting     |       | Date  | Method   |           |  |
|-------------|-------|---------------|-------|-------|----------|-----------|--|
| Test Name   | _ Ref | <u>Result</u> | Limit | Units | Analyzed | Reference |  |
| Chromium VI |       | 0.0100        | 0.010 | MG/KG | 11/23/93 | EPA7196   |  |

Page: 48 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: LAB BLANK
SAMPLE DATE: not spec
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 11/29/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                                   |        | 1    | Reporting |                           |        |      | Reporting      |
|-----------------------------------|--------|------|-----------|---------------------------|--------|------|----------------|
|                                   | Result | Qual | Limit     |                           | Result | Qual | Limit          |
| Chloromethane                     | 3      | LO 1 | J 10      | 1,2-Dichloropropane       |        | 5    | Ŭ 5            |
| Bromomethane                      |        | LO 1 | J 10      | trans-1,3-Dichloropropene |        | 5    | Ŭ 5            |
| Vinyl chloride                    |        | LO 1 | J 10      | Trichloroethene           |        | 5    | Ŭ 5            |
| Chloroethane                      |        | LO 1 | J 10      | Chlorodibromomethane      |        | 5    | υ 5            |
| Methylene chloride                | 3.     | .5   | 10        | 1,1,2-Trichloroethane     |        | 5    | ບ 5            |
| Acetone                           | 5.     | . з  | 190       | Benzene                   |        | 5    | υ 5            |
| Carbon disulfide                  |        | 5 1  | J 5       | cis-1,3-Dichloropropene   |        | 5    | ບ 5            |
| 1,1-Dichloroethene                |        | 5 1  | J 5       | 2-Chloroethylvinyl ether  |        | LO   | U 10           |
| 1 1-Dichloroethane                |        | 5 1  | J 5       | Bromoform                 |        | 5    | ບ 5            |
| <pre>.1s-1,2-Dichloroethene</pre> |        | 5 1  | J 5       | 2-Hexanone                | 9      | 50   | ບ 5 <b>0</b>   |
| cis-1,2-Dichloroethene            |        | 5 1  | J 5       | 4-Methyl-2-pentanone      | 5      | 0    | ປ 5 <b>0</b>   |
| Chloroform                        |        | 5 1  | J 5       | Tetrachloroethene         |        | 5    | υ 5            |
| 1,2-Dichloroethane                |        | 5 1  | J 5       | 1,1,2,2-Tetrachloroethane |        | 5    | U 5            |
| 2-Butanone                        | 10     | 00 1 | J 100     | Toluene                   |        | 5    | υ 5            |
| 1,1,1-Trichloroethane             | 3.     | .0   | 5         | Chlorobenzene             |        | 5    | <sub>ນ</sub> 5 |
| Carbon tetrachloride              |        | 5 1  | J 5       | Ethylbenzene              |        | 5    | บ 5            |
| Vinyl acetate                     | 1      | LO 1 | J 10      | Styrene                   |        | 5    | ບ 5            |
| Dichlorobromomethane              |        | 5    | J 5       | Xylenes, total            |        | 5    | บ 5            |

| Surrogates            | <pre>% Recovery</pre> | Limits   |  |  |  |
|-----------------------|-----------------------|----------|--|--|--|
| TOLUENE-D8            | 102                   | 81 - 117 |  |  |  |
| BROMOFLUOROBENZENE    | 100                   | 74 - 121 |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 105                   | 70 - 120 |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 49 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

# IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK SAMPLE DATE: not spec SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/27/93
ANALYSIS DATE: 12/01/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG               |        | Repor   | rting |                            |        | F    | Reportin |
|----------------------------|--------|---------|-------|----------------------------|--------|------|----------|
| Re                         | sult Ç | ual Lir | mit   |                            | Result | Qual | Limit    |
|                            |        |         |       |                            |        |      |          |
| Phenol                     | 0.330  | υ 0.:   |       | 2,6-Dinitrotoluene         | 0.330  | -    | 0.330    |
| bis(2-Chloroethyl)ether    | 0.330  | υ O.:   |       | 3-Nitroaniline             | 0.825  | _    | 0.825    |
| 2-Chlorophenol             | 0.330  | υ O.:   |       | Acenaphthene               | 0.330  |      | 0.330    |
| 1,3-Dichlorobenzene        | 0.330  | U 0.    |       | 2,4-Dinitrophenol          | 0.825  |      | 0.825    |
| 1,4-Dichlorobenzene        | 0.330  | U 0.    |       | 4-Nitrophenol              | 0.825  |      | 0.825    |
| Benzyl alcohol             | 0.330  | υ ο.:   | 330   | Dibenzofuran               | 0.330  |      | 0.330    |
| 1,2-Dichlorobenzene        | 0.330  | U 0.    | 330   | 2,4-Dinitrotoluene         | 0.330  | _    | 0.330    |
| 2-Methylphenol             | 0.330  | U 0.    | 330   | Diethylphthalate           | 0.330  |      | 0.330    |
| ''(2-Chloroisopropyl)ether | 0.330  | U 0.    | 330   | 4-Chlorophenyl-phenylether | 0.330  | U    | 0.330    |
| ≥thylphenol                | 0.330  | U 0.    | 330   | Fluorene                   | 0.330  |      | 0.330    |
| N-Nitroso-di-n-propylamine | 0.330  | U 0.    | 330   | 4-Nitroaniline             | 0.825  | U    | 0.825    |
| Hexachloroethane           | 0.330  | U O.    | 330   | 4,6-Dinitro-2-methylphenol | 0.825  | U    | 0.825    |
| Nitrobenzene               | 0.330  | U 0.    | 330   | N-Nitrosodiphenylamine (1) | 0.330  | U    | 0.330    |
| Isophorone                 | 0.330  | U 0.    | 330   | 4-Bromophenyl-phenylether  | 0.330  | U    | 0.330    |
| 2-Nitrophenol              | 0.330  | บ 0.    | 330   | Hexachlorobenzene          | 0.330  | U    | 0.330    |
| 2,4-Dimethylphenol         | 0.330  | U 0.    | 330   | Pentachlorophenol          | 0.825  | U    | 0.825    |
| Benzoic Acid               | 0.330  | υ 0.    | 330   | Phenanthrene               | 0.330  | U    | 0.330    |
| bis(2-Chloroethoxy)methane | 0.330  | υ O.    | 330   | Anthracene                 | 0.330  | U    | 0.330    |
| 2,4-Dichlorophenol         | 0.330  | U 0.    | 330   | Di-n-butylphthalate        | 0.330  | U    | 0.330    |
| 1,2,4-Trichlorobenzene     | 0.330  | U 0.    | 330   | Fluoranthene               | 0.330  |      | 0.330    |
| Naphthalene                | 0.330  | υ O     | 330   | Pyrene                     | 0.330  | U    | 0.330    |
| 4-Chloroaniline            | 0.330  | υ O.    | 330   | Butylbenzylphthalate       | 0.330  | U    | 0.330    |
| Hexachlorobutadiene        | 0.330  | U 0.    | 330   | 3,3'-Dichlorobenzidine     | 0.330  | ט    | 0.330    |
| 4-Chloro-3-methylphenol    | 0.330  | U 0.    | 330   | Benzo(a)anthracene         | 0.330  | U    | 0.330    |
| 2-Methylnaphthalene        | 0.330  | υο.     | 330   | Chrysene                   | 0.330  | U    | 0.330    |
| Hexachlorocyclopentadiene  | 0.330  | υο      | 330   | bis(2-Ethylhexyl)phthalate | 0.330  | U    | 0.330    |
| 2,4,6-Trichlorophenol      | 0.330  | U 0.    | 330   | Di-n-octylphthalate        | 0.330  | U    | 0.330    |
| 2,4,5-Trichlorophenol      | 0.825  | U 0.    | 825   | Benzo(b)fluoranthene       | 0.330  | U    | 0.330    |
| 2-Chloronaphthalene        | 0.330  | U 0.    | 330   | Benzo(k)fluoranthene       | 0.330  | U    | 0.330    |
| 2-Nitroaniline             | 0.825  | U 0.    | 825   | Benzo(a)pyrene             | 0.330  | U    | 0.330    |
| Dimethylphthalate          | 0.330  | U 0.    | 330   | Indeno(1,2,3-cd)pyrene     | 0.330  | U (  | 0.330    |
| Acenaphthylene             | 0.330  | υο.     | 330   | Dibenzo(a,h)anthracene     | 0.330  | U    | 0.330    |
|                            |        |         |       | Benzo(g,h,i)perylene       | 0.330  | U (  | 0.330    |
|                            |        |         |       |                            |        |      |          |

Page: 50 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-11-191

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK SAMPLE DATE: not spec SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 71         | 23 - 120 |
| 2-Fluorobiphenyl     | 88         | 30 - 115 |
| Terphenyl-D14        | 82         | 18 - 137 |
| Phenol-D5            | 71         | 24 - 113 |
| 2-Fluorophenol       | 62         | 25 - 121 |
| 2,4,6-Tribromophenol | 78         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}\mbox{\ensuremath{-}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 51 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-11-191

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: LAB BLANK
SAMPLE DATE: not spec
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 1.0

UNITS:

MG/KG

|           | Result  | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |  |
|-----------|---------|----------------|--------------------|---------------------|------------------|--|
| Arsenic   | 0.010   | U              | 0.010              | 7060                | 12/06/93         |  |
| Aluminum  | 0.20    | U              | 0.20               | 6010                | 12/05/93         |  |
| Barium    | 0.20    | ប              | 0.20               | 6010                | 12/05/93         |  |
| Beryllium | 0.0050  | U              | 0.0050             | 6010                | 12/05/93         |  |
| Cadmium   | 0.0050  | υ              | 0.0050             | 6010                | 12/05/93         |  |
| Chromium  | 0.010   | U              | 0.010              | 6010                | 12/05/93         |  |
| Copper    | 0.025   | U              | 0.025              | 6010                | 12/05/93         |  |
| Iron      | 0.10    | ប              | 0.10               | 6010                | 12/05/93         |  |
| Nickel    | 0.040   | U              | 0.040              | 6010                | 12/05/93         |  |
| Lead      | 0.0030  | ប              | 0.0030             | 7421                | 12/06/93         |  |
| Mercury   | 0.00020 | U              | 0.00020            | 7471                | 12/03/93         |  |
| Silver    | 0.010   | U              | 0.010              | 6010                | 12/05/93         |  |
| Zinc      | 0.020   | U              | 0.020              | 6010                | 12/05/93         |  |
|           |         |                |                    |                     | •                |  |

# Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 52 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: LAB BLANK

SAMPLE DATE:

SAMPLE MATRIX: WATER
ANALYSIS DATE: 11/22/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                              |        | I    | Reporting |                           |        |      | Reporting |
|------------------------------|--------|------|-----------|---------------------------|--------|------|-----------|
|                              | Result | Qual | Limit     |                           | Result | Qual | Limit     |
| Chloromethane                | 1      | .O t | J 10      | 1,2-Dichloropropane       |        | 5    | υ 5       |
| Bromomethane                 | 1      | .O t | J 10      | trans-1,3-Dichloropropene |        | 5    | Ŭ 5       |
| Vinyl chloride               | 1      | .Ο τ | J 10      | Trichloroethene           |        | 5    | Ŭ 5       |
| Chloroethane                 | 1      | .0 t | J 10      | Chlorodibromomethane      |        | 5    | Ŭ 5       |
| Methylene chloride           | 1      | .0 t | J 10      | 1,1,2-Trichloroethane     |        | 5    | υ 5       |
| Acetone                      | 10     | 0 t  | J 100     | Benzene                   |        | 5    | υ 5       |
| Carbon disulfide             |        | 5 t  | J 5       | cis-1,3-Dichloropropene   |        | 5    | υ 5       |
| 1,1-Dichloroethene           |        | 5 t  | J 5       | 2-Chloroethylvinyl ether  |        | 10   | U 10      |
| <pre>1 -Dichloroethane</pre> |        | 5 τ  | J 5       | Bromoform                 |        | 5    | Ŭ 5       |
| us-1,2-Dichloroethene        |        | 5 t  | J 5       | 2-Hexanone                | !      | 50   | บ 50      |
| cis-1,2-Dichloroethene       |        | 5 t  | 5         | 4-Methyl-2-pentanone      |        | 50   | บ 50      |
| Chloroform                   |        | 5 t  | 5         | Tetrachloroethene         |        | 5    | υ 5       |
| 1,2-Dichloroethane           |        | 5 t  | J 5       | 1,1,2,2-Tetrachloroethane |        | 5    | ช 5       |
| 2-Butanone                   | 10     | ) O  | 100       | Toluene                   |        | 5    | Ŭ 5       |
| 1,1,1-Trichloroethane        |        | 5 t  | 5         | Chlorobenzene             |        | 5    | U 5       |
| Carbon tetrachloride         |        | 5 t  | 5         | Ethylbenzene              |        | 5    | บ 5       |
| Vinyl acetate                | 1      | .0 t | J 10      | Styrene                   |        | 5    | ช 5       |
| Dichlorobromomethane         |        | 5 t  | J 5       | Xylenes, total            |        | 5    | υ 5       |

| Surrogates            | % Recovery | Limits   |  |  |  |
|-----------------------|------------|----------|--|--|--|
| TOLUENE-D8            | 96         | 88 - 110 |  |  |  |
| BROMOFLUOROBENZENE    | 103        | 86 - 115 |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 100        | 76 - 114 |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 53 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684 409832-003-01 Work Order

Work Order: B3-11-191

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: KPA8240

SAMPLE ID: LAB BLANK

SAMPLE DATE:

SAMPLE MATRIX: SOIL ANALYSIS DATE: 11/23/93 DILUTION FACTOR: 1.0

UNITS: UG/KG

|                        |        | F    | Reporting |                           |        |      | Re | porting |
|------------------------|--------|------|-----------|---------------------------|--------|------|----|---------|
|                        | Result | Qual | Limit     |                           | Result | Qual | ٠  | Limit   |
| Chloromethane          | 1      | 10 U | J 10      | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane           | 1      | ro n | J 10      | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride         | 1      | ro n | J 10      | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane           | 1      | LO U | J 10      | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride     | 5.     | .1 J | 10        | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                | 1.     | .6 ј | 100       | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide       |        | 5 U  | J 5       | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene     |        | 5 U  | 5         | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| 1 '-Dichloroethane     |        | 5 U  | J 5       | Bromoform                 |        | 5    | U  | 5       |
| s-1,2-Dichloroethene   |        | 5 U  | J 5       | 2-Hexanone                | ſ      | 50   | U  | 50      |
| cis-1,2-Dichloroethene |        | 5 U  | J 5       | 4-Methyl-2-pentanone      | ı      | 50   | U  | 50      |
| Chloroform             |        | 5 U  | J 5       | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane     |        | 5 U  | J 5       | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone             | 3.     | 2 Ј  | 100       | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane  |        | 5 U  | J 5       | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride   |        | 5 U  | J 5       | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate          | 1      | .o u | J 10      | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane   |        | 5 U  | J 5       | Xvlenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |  |  |  |
|-----------------------|------------|----------|--|--|--|
| TOLUENE-D8            | 101        | 81 - 117 |  |  |  |
| BROMOFLUOROBENZENE    | 97         | 74 - 121 |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 102        | 70 - 120 |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\ensuremath{\mathtt{B}}$  analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 54 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

### IV. Methodology

Requested analyses were performed according to the following methods.

TEST NAME ICP Metals

TEST CODE 6010

Metals by ICP

Inductively coupled emission spectroscopy according to Method 6010, "Test Methods for Evaluating Solid Waste Physical/Chemical Methods", SW-846, Third Edition.

TEST NAME Hazardous Substance Vols. TEST CODE 8240TK

Hazardous Substance List Volatiles

Method 8240, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. GC/MS Purge and Trap analysis.

TEST NAME ABN HEL GC/MS Extractables TEST CODE 8270TK

Hazardous Substance

List Extractables

Method 8270, SW-846, Test Methods for Evaluating Solid Waste, Third Edition. Acid/Base-Neutral extraction

followed by GC/MS analysis.

TEST NAME Arsenic - Graphite Furnace TEST CODE AS GF

Arsenic

Graphite Furnace Method 7060, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. EPA 206.2-Technical Additions to Methods for Chemical Analysis of Water and Wastes,

EPA-600/4-82-055, December 1982.

TEST NAME Chromium VI

TEST CODE CR VI

Chromium VI

Method 7196, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Colorimetric analysis. Equivalent to Standard Methods 3500-Cr D.

TEST NAME Mercury

TEST CODE HG AA

Mercury

Method 7471, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Cold vapor atomic absorption. Method 7470 is used for water.

Page: 55 of 55

Company: IT CORPORATION

Date: 12/17/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-191

TEST NAME Mercury

TEST CODE HG AA

Method 245.5-"Technical Additions to Methods for Chemical Analysis of Water and Wastes,"

EPA-600/4-82-055, December 1982.

TEST NAME Metals

TEST CODE ICPTK2

Method not available.

TEST NAME Lead - Graphite Furnace

TEST CODE PB GF

Lead

EPA 7421, SW-846, Test Methods for Evaluating Solid

Graphite

Wastes, Third Edition.

Furnace

EPA 239.2-Technical Additions to Methods for Chemical

Analysis of Water and Wastes," EPA-600/4-82-055,

December 1982.

TEST NAME GFAA Digestion - Soil

TEST CODE Z3050F

Soil Digestion

Method 3050, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Acid digestion technique for

Graphite Furnace/Flame AA analysis.

TEST NAME ICPES Digestion - Soil

TEST CODE Z3050P

Soil Digestion

Method 3050, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Acid digestion technique for ICPES analysis. Equivalent to Method 3050A, SW-846

Update I, July 1992.

| IN JATIONAL TECHNOLOGY CORPORATION   | ANALYSIS REL ST AND CHAIN OF CUSTODY RECORD*                               | Reference Document N<br>Page 1 of 2 | 314088 |
|--------------------------------------|----------------------------------------------------------------------------|-------------------------------------|--------|
| Project Name/No. 1 Tinker 5001       | Samples Shipment Date 7 11 / 13 / 13                                       | Bill to:5 401832, 103.01            | White  |
| ole Teem Members 2 In Lilian / Herr  | ole Team Members 2 M. Wilson /K Herrington Lab Destination 8 ITAS - Austin | Do scol                             | e: To  |
| Profit Center No. 3 3527             | Lab Contact 9 Karmen Deaning                                               | 1 %:                                | acci   |
| Project Manager 4 J. Textler         | Project Contact/Phone 12 D. M. 6.14 \$ 506 - 736 - 2260                    | 0 T T on one                        | ompa   |
| Jurchase Order No. 6 409 832. 03. 01 | Carrier/Waybill No. 13 F2/500 8460 255520                                  | TT Austin                           | any s  |
| quired Report Date 11 Normal Days    |                                                                            |                                     | ample  |
|                                      | Ÿ,                                                                         |                                     | 5      |

| ONE CONTAINED DED LINE          | NIAINEK PEK CINE | O+ - |
|---------------------------------|------------------|------|
|                                 | 14 Deuts         | 101  |
| Required Report Date 11 NOT WAS | 15 Werkin        | 17   |

|                                | 2 - WA                        | Z                     |              |                     |                      |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------|-------------------------------|-----------------------|--------------|---------------------|----------------------|---------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample <sup>14</sup><br>Number | Sample 15<br>Description/Type | Collected Type Volume | Container 17 | Sample 18<br>Volume | Pre- 19<br>servative | Requested Testing 20<br>Program | Condition on 21 | .: Disposal 22<br>Record No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A1540                          | 2-65A. Soil                   | 11/15/43 108 9 4635   | 9633         | (2)<br>500 ml (001  | /∞)                  | 5006.8270                       |                 | With Address of the State of th |
| 171540                         | 11 11                         | " 1052                | 1,           | 120) Im 261         | 100)                 | Joc. 8340                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A1541                          | 11 11                         | "                     | :            | Smy                 |                      | VCZ - 8270                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AISYI                          | 11 11                         | (100                  | ,,           | 145 ml              | 16                   | Voc- 8240                       |                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A1542                          | n n                           | 11                    | 11           | Scoml               | 1,                   | MEK.15 (010/7000)               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A1592                          | 11 11                         | 11 1124               | ت            | 12 5 mi             | 1,                   | 100 Bano                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.1543                         | 11                            | 1138                  | 11           | Soom                | 11                   | Metals - 6010/7000              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A15 43                         | 11 11                         | 9611 "                | n            | 12,5 ml             | 11                   | טופי - איף                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                               |                       |              |                     |                      |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Yellow: Field copy

AISTON MS/MSD Special Instructions: 23

Sample Disposal: <sup>25</sup> Return to Client 🗍 Unknown 12 Poison B 📋 Skin Irritant 📋 

\*See back of form for special instructions

(mos.)

**Archive** 

Disposal by Lab 🖳

Date: Time:

Date: Time: Date: Time:

Project Specific (specify) 1. Received by 28 QC Level: 27 15/93 <u>K</u> urnaround Time Required: 26 1. Relinquished by <sup>28</sup> Rush Normal 🖳

(Signature/Affiliation) dg Date: 117 Time:

[Signature/Affiliation]

2. Received by (Signeture/Affiliation) 3. Received by (Signature/Affiliation) Date: Time: Date: Time: 2. Relinquished by (Signature, Affiliation) 3. Relinquished by (Signature/Affiliation)

MCA 3/15/91

Comments: 29

II. LANATIONAL
TECHNOLOGY
CORPORATION

Project Name Tinker Scott

ANALYSIS REQUEST AND  $\lor$  CHAIN OF CUSTODY RECORD (cont.)\*

Project No. 406833. 23 of

Reference Document No.30 Page\_2\_of\_2\_

उपाण्यस

Samples Shipment Date \_\_ 11,715133

MCA 3/15/91

|                    | Whit                                           | e: To          | accon    | npany        | samp                                  | oles      | Υe      | llow:     | Field o | сору       | ,    | *See | back | of for                                                                          | m for | spec     | ial ins | truction | ons. |   |
|--------------------|------------------------------------------------|----------------|----------|--------------|---------------------------------------|-----------|---------|-----------|---------|------------|------|------|------|---------------------------------------------------------------------------------|-------|----------|---------|----------|------|---|
|                    | Condition on 21 Disposal 22 Receipt Record No. |                |          |              | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |           | *       |           |         |            |      |      |      | 10<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>0 |       |          |         |          |      |   |
| •                  | 5                                              |                |          |              |                                       | **        |         |           |         |            | *    |      |      |                                                                                 | -86   | <u>.</u> |         |          | /    |   |
| CONTAINER PER LINE | Requested Testing 20<br>Program                | 5406- 8370     | Ohen so  | 5 VOC - 8270 | 0463.                                 | 1 . 7     | 8340    | 71 C 3 30 |         |            |      |      |      | ,                                                                               |       |          |         |          |      |   |
| NINER              | Pre-19<br>servative                            | امما           | (00)     | Canl         | (00)                                  | د دد،(    | 7007    | Coo       |         | american d |      |      |      |                                                                                 |       |          | . — —   |          |      |   |
| CONT               | Sample 18<br>Volume                            | 500 m          | 125m     | Soom         | 125m1                                 | Seo m     | 125 m   | 1         |         | -          |      |      |      |                                                                                 |       |          |         |          |      |   |
| ONE (              | Container 17 8 Type                            | 11. 32         | . 1      | =            | п                                     | "         | "       |           |         |            |      |      |      |                                                                                 |       |          |         |          | -    | , |
|                    | Date/Time <sup>16</sup><br>Collected           | 3/21 12/2/11   | 11 11    | 0191 11      | 191 1                                 | 16.25     | 4 16,35 | 1 2 2     |         |            |      |      |      |                                                                                 |       |          |         |          |      |   |
|                    | Sample 15<br>Description/Type                  | 2.65 A . So. 1 | 1 to     | 11 11        | 11 11                                 | 11 4      | ti H    |           |         |            |      |      |      |                                                                                 |       |          |         |          |      |   |
|                    | Sample 14<br>Number                            | ALLEY AISIN    | HH AISHY | A 15 45      | S 4 S                                 | A 1. (10) | A12.90  | () ()     |         |            | <br> |      |      |                                                                                 |       |          |         |          |      |   |

US THE MENLE CONTINUES OF THE CONTINUES WAS ALL HOW US LOCATIONS OF LIST OF STREET OF THE STREET OF

AIRBILL PACKAGE TRACKING NUMBER

6460755520

|         |                      | Rectient's Phone Number (Very Important) | Department/Floor No.                                                              | STE TO S   | 8735                                                           | duired                                          | Federiff press Use                 | Base Charles J                                                                                                                                                                                                                                                           | Other 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Other 2                                                                                                                                                                                                                                                                                                                                                                                                                | REVISION DATE 1292 PART #137204 FXEM 9/93 FORMAT #156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.58<br>01992-93 FEDEX<br>PRINTED IN                                                                                                                                                                           |
|---------|----------------------|------------------------------------------|-----------------------------------------------------------------------------------|------------|----------------------------------------------------------------|-------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | SENDER'S COPY        | Please Print                             | ITAS<br>Exact Street Address (Mr Cannol Deliver to P.O. Bours or P.O. Zlo Codes.) |            | Y X<br>HOLD AT FEDEX LOCATION, Print FEDEX Address H<br>Siree! | Address City State ZIPRequired                  | SERVICE CONDITIONS, DECLARED VALUE | Use of this airbid constitues your agreement to the service conditions in our current Service Guide, a relatible goon request. See back of earths' copy of this aird for information. Service conditions may very for Government Overlaght Sorvice. See U.S. Government. | oenvou uutusin Odessa. S. oen vuo uutusin Odessa oli 5100 per packaga vihillari terisponsabia (or any claim in sacesa oli 5100 per packaga vihillari terisrasi oli loss, demaga, clais, non-dalbetti, pay antisrilormation, undessa you doctaine a higher value, pay antisrilormation, undessa you doctaine a higher value, pay antisrilormation, doctament your achial loss los a timply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | comm. Intrinsionis brounds the Control Federal Express Service Guide,<br>apply. Your right to recover from Federal Express for any loss,<br>including intrinsic value of the pectage, loss is state, income interest,<br>ports, antimory's less, costs, and other forms of damage whether<br>(field, incidental, costs, ordoller forms of damage whether<br>fields, incidental, costs-ordoller forms of damage whether | \$100 or the deciated value specified to the lent. Recovery Cannot<br>stored exhall documented loss. The maximum Declared Value for<br>FedEx.Littler and FedEx Past postsages 8 \$500. In the event of unitary delivery. Federal Express will all your<br>request and with some triviations found all transportation charges<br>paid. See Senvice Guide for further information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Serder authorizes Federal Express to deliver this ariginant without soldwing a delivery signature and shall indemnity and hold hambess Federal Express from any claims resulting therefrom. Release Signature. |
|         | ſ                    | ( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  | ITAS<br>Exect Street Add                                                          |            | 1 4 5 AUSTIN                                                   | Bill Credit Card                                | MOCHAETS WEBUT TOUR DECLARED       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                        | Noight)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | top 3 Drop Box  A D B S.C.  S D Station                                                                                                                                                                        |
| 0755520 | Date ( )             | p. B. Carlotte                           |                                                                                   | State 1007 | 4/17/ON (optional) (First 24 characters will appear on invoke, | o FeoEs Acct No. 3 BB 3nd Party FeoEs Acct No 4 | ND LING                            | 1 HOLD AT FEDEY LOCATION WEEKDAY Fin Becken H 2 DELIVER WEEKDAY                                                                                                                                                                                                          | Saturday Sarvice 31 MOLD AT FEDEX LOCATION SATURDAY (Fill in Section Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 LETTH SATURDAY PICK-UP Characteristics of boatcons) 9 SATURDAY PICK-UP Characteristics of boatcons)                                                                                                                                                                                                                                                                                                                  | Special Handling 4 \( \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinte\tai\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texit{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\tex{\text{\text{\texi}\text{\text{\texi}\text{\texit{\texi}\ti       | DO BELLINING.  H. SCHIEFTON  12   HOLLOAY DELIVERY to chance                                                                                                                                                   |
| Th Q    | V 1 1 C4 - Q9 91 - 4 |                                          | <b>-</b>                                                                          |            | EERENCE MEORI                                                  | nder 2 Bill Recipiers                           | SERVIC<br>Check only               |                                                                                                                                                                                                                                                                          | 18 FEDER LETTER - 56 FEDER LETTER - 12 FEDER PAR - 13 FEDER PAR - | 2 2 8                                                                                                                                                                                                                                                                                                                                                                                                                  | Comments for the manufacture and the manufactu | TWO-DAY<br>FREIGHT **<br>A Value Limb \$600.<br>Delivery schedule.                                                                                                                                             |
|         |                      | 3                                        | VAS                                                                               | ИND<br>Д   | 5.0                                                            | C C                                             | , AG                               | ਜ਼ਪਰ                                                                                                                                                                                                                                                                     | と<br>SEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                |

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 01B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 85.5           |
|      | Chromium VI | B311191-11B        | 1123CR VI1  | 11/22/93     | 11/23/93         | 49.0           |
|      | Mercury     | B311191-11B        | 1203HGAA3   | 12/03/93     | 12/03/93         | 123            |
|      | Lead        | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 342            |

Sample ID : A1540-MS

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 02B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 116            |
|      | Chromium VI | B311191-11B        | 1123CR_VI1  | 11/22/93     | 11/23/93         | 51.0           |
|      | Mercury     | B311191-11B        | 1203HGAA3   | 12/03/93     | 12/03/93         | 120            |
|      | Lead        | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 465            |

Sample ID : A1540-MSD

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 03B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 86.2           |
|      | Chromium VI | B311191-11B        | 1123CR VI1  | 11/22/93     | 11/23/93         | 51.0           |
|      | Mercury     | B311191-11B        | 1203HGAA3   | 12/03/93     | 12/03/93         | 127            |
|      | Lead        | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 345            |

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 04B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 91.7           |
|      | Chromium VI | B311191-11B        | 1123CR_VI1  | 11/22/93     | 11/23/93         | 51.0           |
|      | Mercury     | B311191-11B        | 1203HGAA3   | 12/03/93     | 12/03/93         | 101            |
|      | Lead        | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 91.7           |

| FRAC | Tests                                     | Blank<br>Reference                                       | Batch<br>ID                                         | Prep<br>Date                                 | Analysis<br>Date     | Dil.<br>Factor            |
|------|-------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------|---------------------------|
| 05B  |                                           |                                                          |                                                     |                                              |                      |                           |
|      | Arsenic<br>Chromium VI<br>Mercury<br>Lead | B311191-11B<br>B311191-11B<br>B311191-11B<br>B311191-11B | 12023050F2<br>1123CR_VI1<br>1203HGAA3<br>12023050F2 | 12/02/93<br>11/22/93<br>12/03/93<br>12/02/93 | 11/23/93<br>12/03/93 | 110<br>50.0<br>115<br>110 |

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 06в  |             |                    |             |              |                  |                |
|      | Arsenic     | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 92.6           |
|      | Chromium VI | B311191-11B        | 1123CR VI1  | 11/22/93     | 11/23/93         | 49.5           |
|      | Mercury     | B311191-11B        | 1203HGAA3   | 12/03/93     | 12/03/93         | 119            |
|      | Lead        | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 370            |

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 07B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 98             |
|      | Chromium VI | B311191-11B        | 1123CR_VI1  | 11/22/93     | 11/23/93         | 50.0           |
|      | Mercury     | B311191-11B        | 1203HGAA3   | 12/03/93     | 12/03/93         | 122            |
|      | Lead        | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 98             |

| FRAC | Tests                                     | Blank<br>Reference                                       | Batch<br>ID                                         | Prep<br>Date                                 | Analysis<br>Date     | Dil.<br>Factor            |
|------|-------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------|---------------------------|
| 08B  |                                           |                                                          |                                                     |                                              |                      |                           |
|      | Arsenic<br>Chromium VI<br>Mercury<br>Lead | B311191-11B<br>B311191-11B<br>B311191-11B<br>B311191-11B | 12023050F2<br>1123CR_VI1<br>1203HGAA3<br>12023050F2 | 12/02/93<br>11/22/93<br>12/03/93<br>12/02/93 | 11/23/93<br>12/03/93 | 109<br>51.0<br>118<br>109 |

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 09в  |             |                    |             |              |                  |                |
|      | Arsenic     | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 111            |
|      | Chromium VI | B311191-11B        | 1123CR VI1  | 11/22/93     | 11/23/93         | 50.5           |
|      | Mercury     | B311191-11B        | 1203HGAA3   | 12/03/93     | 12/03/93         | 110            |
|      | Lead        | B311191-11B        | 12023050F2  | 12/02/93     | 12/06/93         | 111            |

Sample ID : LAB BLANK

| FRAC | Tests                                     | Blank<br>Reference                                       | Batch<br>ID                                         | Prep<br>Date                                 | Analysis<br>Date     | Dil.<br>Factor    |
|------|-------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------|-------------------|
| 11B  |                                           |                                                          |                                                     |                                              |                      |                   |
|      | Arsenic<br>Chromium VI<br>Mercury<br>Lead | B311191-11B<br>B311191-11B<br>B311191-11B<br>B311191-11B | 12023050F2<br>1123CR_VI1<br>1203HGAA3<br>12023050F2 | 12/02/93<br>11/23/93<br>12/03/93<br>12/02/93 | 11/23/93<br>12/03/93 | 1.0<br>1.0<br>1.0 |



# **ANALYTICAL**

SERVICES Routed to KK, CF, TL

# CERTIFICATE OF ANALYSIS

12/28/93

Date: 12/23/93

IT CORPORATION 1250 CAPITAL OF TX HWY BLDG. 3, SUITE 200 AUSTIN, TX 78746-6443 TIM JENNINGS

Work Order: B3-11-254

This is the Certificate of Analysis for the following samples:

Client Work ID: D.O.5001 Date Received: 11/19/93 Number of Samples: Sample Type: SOIL

409832-003-01

#### I. Introduction

Samples were labeled as follows:

| CAMBIE TREMESTOR      |              |
|-----------------------|--------------|
| SAMPLE IDENTIFICATION | LABORATORY # |
| A1548                 | B3-11-254-01 |
| A1548-MS              | B3-11-254-02 |
| A1548-MSD             | B3-11-254-03 |
| A1549                 | B3-11-254-04 |
| A1550                 | B3-11-254-05 |
| A1551                 | B3-11-254-06 |
| A1552                 | B3-11-254-07 |
| A1553                 | B3-11-254-08 |
| A1554                 | B3-11-254-09 |
| LAB BLANK #1          | B3-11-254-10 |
| LAB BLANK #1          | B3-11-254-11 |
| LAB BLANK #2          | B3-11-254-12 |
|                       | 20: 12       |

Reviewed and Approved:

Laboratory Director

Page: 2 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-11-254

### II. QA/QC

The results presented in this report meet the statement of work requirements in accordance with Quality Control and Quality Assurance protocol except as noted in Section IV or in an optional sample narrative at the end of Section III.

In the presented analytical data, 'ND' or '<' indicates that the compound is not detected at the specified limit.

# III. Analytical Data

The following page(s) supply results for requested analyses performed on the samples listed above.

The test results relate to tested items only. ITAS-Austin reserves the right to control report production except in whole.

Page: 3 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-254

SAMPLE ID: A1548

SAMPLE DATE: 11/18/93 10:53:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting |       | Date            | Method    |
|-------------|------|--------|-----------|-------|-----------------|-----------|
| Test Name   | Ref  | Result | Limit     | Units | <u>Analyzed</u> | Reference |
| Chromium VI |      | 0.50U  | 0.50      | MG/KG | 12/08/93        | EPA7196   |

Page: 4 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1548

SAMPLE DATE: 11/18/93 SAMPLE MATRIX: SOIL ANALYSIS DATE: 12/01/93 DILUTION FACTOR: 1.0

UNITS: UG/KG

|                                                                           |                      |              | eporting             |                                                                                                                      |        |                   | D.          | eporting          |
|---------------------------------------------------------------------------|----------------------|--------------|----------------------|----------------------------------------------------------------------------------------------------------------------|--------|-------------------|-------------|-------------------|
|                                                                           | Result Qu            | al           | Limit                |                                                                                                                      | Result | Qua               |             | -                 |
| Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride | 10<br>10<br>10<br>10 | บ<br>บ<br>บ  | 10<br>10<br>10<br>10 | 1,2-Dichloropropane<br>trans-1,3-Dichloropropene<br>Trichloroethene<br>Chlorodibromomethane<br>1,1,2-Trichloroethane |        | 5<br>5<br>5<br>5  | U<br>U<br>U | 5<br>5<br>5<br>5  |
| Acetone Carbon disulfide 1,1-Dichloroethene                               | 8.6<br>5<br>5        | JB<br>U<br>U | 100<br>5<br>5        | Benzene cis-1,3-Dichloropropene 2-Chloroethylvinyl ether                                                             | 1      | 5<br>5<br>5<br>.0 | U<br>U<br>U | 5<br>5<br>5<br>10 |
| 1,1-Dichloroethane<br>trans-1,2-Dichloroethene<br>cis-1,2-Dichloroethene  | 5<br>5<br>5          | U<br>U       | 5<br>5<br>5          | Bromoform 2-Hexanone 4-Methyl-2-pentanone                                                                            | 5      | 5                 | ם<br>מ      | 5<br>50<br>50     |
| Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane            | 5<br>5<br>2.5        | U<br>U<br>J  | 5<br>5<br>100        | Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene                                                                  | _      | 5<br>5<br>5       | U<br>U      | 5<br>5<br>5       |
| Carbon tetrachloride Vinyl acetate Dichlorobromomethane                   | 5<br>5<br>10<br>5    | n<br>n       | 5<br>5<br>10<br>5    | Chlorobenzene Ethylbenzene Styrene Xylenes, total                                                                    |        | 5<br>5<br>5<br>5  | U<br>U<br>U | 5<br>5<br>5<br>5  |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 103        | 81 - 117 |
| BROMOFLUOROBENZENE    | 97         | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 106        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 5 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

# IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: **A1548**SAMPLE DATE: **11/18/93**SAMPLE MATRIX: **SOIL** 

EXTRACTION DATE: 11/28/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |       | Re   | porting |                            |        | ;    | Reporti |
|-----------------------------|-------|------|---------|----------------------------|--------|------|---------|
| R                           | esult | Qual | Limit   |                            | Result | Qual | -       |
| Phenol                      |       |      |         |                            |        |      |         |
| = <b>-</b>                  | 0.330 |      | 0.330   | 2,6-Dinitrotoluene         | 0.330  |      | 0.330   |
| bis(2-Chloroethyl)ether     | 0.330 |      | 0.330   | 3-Nitroaniline             | 0.825  | U    | 0.825   |
| 2-Chlorophenol              | 0.330 |      | 0.330   | Acenaphthene               | 0.330  | U    | 0.330   |
| 1,3-Dichlorobenzene         | 0.330 |      | 0.330   | 2,4-Dinitrophenol          | 0.825  | U    | 0.825   |
| 1,4-Dichlorobenzene         | 0.330 |      | 0.330   | 4-Nitrophenol              | 0.825  | U    | 0.825   |
| Benzyl alcohol              | 0.330 |      | 0.330   | Dibenzofuran               | 0.330  | U    | 0.330   |
| 1,2-Dichlorobenzene         | 0.330 |      | 0.330   | 2,4-Dinitrotoluene         | 0.330  | U    | 0.330   |
| 2-Methylphenol              | 0.330 |      | 0.330   | Diethylphthalate           | 0.04   | J    | 0.330   |
| bis(2-Chloroisopropyl)ether |       |      | 0.330   | 4-Chlorophenyl-phenylether | 0.330  | บ    | 0.330   |
| 4-Methylphenol              | 0.330 |      | 0.330   | Fluorene                   | 0.330  | บ    | 0.330   |
| N-Nitroso-di-n-propylamine  | 0.330 |      | 0.330   | 4-Nitroaniline             | 0.825  | บ    | 0.825   |
| Hexachloroethane            | 0.330 | U    | 0.330   | 4,6-Dinitro-2-methylphenol | 0.825  | U    | 0.825   |
| Nitrobenzene                | 0.330 | U    | 0.330   | N-Nitrosodiphenylamine (1) |        |      | 0.330   |
| Isophorone                  | 0.330 | บ    | 0.330   | 4-Bromophenyl-phenylether  | 0.330  |      | 0.330   |
| 2-Nitrophenol               | 0.330 | U    | 0.330   | Hexachlorobenzene          | 0.330  |      | 0.330   |
| 2,4-Dimethylphenol          | 0.330 | U    | 0.330   | Pentachlorophenol          | 0.825  |      | 0.825   |
| Benzoic Acid                | 0.330 | U    | 0.330   | Phenanthrene               | 0.330  |      | 0.330   |
| bis(2-Chloroethoxy)methane  | 0.330 | บ    | 0.330   | Anthracene                 | 0.330  |      | 0.330   |
| 2,4-Dichlorophenol          | 0.330 | บ    | 0.330   | Di-n-butylphthalate        | 1.4    | _    | 0.330   |
| 1,2,4-Trichlorobenzene      | 0.330 | U    | 0.330   | Fluoranthene               | 0.330  |      | 0.330   |
| Naphthalene                 | 0.330 | U    | 0.330   | Pyrene                     | 0.330  |      | 0.330   |
| 4-Chloroaniline             | 0.330 | U    | 0.330   | Butylbenzylphthalate       | 0.56   |      | 0.330   |
| Hexachlorobutadiene         | 0.330 |      | 0.330   | 3,3'-Dichlorobenzidine     | 0.330  | IJ   | 0.330   |
| 4-Chloro-3-methylphenol     | 0.330 |      | 0.330   | Benzo(a)anthracene         | 0.330  |      | 0.330   |
| 2-Methylnaphthalene         | 0.330 |      | 0.330   | Chrysene                   | 0.330  |      | 0.330   |
| Hexachlorocyclopentadiene   | 0.330 |      | 0.330   | bis(2-Ethylhexyl)phthalate |        | Ŭ    | 0.330   |
| 2,4,6-Trichlorophenol       | 0.330 |      | 0.330   | Di-n-octylphthalate        | 0.330  | II   | 0.330   |
| 2,4,5-Trichlorophenol       | 0.825 |      | 0.825   | Benzo(b) fluoranthene      | 0.330  |      | 0.330   |
| 2-Chloronaphthalene         | 0.330 |      | 0.330   | Benzo(k)fluoranthene       | 0.330  |      | 0.330   |
| 2-Nitroaniline              | 0.825 |      | 0.825   | Benzo(a)pyrene             | 0.330  |      | 0.330   |
| Dimethylphthalate           | 0.330 |      | 0.330   | Indeno(1,2,3-cd)pyrene     | 0.330  |      | 0.330   |
| Acenaphthylene              | 0.330 |      | 0.330   | Dibenzo(a,h)anthracene     | 0.330  |      | 0.330   |
| -                           |       | •    |         | Benzo(g,h,i)perylene       | 0.330  |      | 0.330   |
|                             |       |      |         | Demo(g, ii, I) per y telle | 0.330  | U    | 0.330   |

Page: 6 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1548

SAMPLE DATE: 11/18/93 SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 68         | 23 - 120 |
| 2-Fluorobiphenyl     | 66         | 30 - 115 |
| Terphenyl-D14        | 71         | 18 - 137 |
| Phenol-D5            | 75         | 24 - 113 |
| 2-Fluorophenol       | 57         | 25 - 121 |
| 2,4,6-Tribromcphenol | 68         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\ensuremath{\mathtt{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 7 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01

Work Order: B3-11-254

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1548
SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 92.5926

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 2.9    |                | 1.0                | 7060                | 12/09/93         |
| Aluminum  | 12000  | N              | 19                 | 6010                | 12/09/93         |
| Barium    | 690    | N              | 19                 | 6010                | 12/09/93         |
| Beryllium | 1.4    |                | 0.46               | 6010                | 12/09/93         |
| Cadmium   | 1.1    |                | 0.46               | 6010                | 12/09/93         |
| Chromium  | 15     |                | 0.93               | 6010                | 12/09/93         |
| Copper    | 8.5    |                | 2.3                | 6010                | 12/09/93         |
| Iron      | 13000  | N              | 9.3                | 6010                | 12/09/93         |
| Nickel    | 17     |                | 3.7                | 6010                | 12/09/93         |
| Lead      | 7.2    | N              | 0.30               | 7421                | 12/09/93         |
| Mercury   | 0.030  | ប              | 0.030              | 7471                | 12/07/93         |
| Silver    | 0.93   | ប              | 0.93               | 6010                | 12/09/93         |
| Zinc      | 23     |                | 1.9                | 6010                | 12/09/93         |

### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 8 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-11-254

SAMPLE ID: A1548-MS

SAMPLE DATE: 11/18/93 10:53:00

SAMPLE MATRIX: SOIL

| Test Name       | Note |        | Reporting    |       | Date     | Method    |
|-----------------|------|--------|--------------|-------|----------|-----------|
| Chromium VI     | Ref  | Result | <u>Limit</u> | Units | Analyzed | Reference |
| Chi Chi Luni VI |      | 101    |              | % REC | 12/08/93 | EPA7196   |

Page: 9 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1548-MS
SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/01/93
DILUTION FACTOR: 1.0

UNITS: % REC

|                    | Result                |            |          | Result |
|--------------------|-----------------------|------------|----------|--------|
| 1,1-Dichloroethene | 103                   | Trichloro  | ethene   | 91     |
|                    |                       | Benzene    |          | 102    |
|                    |                       | Toluene    |          | 98     |
|                    |                       | Chloroben  | zene     | 96     |
|                    | Surrogates            | % Recovery | Limits   |        |
|                    | TOLUENE-D8            | 103        | 81 - 117 |        |
|                    | BROMOFLUOROBENZENE    | 98         | 74 - 121 |        |
|                    | 1,2-DICHLOROETHANE-D4 | 105        | 70 - 120 |        |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 10 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01

Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1548-MS SAMPLE DATE: 11/18/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93 ANALYSIS DATE: 12/09/93 DILUTION FACTOR: 0.033

UNITS: % REC

Result Result Phenol 75 Acenaphthene 82 2-Chlorophenol 80 4-Nitrophenol 63 1,4-Dichlorobenzene 79 2,4-Dinitrotoluene 68 N-Nitroso-di-n-propylamine 76 Pentachlorophenol 79 1,2,4-Trichlorobenzene 80 Pyrene 79 4-Chloro-3-methylphenol 72

| Surrogates           | % Recovery | Limits   |  |  |  |
|----------------------|------------|----------|--|--|--|
| Nitrobenzene-D5      | 68         | 23 - 120 |  |  |  |
| 2-Fluorobiphenyl     | 69         | 30 - 115 |  |  |  |
| Terphenyl-D14        | 72         | 18 - 137 |  |  |  |
| Phenol-D5            | 74         | 24 - 113 |  |  |  |
| 2-Fluorophenol       | 65         | 25 - 121 |  |  |  |
| 2,4,6-Tribromophenol | 71         | 19 - 122 |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 11 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1548-MS
SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 92.5926

UNITS: % REC

| Result        | Method<br>Reference | Analysis<br>Date |
|---------------|---------------------|------------------|
| Arsenic 100   | 7060                | 12/09/93         |
| Aluminum 1371 | 6010                | 12/09/93         |
| Barium 905    | 6010                | 12/09/93         |
| Beryllium 89  | 6010                | 12/09/93         |
| Cadmium 85    | 6010                | 12/09/93         |
| Chromium 95   | 6010                | 12/09/93         |
| Copper 91     | 6010                | 12/09/93         |
| Iron 548      | 6010                | 12/09/93         |
| Nickel 90     | 6010                | 12/09/93         |
| Lead 143      | 7421                | 12/09/93         |
| Mercury 110   | 7471                | 12/07/93         |
| Silver 85     | 6010                | 12/09/93         |
| Zinc 94       | 6010                | 12/09/93         |

### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

# Referenced notes for these results:

Matrix spike outside control limits due to matrix interference on aluminum, barium and iron analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

% RPD for matrix spikes outside control limits due to matrix interference on barium analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable. Page: 12 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

SAMPLE ID: A1548-MSD

SAMPLE DATE: 11/18/93 10:53:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting    |       | Date     | Method    |
|-------------|------|--------|--------------|-------|----------|-----------|
| Test Name   | Ref  | Result | <u>Limit</u> | Units | Analyzed | Reference |
| Chromium VI |      | 95     |              | % REC | 12/08/93 | EPA7196   |

Page: 13 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1548-MSD SAMPLE DATE: 11/18/93 SAMPLE MATRIX: SOIL

ANALYSIS DATE: 12/01/93
DILUTION FACTOR: 1.0

UNITS: % REC

|                    | Result | •                                                      | Result                 |
|--------------------|--------|--------------------------------------------------------|------------------------|
| 1,1-Dichloroethene | 106    | Trichloroethene<br>Benzene<br>Toluene<br>Chlorobenzene | 87<br>102<br>101<br>99 |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 105        | 81 - 117 |
| BROMOFLUOROBENZENE    | 98         | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 104        | 70 - 120 |

- U none detected
- ${\tt J}$  estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 14 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

# IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: KPA8270

SAMPLE ID: A1548-MSD SAMPLE DATE: 11/18/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93 ANALYSIS DATE: 12/09/93 DILUTION FACTOR: 0.033

UNITS: % REC

| I                          | Result |                    | Result |
|----------------------------|--------|--------------------|--------|
| Phenol                     | 71     | Acenaphthene       | 78     |
| 2-Chlorophenol             | 77     | 4-Nitrophenol      | 65     |
| 1,4-Dichlorobenzene        | 74     | 2,4-Dinitrotoluene | 70     |
| N-Nitroso-di-n-propylamine | 76     | Pentachlorophenol  | 79     |
| 1,2,4-Trichlorobenzene     | 79     | Pyrene             | 78     |
| 4-Chloro-3-methylphenol    | 72     | -                  |        |

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 68         | 23 - 120 |
| 2-Fluorobiphenyl     | 65         | 30 - 115 |
| Terphenyl-D14        | 71         | 18 - 137 |
| Phenol-D5            | 72         | 24 - 113 |
| 2-Fluorophenol       | 62         | 25 - 121 |
| 2,4,6-Tribromophenol | 65         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' - positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 15 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1548-MSD SAMPLE DATE: 11/18/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 96.1538

UNITS: % REC

| Result        | Method<br>Reference | Analysis<br>Date     |
|---------------|---------------------|----------------------|
| Arsenic 99    | 7060                | 12/00/02             |
| Aluminum 1155 | 6010                | 12/09/93<br>12/09/93 |
| Barium 1358   | 6010                | 12/09/93             |
| Beryllium 89  | 6010                |                      |
| Cadmium 86    | 6010                | 12/09/93             |
| Chromium 93   | 6010                | 12/09/93             |
| Copper 90     | 6010                | 12/09/93             |
| Iron 448      | 6010                | 12/09/93             |
| Nickel 89     | 6010                | 12/09/93             |
| Lead 129      | 7421                | 12/09/93             |
| Mercury 110   | 7421                | 12/09/93             |
| Silver 86     | 6010                | 12/07/93             |
| Zinc 92       | 6010                | 12/09/93<br>12/09/93 |

### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

# Referenced notes for these results:

Matrix spike duplicate outside control limits due to matrix interference on aluminum, barium and iron analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

% RPD for matrix spikes outside control limits due to matrix interference on barium analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

Page: 16 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-254

SAMPLE ID: A1549

SAMPLE DATE: 11/18/93 11:00:00

SAMPLE MATRIX: SOIL

|             | Note |               | Reporting |       | Dat   | te   | Method    |
|-------------|------|---------------|-----------|-------|-------|------|-----------|
| Test Name   | Ref  | Result        | Limit     | Units | Analy | zed  | Reference |
| Chromium VI |      | 0.50 <b>U</b> | 0.50      | MG/KG | 12/08 | 3/93 | EPA7196   |

Page: 17 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

### IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1549

SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/01/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                          |        |      | Reporti | .ng                       |        |      | Re | portin |
|--------------------------|--------|------|---------|---------------------------|--------|------|----|--------|
|                          | Result | Qual | Limit   |                           | Result | Qua) | L  | Limit  |
| Chloromethane            | :      | LO   | U 10    | 1,2-Dichloropropane       |        | 5    | U  | 5      |
| Bromomethane             |        | .0   | U 10    | trans-1,3-Dichloropropene |        | 5    | U  | 5      |
| Vinyl chloride           |        | LO   | U 10    | Trichloroethene           |        | 5    | U  | 5      |
| Chloroethane             |        | 10   | U 10    | Chlorodibromomethane      | •      | 5    | U  | 5      |
| Methylene chloride       | 5.     | 5 J  | в 10    | 1,1,2-Trichloroethane     |        | 5    | U  | 5      |
| Acetone                  | :      | 13 J | B 100   | Benzene                   |        | 5    | U  | 5      |
| Carbon disulfide         |        | 5    | U 5     | cis-1,3-Dichloropropene   |        | 5    | U  | 5      |
| 1,1-Dichloroethene       |        | 5    | U 5     | 2-Chloroethylvinyl ether  |        | 10   | U  | 10     |
| 1,1-Dichloroethane       |        | 5    | U 5     | Bromoform                 |        | 5    | U  | 5      |
| trans-1,2-Dichloroethene |        | 5    | U 5     | 2-Hexanone                | !      | 50   | U  | 50     |
| cis-1,2-Dichloroethene   |        | 5    | U 5     | 4-Methyl-2-pentanone      | !      | 50   | U  | 50     |
| Chloroform               |        | 5    | U 5     | Tetrachloroethene         |        | 5    | U  | 5      |
| 1,2-Dichloroethane       |        | 5    | U 5     | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5      |
| 2-Butanone               | 10     | 00   | U 100   | Toluene                   |        | 5    | U  | 5      |
| 1,1,1-Trichloroethane    |        | 5    | U 5     | Chlorobenzene             |        | 5    | U  | 5      |
| Carbon tetrachloride     |        | 5    | U 5     | Ethylbenzene              |        | 5    | U  | 5      |
| Vinyl acetate            | :      | LO   | U 10    | Styrene                   |        | 5    | U  | 5      |
| Dichlorobromomethane     |        | 5    | U 5     | Xylenes, total            |        | 5    | U  | 5      |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 103        | 81 - 117 |
| BROMOFLUOROBENZENE    | 100        | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 108        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 18 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

# IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1549 SAMPLE DATE: 11/18/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93 ANALYSIS DATE: 12/09/93 DILUTION FACTOR: 0.033

| UNITS: MG/KG                |         | Re  | eporting |                                   |        | 1        | Reporti |
|-----------------------------|---------|-----|----------|-----------------------------------|--------|----------|---------|
| Re                          | esult Q | ual | Limit    |                                   | Result | Qual     | Limit   |
| Phenol                      | 0.330   | 11  | 0.330    | 2,6-Dinitrotoluene                | 0.330  | ) 11     | 0.330   |
| bis(2-Chloroethyl)ether     | 0.330   |     | 0.330    | 3-Nitroaniline                    | 0.825  |          | 0.825   |
| 2-Chlorophenol              | 0.330   |     | 0.330    | Acenaphthene                      | 0.330  |          | 0.330   |
| 1,3-Dichlorobenzene         | 0.330   |     | 0.330    | 2,4-Dinitrophenol                 | 0.825  |          | 0.825   |
| 1,4-Dichlorobenzene         | 0.330   |     | 0.330    | 4-Nitrophenol                     | 0.825  |          | 0.825   |
| Benzyl alcohol              | 0.330   |     | 0.330    | Dibenzofuran                      | 0.330  |          | 0.330   |
| 1,2-Dichlorobenzene         | 0.330   |     | 0.330    | 2,4-Dinitrotoluene                | 0.330  |          | 0.330   |
| 2-Methylphenol              | 0.330   |     | 0.330    | Diethylphthalate                  | 0.072  |          | 0.330   |
| bis(2-Chloroisopropyl)ether | 0.330   |     | 0.330    | 4-Chlorophenyl-phenylether        |        |          | 0.330   |
| 4-Methylphenol              | 0.330   |     | 0.330    | Fluorene                          | 0.330  |          | 0.330   |
| N-Nitroso-di-n-propylamine  | 0.330   | บ   | 0.330    | 4-Nitroaniline                    | 0.825  |          | 0.825   |
| Hexachloroethane            | 0.330   | U   | 0.330    | 4,6-Dinitro-2-methylphenol        |        |          | 0.825   |
| Nitrobenzene                | 0.330   | U   | 0.330    | N-Nitrosodiphenylamine (1)        |        | <b>U</b> | 0.330   |
| Isophorone                  | 0.330   | U   | 0.330    | 4-Bromophenyl-phenylether         | 0.330  | <b>U</b> | 0.330   |
| 2-Nitrophenol               | 0.330   | U   | 0.330    | Hexachlorobenzene                 | 0.330  | υ (      | 0.330   |
| 2,4-Dimethylphenol          | 0.330   | U   | 0.330    | Pentachlorophenol                 | 0.825  | <b>U</b> | 0.825   |
| Benzoic Acid                | 0.330   | U   | 0.330    | Phenanthrene                      | 0.330  | U (      | 0.330   |
| bis(2-Chloroethoxy)methane  | 0.330   | U   | 0.330    | Anthracene                        | 0.330  | <b>U</b> | 0.330   |
| 2,4-Dichlorophenol          | 0.330   | U   | 0.330    | Di-n-butylphthalate               | 1.2    | ?        | 0.330   |
| 1,2,4-Trichlorobenzene      | 0.330   | U   | 0.330    | Fluoranthene                      | 0.330  | U        | 0.330   |
| Naphthalene                 | 0.330   | U   | 0.330    | Pyrene                            | 0.330  | <b>U</b> | 0.330   |
| 4-Chloroaniline             | 0.330   | U   | 0.330    | Butylbenzylphthalate              | 0.67   | 7        | 0.330   |
| Hexachlorobutadiene         | 0.330   | U   | 0.330    | 3,3'-Dichlorobenzidine            | 0.330  | U (      | 0.330   |
| 4-Chloro-3-methylphenol     | 0.330   | U   | 0.330    | Benzo(a)anthracene                | 0.330  | <b>U</b> | 0.330   |
| 2-Methylnaphthalene         | 0.330   | U   | 0.330    | Chrysene                          | 0.330  | U (      | 0.330   |
| Hexachlorocyclopentadiene   | 0.330   | U   | 0.330    | bis(2-Ethylhexyl)phthalate        | 1.5    |          | 0.330   |
| 2,4,6-Trichlorophenol       | 0.330   | U   | 0.330    | Di-n-octylphthalate               | 0.330  | U (      | 0.330   |
| 2,4,5-Trichlorophenol       | 0.825   |     | 0.825    | Benzo(b)fluoranthene              | 0.330  | <b>U</b> | 0.330   |
| 2-Chloronaphthalene         | 0.330   | U   | 0.330    | Benzo(k)fluoranthene              | 0.330  | U (      | 0.330   |
| 2-Nitroaniline              | 0.825   | U   | 0.825    | Benzo(a)pyrene                    | 0.330  | U (      | 0.330   |
| Dimethylphthalate           | 0.330   |     | 0.330    | <pre>Indeno(1,2,3-cd)pyrene</pre> | 0.330  | _        | 0.330   |
| Acenaphthylene              | 0.330   | U   | 0.330    | Dibenzo(a,h)anthracene            | 0.330  |          | 0.330   |
|                             |         |     |          | Benzo(g,h,i)perylene              | 0.330  | ) U      | 0.330   |

Page: 19 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1549

SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 67         | 23 - 120 |
| 2-Fluorobiphenyl     | 67         | 30 - 115 |
| Terphenyl-D14        | 69         | 18 - 137 |
| Phenol-D5            | 74         | 24 - 113 |
| 2-Fluorophenol       | 62         | 25 - 121 |
| 2,4,6-Tribromophenol | 64         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 20 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1549

SAMPLE DATE: 11/18/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 108.696

UNITS: MG/KG

|                                                                                                | Result                                                                              | Result<br>Qual         | Reporting<br>Limit                                                                        | Method<br>Reference                                          | Analysis<br>Date                                                                                                                             |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Arsenic Aluminum Barium Beryllium Cadmium Chromium Copper Iron Nickel Lead Mercury Silver Zinc | 1.8<br>16000<br>22<br>1.9<br>0.55<br>19<br>22<br>13000<br>28<br>2.5<br>0.031<br>1.1 | N<br>UN<br>N<br>N<br>U | 1.1<br>22<br>22<br>0.54<br>0.54<br>1.1<br>2.7<br>11<br>4.3<br>0.33<br>0.031<br>1.1<br>2.2 | 7060<br>6010<br>6010<br>6010<br>6010<br>6010<br>6010<br>6010 | 12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93 |

## Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 21 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

SAMPLE ID: A1550

SAMPLE DATE: 11/18/93 11:00:00

SAMPLE MATRIX: SOIL

|             | Note       |        | Reporting |       | Date     | Method    |
|-------------|------------|--------|-----------|-------|----------|-----------|
| Test Name   | <u>Ref</u> | Result | Limit     | Units | Analyzed | Reference |
| Chromium VI |            | 0.50U  | 0.50      | MG/KG | 12/08/93 | EPA7196   |

Page: 22 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

## IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1550

SAMPLE DATE: 11/18/93 SAMPLE MATRIX: SOIL

ANALYSIS DATE: 12/01/93 DILUTION FACTOR: 1.0

UNITS: UG/KG

| Surrogates<br>TOLUENE-D8 | % Recovery | Limits   |
|--------------------------|------------|----------|
| BROMOFLUOROBENZENE       | 102        | 81 - 117 |
| 1,2-DICHLOROETHANE-D4    | 97         | 74 - 121 |
|                          | 104        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' - positive result
- - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 23 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

# IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3- =4

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1550

SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |       | Re       | eporting |                            |        | 1        | Reporti |
|-----------------------------|-------|----------|----------|----------------------------|--------|----------|---------|
| R                           | esult | Qual     | Limit    |                            | Result | Qual     | Limit   |
|                             |       |          | •        |                            |        |          |         |
| Phenol                      | 0.330 |          | 0.330    | 2,6-Dinitrotoluene         | 0.330  | _        | 0.330   |
| bis(2-Chloroethyl)ether     | 0.330 |          | 0.330    | 3-Nitroaniline             | 0.825  | S U      | 0.825   |
| 2-Chlorophenol              | 0.330 |          | 0.330    | Acenaphthene               | 0.330  | ) U      | 0.330   |
| 1,3-Dichlorobenzene         | 0.330 |          | 0.330    | 2,4-Dinitrophenol          | 0.825  | <b>U</b> | 0.825   |
| 1,4-Dichlorobenzene         | 0.330 | υ (      | 0.330    | 4-Nitrophenol              | 0.825  | <b>U</b> | 0.825   |
| Benzyl alcohol              | 0.330 | ) U      | 0.330    | Dibenzofuran               | 0.330  | ט כ      | 0.330   |
| 1,2-Dichlorobenzene         | 0.330 | U (      | 0.330    | 2,4-Dinitrotoluene         | 0.330  | U C      | 0.330   |
| 2-Methylphenol              | 0.330 | <b>U</b> | 0.330    | Diethylphthalate           | 0.07   | 7 J      | 0.330   |
| bis(2-Chloroisopropyl)ether | 0.330 | <b>U</b> | 0.330    | 4-Chlorophenyl-phenylether | 0.330  | <b>U</b> | 0.330   |
| 4-Methylphenol              | 0.330 | U (      | 0.330    | Fluorene                   | 0.330  | <b>U</b> | 0.330   |
| N-Nitroso-di-n-propylamine  | 0.330 | ) U      | 0.330    | 4-Nitroaniline             | 0.825  | U        | 0.825   |
| Hexachloroethane            | 0.330 | ) U      | 0.330    | 4,6-Dinitro-2-methylphenol | 0.825  | <b>U</b> | 0.825   |
| Nitrobenzene                | 0.330 | <b>U</b> | 0.330    | N-Nitrosodiphenylamine (1) | 0.330  | <b>U</b> | 0.330   |
| Isophorone                  | 0.330 | <b>U</b> | 0.330    | 4-Bromophenyl-phenylether  | 0.330  | <b>U</b> | 0.330   |
| 2-Nitrophenol               | 0.330 | υ (      | 0.330    | Hexachlorobenzene          | 0.330  | บ (      | 0.330   |
| 2,4-Dimethylphenol          | 0.330 | ט (      | 0.330    | Pentachlorophenol          | 0.825  | ט ו      | 0.825   |
| Benzoic Acid                | 0.330 | ט (      | 0.330    | Phenanthrene               | 0.330  | υ (      | 0.330   |
| bis(2-Chloroethoxy)methane  | 0.330 | U (      | 0.330    | Anthracene                 | 0.330  | <b>U</b> | 0.330   |
| 2,4-Dichlorophenol          | 0.330 | U (      | 0.330    | Di-n-butylphthalate        | 1.2    | :        | 0.330   |
| 1,2,4-Trichlorobenzene      | 0.330 | U        | 0.330    | Fluoranthene               | 0.330  | ט (      | 0.330   |
| Naphthalene                 | 0.330 | ט (      | 0.330    | Pyrene                     | 0.330  |          | 0.330   |
| 4-Chloroaniline             | 0.330 | U        | 0.330    | Butylbenzylphthalate       | 0.78   |          | 0.330   |
| Hexachlorobutadiene         | 0.330 | ט י      | 0.330    | 3,3'-Dichlorobenzidine     | 0.330  |          | 0.330   |
| 4-Chloro-3-methylphenol     | 0.330 | ט (      | 0.330    | Benzo(a)anthracene         | 0.330  |          | 0.330   |
| 2-Methylnaphthalene         | 0.330 | υ        | 0.330    | Chrysene                   | 0.330  |          | 0.330   |
| Hexachlorocyclopentadiene   | 0.330 | U        | 0.330    | bis(2-Ethylhexyl)phthalate |        |          | 0.330   |
| 2,4,6-Trichlorophenol       | 0.330 | υ        | 0.330    | Di-n-octylphthalate        | 0.330  |          | 0.330   |
| 2,4,5-Trichlorophenol       | 0.825 |          | 0.825    | Benzo(b) fluoranthene      | 0.330  |          | 0.330   |
| 2-Chloronaphthalene         | 0.330 |          | 0.330    | Benzo(k) fluoranthene      | 0.330  |          | 0.330   |
| 2-Nitroaniline              | 0.825 |          | 0.825    | Benzo(a)pyrene             | 0.330  |          | 0.330   |
| Dimethylphthalate           | 0.330 | _        | 0.330    | Indeno(1,2,3-cd)pyrene     | 0.330  |          | 0.330   |
| Acenaphthylene              | 0.330 | _        | 0.330    | Dibenzo(a,h)anthracene     | 0.330  |          | 0.330   |
|                             |       | _        |          | Benzo(g,h,i)perylene       | 0.330  |          | 0.330   |
|                             |       |          |          | (3// -/Eoc]                | 2.200  | •        |         |

Page: 24 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1550

SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|
| Nitrobenzene-D5      | 68         | 23 - 120 |  |  |  |  |
| 2-Fluorobiphenyl     | 64         | 30 - 115 |  |  |  |  |
| Terphenyl-D14        | 69         | 18 - 137 |  |  |  |  |
| Phenol-D5            | 73         | 24 - 113 |  |  |  |  |
| 2-Fluorophenol       | 59         | 25 - 121 |  |  |  |  |
| 2,4,6-Tribromophenol | 67         | 19 - 122 |  |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- ${\tt J}$  estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 25 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1550

SAMPLE DATE: 11/18/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 108.696

UNITS: MG/KG

|                | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|----------------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic        | 1.7    |                | 1.1                | 7060                | 12/09/93         |
| Aluminum       | 12000  | N              | 22                 | 6010                | 12/09/93         |
| Barium         | 22     | UN             | 22                 | 6010                | 12/09/93         |
| Beryllium      | 1.6    |                | 0.54               | 6010                | 12/09/93         |
| Cadmium        | 0.54   | U              | 0.54               | 6010                | 12/09/93         |
| Chromium       | 14     |                | 1.1                | 6010                | 12/09/93         |
| Copper<br>Iron | 20     |                | 2.7                | 6010                | 12/09/93         |
| Nickel         | 9800   | N              | 11                 | 6010                | 12/09/93         |
| Lead           | 22     |                | 4.3                | 6010                | 12/09/93         |
| Mercury        | 3.0    | N              | 0.32               | 7421                | 12/09/93         |
| Silver         | 0.032  | U              | 0.032              | 7471                | 12/07/93         |
| Zinc           | 1.1    | ט              | 1.1                | 6010                | 12/09/93         |
| ZIIIC          | 26     |                | 2.2                | 6010                | 12/09/93         |

### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 26 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-11-254

SAMPLE ID: A1551

SAMPLE DATE: 11/18/93 11:13:00

SAMPLE MATRIX: SOIL

|                       | Note       |        | Reporting |       |  | Date     | Method    |
|-----------------------|------------|--------|-----------|-------|--|----------|-----------|
| Test Name Chromium VI | <u>Ref</u> | Result | Limit     | Units |  | Analyzed | Reference |
| Chromitum VI          |            | 0.500  | 0.50      | MG/KG |  | 12/08/93 | EPA7196   |

Page: 27 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1551

SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/01/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

| ,                        | Result Qu |    | eporting<br>Limit |                           | Result | Qua |   | eporting<br>Limit |
|--------------------------|-----------|----|-------------------|---------------------------|--------|-----|---|-------------------|
| Chloromethane            | 10        | U  | 10                | 1,2-Dichloropropane       |        | 5   | U | 5                 |
| Bromomethane             | 10        | U  | 10                | trans-1,3-Dichloropropene |        | 5   | U | 5                 |
| Vinyl chloride           | 10        | U  | 10                | Trichloroethene           |        | 5   | U | 5                 |
| Chloroethane             | 10        | U  | 10                | Chlorodibromomethane      |        | 5   | U | 5                 |
| Methylene chloride       | 6.5       | JВ | 10                | 1,1,2-Trichloroethane     |        | 5   | U | 5                 |
| Acetone                  | 7.2       | JB | 100               | Benzene                   |        | 5   | U | 5                 |
| Carbon disulfide         | 5         | บ  | 5                 | cis-1,3-Dichloropropene   |        | 5   | U | 5                 |
| 1,1-Dichloroethene       | 5         | U  | 5                 | 2-Chloroethylvinyl ether  | •      | LO  | U | 10                |
| 1,1-Dichloroethane       | 5         | U  | 5                 | Bromoform                 | •      | 5   | U | 5                 |
| trans-1,2-Dichloroethene | 5         | บ  | 5                 | 2-Hexanone                |        | 50  | U | 50                |
| cis-1,2-Dichloroethene   | 5         | U  | 5                 | 4-Methyl-2-pentanone      | •      | 50  | Ū | 50                |
| Chloroform               | 5         | U  | 5                 | Tetrachloroethene         |        | 5   | ט | 5                 |
| 1,2-Dichloroethane       | 5         | U  | 5                 | 1,1,2,2-Tetrachloroethane |        | 5   | U | 5                 |
| 2-Butanone               | 4.0       | J  | 100               | Toluene                   |        | 5   | U | 5                 |
| 1,1,1-Trichloroethane    | 5         | U  | 5                 | Chlorobenzene             |        | 5   | U | 5                 |
| Carbon tetrachloride     | 5         | U  | 5                 | Ethylbenzene              |        | 5   | U | 5                 |
| Vinyl acetate            | 10        | U  | 10                | Styrene                   |        | 5   | U | 5                 |
| Dichlorobromomethane     | 5         | U  | 5                 | Xylenes, total            |        | 5   | U | 5                 |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 104        | 81 - 117 |
| BROMOFLUOROBENZENE    | 98         | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 108        | 70 - 120 |

- U none detected
- ${\tt J}$  estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 28 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

### IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1551
SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG               |                | Re   | porting |                            |        |      | Reportin |
|----------------------------|----------------|------|---------|----------------------------|--------|------|----------|
|                            | Result         | Qual | Limit   |                            | Result | Qual | **       |
| Phenol                     | 0.330          | , ,, | 0 330   |                            |        | _    |          |
| bis(2-Chloroethyl)ether    | 0.330          |      | 0.330   | 2,6-Dinitrotoluene         | 0.330  |      | 0.330    |
| 2-Chlorophenol             | 0.330          |      | 0.330   | 3-Nitroaniline             | 0.825  | U    | 0.825    |
| 1,3-Dichlorobenzene        | 0.330          |      | 0.330   | Acenaphthene               | 0.330  | U    | 0.330    |
| 1,4-Dichlorobenzene        | 0.330          |      | 0.330   | 2,4-Dinitrophenol          | 0.825  |      | 0.825    |
| Benzyl alcohol             | 0.330          |      | 0.330   | 4-Nitrophenol              | 0.825  |      | 0.825    |
| 1,2-Dichlorobenzene        | 0.330          |      | 0.330   | Dibenzofuran               | 0.330  | U    | 0.330    |
| 2-Methylphenol             | 0.330          |      | 0.330   | 2,4-Dinitrotoluene         | 0.330  |      | 0.330    |
| bis(2-Chloroisopropyl)ethe | r 0.330        |      | 0.330   | Diethylphthalate           | 0.082  | J    | 0.330    |
| 4-Methylphenol             | 0.330          |      | 0.330   | 4-Chlorophenyl-phenylether |        | U    | 0.330    |
| N-Nitroso-di-n-propylamine | 0.330          |      | 0.330   | Fluorene                   | 0.330  | U    | 0.330    |
| Hexachloroethane           |                |      | 0.330   | 4-Nitroaniline             | 0.825  | U    | 0.825    |
| Nitrobenzene               | 0.330          |      | 0.330   | 4,6-Dinitro-2-methylphenol |        | U    | 0.825    |
| Isophorone                 | 0.330          |      | 0.330   | N-Nitrosodiphenylamine (1) | 0.330  | U    | 0.330    |
| 2-Nitrophenol              | 0.330          |      | 0.330   | 4-Bromophenyl-phenylether  | 0.330  | U    | 0.330    |
| 2,4-Dimethylphenol         | 0.330          |      | 0.330   | Hexachlorobenzene          | 0.330  | U    | 0.330    |
| Benzoic Acid               | 0.330<br>0.330 |      | 0.330   | Pentachlorophenol          | 0.825  | U    | 0.825    |
| bis(2-Chloroethoxy)methane | 0.330          |      | 0.330   | Phenanthrene               | 0.330  | U    | 0.330    |
| 2,4-Dichlorophenol         |                |      | 0.330   | Anthracene                 | 0.330  | U    | 0.330    |
| 1,2,4-Trichlorobenzene     | 0.330          |      | 0.330   | Di-n-butylphthalate        | 1.4    |      | 0.330    |
| Naphthalene                | 0.330          |      | 0.330   | Fluoranthene               | 0.330  | U    | 0.330    |
| 4-Chloroaniline            | 0.330          |      | 0.330   | Pyrene                     | 0.330  | U    | 0.330    |
| Hexachlorobutadiene        | 0.330          |      | 0.330   | Butylbenzylphthalate       | 0.96   |      | 0.330    |
| 4-Chloro-3-methylphenol    | 0.330          | _    | 0.330   | 3,3'-Dichlorobenzidine     | 0.330  | U    | 0.330    |
| 2-Methylnaphthalene        | 0.330          |      | 0.330   | Benzo(a)anthracene         | 0.330  | U    | 0.330    |
| Hexachlorocyclopentadiene  | 0.330<br>0.330 |      | 0.330   | Chrysene                   | 0.330  | U    | 0.330    |
| 2,4,6-Trichlorophenol      |                |      | 0.330   | bis(2-Ethylhexyl)phthalate | 2.1    |      | 0.330    |
| 2,4,5-Trichlorophenol      | 0.330          |      | 0.330   | Di-n-octylphthalate        | 0.330  | U    | 0.330    |
| 2-Chloronaphthalene        | 0.825          |      | 0.825   | Benzo(b)fluoranthene       | 0.330  | U    | 0.330    |
| 2-Nitroaniline             | 0.330          |      | 0.330   | Benzo(k)fluoranthene       | 0.330  | U    | 0.330    |
| Dimethylphthalate          | 0.825<br>0.330 |      | 0.825   | Benzo(a)pyrene             | 0.330  | U    | 0.330    |
| Acenaphthylene             | 0.330          |      | 330     | Indeno(1,2,3-cd)pyrene     | 0.330  | U    | 0.330    |
| <b></b>                    | 0.330          | U (  | 330     | Dibenzo(a,h)anthracene     | 0.330  | U (  | 0.330    |
|                            |                |      |         | Benzo(g,h,i)perylene       | 0.330  | υ (  | 0.330    |

Page: 29 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1551

SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 41         | 23 - 120 |
| 2-Fluorobiphenyl     | 40         | 30 - 115 |
| Terphenyl-D14        | 47         | 18 - 137 |
| Phenol-D5            | 51         | 24 - 113 |
| 2-Fluorophenol       | 44         | 25 - 121 |
| 2,4,6-Tribromcphenol | 42         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 30 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1551

SAMPLE DATE: 11/18/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 104.167

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 1.1    |                | 0.86               | 7060                | 12/09/93         |
| Aluminum  | 9900   | N              | 21                 | 6010                | 12/09/93         |
| Barium    | 21     | UN             | 21                 | 6010                | 12/09/93         |
| Beryllium | 1.5    |                | 0.52               | 6010                | 12/09/93         |
| Cadmium   | 0.52   | U              | 0.52               | 6010                | 12/09/93         |
| Chromium  | 11     |                | 1.0                | 6010                | 12/09/93         |
| Copper    | 19     |                | 2.6                | 6010                | 12/09/93         |
| Iron      | 11000  | N              | 10                 | 6010                | 12/09/93         |
| Nickel    | 21     |                | 4.2                | 6010                | 12/09/93         |
| Lead      | 7.8    | N              | 1.0                | 7421                | 12/09/9          |
| Mercury   | 0.030  | U              | 0.030              | 7471                | 12/07/9          |
| Silver    | 1.0    | U              | 1.0                | 6010                | 12/09/9          |
| Zinc      | 22     |                | 2.1                | 6010                | 12/09/9          |

### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 31 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 802-6684

(512) 892-6684 409832-003-01 Work Order: B3-11-254

SAMPLE ID: A1552

SAMPLE DATE: 11/18/93 11:25:00

SAMPLE MATRIX: SOIL

|             | Note Reporting |        |       | Reporting |          |           |
|-------------|----------------|--------|-------|-----------|----------|-----------|
| Test Name   | Ref            | Result | Limit | Units     | Analyzed | Reference |
| Chromium VI |                | 0.500  | 0.50  | MG/KG     | 12/08/93 | EPA7196   |

Page: 32 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1552

SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                          |           | Re | eporting |                           |        |     | Re | eportin |
|--------------------------|-----------|----|----------|---------------------------|--------|-----|----|---------|
|                          | Result Qu | al | Limit    |                           | Result | Qua | 1  | Limit   |
| Chloromethane            | 10        | U  | 10       | 1,2-Dichloropropane       |        | 5   | U  | 5       |
| Bromomethane             | 10        | U  | 10       | trans-1,3-Dichloropropene |        | 5   | U  | 5       |
| Vinyl chloride           | 10        | U  | 10       | Trichloroethene           |        | 5   | U  | 5       |
| Chloroethane             | 10        | U  | 10       | Chlorodibromomethane      |        | 5   | U  | 5       |
| Methylene chloride       | 7.4       | J  | 10       | 1,1,2-Trichloroethane     |        | 5   | U  | 5       |
| Acetone                  | 11        | JВ | 100      | Benzene                   |        | 5   | U  | 5       |
| Carbon disulfide         | 5         | U  | 5        | cis-1,3-Dichloropropene   |        | 5   | U  | 5       |
| 1,1-Dichloroethene       | 5         | U  | 5        | 2-Chloroethylvinyl ether  | :      | 10  | U  | 10      |
| 1,1-Dichloroethane       | 5         | U  | 5        | Bromoform                 |        | 5   | U  | 5       |
| trans-1,2-Dichloroethene | 5         | U  | 5        | 2-Hexanone                |        | 50  | U  | 50      |
| cis-1,2-Dichloroethene   | 5         | U  | 5        | 4-Methyl-2-pentanone      | į      | 50  | U  | 50      |
| Chloroform               | 5         | U  | 5        | Tetrachloroethene         |        | 5   | U  | 5       |
| 1,2-Dichloroethane       | 5         | Ū  | 5        | 1,1,2,2-Tetrachloroethane |        | 5   | U  | 5       |
| 2-Butanone               | 2.0       | J  | 100      | Toluene                   |        | 5   | U  | 5       |
| 1,1,1-Trichloroethane    | 5         | U  | 5        | Chlorobenzene             |        | 5   | U  | 5       |
| Carbon tetrachloride     | . 5       | Ū  | 5        | Ethylbenzene              |        | 5   | U  | 5       |
| Vinyl acetate            | 10        | U  | 10       | Styrene                   |        | 5   | U  | 5       |
| Dichlorobromomethane     | 5         | U  | 5        | Xylenes, total            |        | 5   | U  | 5       |

| Surrogates            | % Recovery | Limits   |  |  |  |  |
|-----------------------|------------|----------|--|--|--|--|
| TOLUENE-D8            | 105        | 81 - 117 |  |  |  |  |
| BROMOFLUOROBENZENE    | 102        | 74 - 121 |  |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 105        | 70 - 120 |  |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 33 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

# IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1552
SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                                          |       | Re   | eporting       |                                             |        | 1    | Reporti:       |
|-------------------------------------------------------|-------|------|----------------|---------------------------------------------|--------|------|----------------|
| Re                                                    | sult  | Qual | Limit          |                                             | Result | Qual | Limit          |
| Phasel                                                |       |      |                |                                             | 0.00   |      | 0 330          |
| Phenol                                                | 0.330 |      | 0.330          | 2,6-Dinitrotoluene                          | 0.330  |      | 0.330          |
| bis(2-Chloroethyl)ether                               | 0.330 | _    | 0.330          | 3-Nitroaniline                              | 0.82   | -    | 0.825          |
| 2-Chlorophenol                                        | 0.330 | _    | 0.330          | Acenaphthene                                | 0.330  |      | 0.330          |
| 1,3-Dichlorobenzene                                   | 0.330 | _    | 0.330          | 2,4-Dinitrophenol                           | 0.82   |      | 0.825          |
| 1,4-Dichlorobenzene                                   | 0.330 |      | 0.330          | 4-Nitrophenol                               | 0.829  |      | 0.825<br>0.330 |
| Benzyl alcohol                                        | 0.330 |      | 0.330          | Dibenzofuran                                | 0.330  |      | 0.330          |
| 1,2-Dichlorobenzene                                   | 0.330 |      | 0.330          | 2,4-Dinitrotoluene                          | 0.33   |      | 0.330          |
| 2-Methylphenol                                        | 0.330 |      | 0.330<br>0.330 | Diethylphthalate                            |        |      | 0.330          |
| <pre>bis(2-Chloroisopropyl)ether 4-Methylphenol</pre> | 0.330 |      | 0.330          | 4-Chlorophenyl-phenylether                  | 0.33   |      | 0.330          |
| <del></del>                                           |       |      | 0.330          | Fluorene                                    | 0.82   |      | 0.825          |
| N-Nitroso-di-n-propylamine Hexachloroethane           | 0.330 |      |                | 4-Nitroaniline                              |        |      | 0.825          |
| Nitrobenzene                                          | 0.330 |      | 0.330          | 4,6-Dinitro-2-methylphenol                  |        |      | 0.825          |
|                                                       | 0.330 |      | 0.330          | N-Nitrosodiphenylamine (1)                  | 0.330  |      | 0.330          |
| Isophorone<br>2-Nitrophenol                           | 0.330 | -    | 0.330          | 4-Bromophenyl-phenylether Hexachlorobenzene | 0.330  |      | 0.330          |
| 2,4-Dimethylphenol                                    | 0.330 | _    | 0.330          |                                             | 0.33   |      | 0.330          |
| Benzoic Acid                                          | 0.330 | -    | 0.330          | Pentachlorophenol Phenanthrene              | 0.82   |      | 0.825          |
| bis(2-Chloroethoxy)methane                            | 0.330 |      | 0.330          |                                             | 0.33   | -    | 0.330          |
| 2,4-Dichlorophenol                                    | 0.330 |      |                | Anthracene                                  | 0.33   |      | 0.330          |
| 1,2,4-Trichlorobenzene                                | 0.330 | -    | 0.330          | Di-n-butylphthalate                         | 0.06.  |      | 0.330          |
| Naphthalene                                           | 0.330 | _    | 0.330          | Fluoranthene                                | 0.330  |      | 0.330          |
| 4-Chloroaniline                                       | 0.330 | -    | 0.330<br>0.330 | Pyrene                                      | 0.330  |      | 0.330          |
| Hexachlorobutadiene                                   |       |      |                | Butylbenzylphthalate                        |        |      |                |
|                                                       | 0.330 |      | 0.330          | 3,3'-Dichlorobenzidine                      | 0.330  |      | 0.330          |
| 4-Chloro-3-methylphenol                               | 0.330 |      | 0.330          | Benzo(a)anthracene                          | 0.330  |      | 0.330          |
| 2-Methylnaphthalene                                   | 0.330 |      | 0.330          | Chrysene                                    | 0.330  |      | 0.330          |
| Hexachlorocyclopentadiene 2,4,6-Trichlorophenol       | 0.330 |      | 0.330          | bis(2-Ethylhexyl)phthalate                  |        |      | 0.330          |
| - · · · · · · · · · · · · · · ·                       | 0.330 |      | 0.330          | Di-n-octylphthalate                         | 0.330  |      | 0.330          |
| 2,4,5-Trichlorophenol                                 | 0.825 |      | 0.825          | Benzo(b) fluoranthene                       | 0.330  | -    | 0.330          |
| 2-Chloronaphthalene                                   | 0.330 |      | 0.330          | Benzo(k)fluoranthene                        | 0.330  |      | 0.330          |
| 2-Nitroaniline                                        | 0.825 |      | 0.825          | Benzo(a)pyrene                              | 0.330  |      | 0.330          |
| Dimethylphthalate                                     | 0.330 |      | 0.330          | Indeno(1,2,3-cd)pyrene                      | 0.330  |      | 0.330          |
| Acenaphthylene                                        | 0.330 | ט ע  | 0.330          | Dibenzo(a,h)anthracene                      | 0.330  |      | 0.330          |
|                                                       |       |      |                | Benzo(g,h,i)perylene                        | 0.330  | ט כ  | 0.330          |

Page: 34 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1552

SAMPLE DATE: 11/18/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |
|----------------------|------------|----------|--|--|--|
| Nitrobenzene-D5      | 70         | 23 - 120 |  |  |  |
| 2-Fluorobiphenyl     | 65         | 30 - 115 |  |  |  |
| Terphenyl-D14        | 72         | 18 - 137 |  |  |  |
| Phenol-D5            | 68         | 24 - 113 |  |  |  |
| 2-Fluorophenol       | 61         | 25 - 121 |  |  |  |
| 2,4,6-Tribromophenol | 68         | 19 - 122 |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 35 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1552 SAMPLE DATE: 11/18/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 90.9091

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 1.2    | ט              | 1.2                | 7060                | 12/09/93         |
| Aluminum  | 1800   | N              | 18                 | 6010                | 12/09/93         |
| Barium    | 56     | N              | 18                 | 6010                | 12/09/93         |
| Beryllium | 0.45   | ប              | 0.45               | 6010                | 12/09/93         |
| Cadmium   | 0.45   | U              | 0.45               | 6010                | 12/09/93         |
| Chromium  | 8.5    |                | 0.91               | 6010                | 12/09/93         |
| Copper    | 2.3    | υ              | 2.3                | 6010                | 12/09/93         |
| Iron      | 3700   | N              | 9.1                | 6010                | 12/09/93         |
| Nickel    | 6.3    |                | 3.6                | 6010                | 12/09/93         |
| Lead      | 1.5    | N              | 0.35               | 7421                | 12/09/93         |
| Mercury   | 0.032  | U              | 0.032              | 7471                | 12/07/93         |
| Silver    | 0.91   | ប              | 0.91               | 6010                | 12/09/93         |
| Zinc      | 7.8    |                | 1.8                | 6010                | 12/09/93         |
|           |        |                |                    |                     | •                |

### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 36 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1553
SAMPLE DATE: 11/16/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 11/30/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |             | Rep | orting |                           |        |      | Re | porting |
|--------------------------|-------------|-----|--------|---------------------------|--------|------|----|---------|
|                          | Result Qual | LL  | imit   |                           | Result | Qua. | 1  | Limit   |
| Chloromethane            | 10          | U   | 10     | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 10          | U   | 10     | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 10          | U   | 10     | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane             | 10          | U   | 10     | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride       | 10          | U   | 10     | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 100         | U   | 100    | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         | 5           | U   | 5      | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene       | 5           | U   | 5      | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| 1,1-Dichloroethane       | 5           | U   | 5      | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene | 5           | U   | 5      | 2-Hexanone                | !      | 50   | U  | 50      |
| cis-1,2-Dichloroethene   | 5           | U   | 5      | 4-Methyl-2-pentanone      | !      | 50   | U  | 50      |
| Chloroform               | 5           | U   | 5      | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       | 5           | U   | 5      | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 100         | U   | 100    | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    | 5           | U   | 5      | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     | 5           | U   | 5      | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 10          | U   | 10     | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     | 5           | U   | 5      | Xvlenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 96         | 88 - 110 |
| BROMOFLUOROBENZENE    | 98         | 86 - 115 |
| 1,2-DICHLOROETHANE-D4 | 104        | 76 - 114 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 37 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

SAMPLE ID: A1554

SAMPLE DATE: 11/18/93 12:15:00

SAMPLE MATRIX: WATER

|             | Note |        | Reporting |       | Date     | Method    |
|-------------|------|--------|-----------|-------|----------|-----------|
| Test Name   | Ref  | Result | Limit     | Units | Analyzed | Reference |
| Chromium VI |      | 0.0100 | 0.010     | MG/L  | 11/19/93 | EPA7196   |

Page: 38 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

### IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1554

SAMPLE DATE: 11/18/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 11/30/93
DILUTION FACTOR: 1.0

UNITS: UG/L

| ·                        | Result |    |   | porting<br>Limit |                           | Result | Qual |   | portinç<br>Limit |
|--------------------------|--------|----|---|------------------|---------------------------|--------|------|---|------------------|
| Chloromethane            | 1      | LO | U | 10               | 1,2-Dichloropropane       |        | 5    | U | 5                |
| Bromomethane             | 1      | LO | U | 10               | trans-1,3-Dichloropropene |        | 5    | U | 5                |
| Vinyl chloride           | 1      | 10 | U | 10               | Trichloroethene           |        | 5    | U | 5                |
| Chloroethane             | 1      | 10 | U | 10               | Chlorodibromomethane      |        | 5    | U | 5                |
| Methylene chloride       | 1      | 10 | U | 10               | 1,1,2-Trichloroethane     |        | 5    | U | 5                |
| Acetone                  | 10     | 00 | U | 100              | Benzene                   |        | 5    | U | 5                |
| Carbon disulfide         |        | 5  | U | 5                | cis-1,3-Dichloropropene   |        | 5    | U | 5                |
| 1,1-Dichloroethene       |        | 5  | U | 5                | 2-Chloroethylvinyl ether  | :      | LO   | U | 10               |
| 1,1-Dichloroethane       |        | 5  | U | 5                | Bromoform                 |        | 5    | U | 5                |
| trans-1,2-Dichloroethene |        | 5  | U | 5                | 2-Hexanone                |        | 50   | U | 50               |
| cis-1,2-Dichloroethene   |        | 5  | U | 5                | 4-Methyl-2-pentanone      |        | 50   | U | 50               |
| Chloroform               |        | 5  | U | 5                | Tetrachloroethene         |        | 5    | U | 5                |
| 1,2-Dichloroethane       |        | 5  | U | 5                | 1,1,2,2-Tetrachloroethane |        | 5    | U | 5                |
| 2-Butanone               | 10     | 00 | U | 100              | Toluene                   |        | 5    | U | 5                |
| 1,1,1-Trichloroethane    |        | 5  | U | 5                | Chlorobenzene             |        | 5    | U | 5                |
| Carbon tetrachloride     |        | 5  | U | 5                | Ethylbenzene              |        | 5    | U | 5                |
| Vinyl acetate            | 1      | LO | U | 10               | Styrene                   |        | 5    | U | 5                |
| Dichlorobromomethane     |        | 5  | U | 5                | Xylenes, total            |        | 5    | U | 5                |
|                          |        |    |   |                  |                           |        |      |   |                  |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 98         | 88 - 110 |
| BROMOFLUOROBENZENE    | 100        | 86 - 115 |
| 1,2-DICHLOROETHANE-D4 | 104        | 76 - 114 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 39 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

## IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1554 SAMPLE DATE: 11/18/93 SAMPLE MATRIX: WATER

EXTRACTION DATE: 11/24/93
ANALYSIS DATE: 11/21/93
DILUTION FACTOR: 1.0

| UNITS: U               | G/L          | R    | eporting |                            |        | 1    | Reporti |
|------------------------|--------------|------|----------|----------------------------|--------|------|---------|
|                        | Result       | Qual | Limit    |                            | Result | Qual | Limit   |
| Phenol                 | -            |      | 10       |                            | _      |      | ••      |
| bis(2-Chloroethyl)ethe |              | 10 U | 10       | 2,6-Dinitrotoluene         |        | .O U | 10      |
| 2-Chlorophenol         |              | .0 U | 10       | 3-Nitroaniline             | _      | 5 U  | 25      |
| 1,3-Dichlorobenzene    | _            | υ 0. | 10       | Acenaphthene               | _      | .O U | 10      |
|                        | _            | .0 U | 10       | 2,4-Dinitrophenol          | _      | 5 U  | 25      |
| 1,4-Dichlorobenzene    | <del>-</del> | .ο υ | 10       | 4-Nitrophenol              | _      | 5 U  | 25      |
| Benzyl alcohol         |              | υ 0. | 10       | Dibenzofuran               | _      | 0 U  | 10      |
| 1,2-Dichlorobenzene    | _            | .O U | 10       | 2,4-Dinitrotoluene         | _      | .O U | 10      |
| 2-Methylphenol         | _            | .0 σ | 10       | Diethylphthalate           | _      | .O U | 10      |
| bis(2-Chloroisopropyl) |              | .0 ס | 10       | 4-Chlorophenyl-phenylether |        | .0 U | 10      |
| 4-Methylphenol         | -            | υ 0. | 10       | Fluorene                   |        | .O U | 10      |
| N-Nitroso-di-n-propyla |              | .0 ע | 10       | 4-Nitroaniline             | 1      | .O U | 10      |
| Hexachloroethane       | 1            | .0 ע | 10       | 4,6-Dinitro-2-methylphenol | L 2    | 5 U  | 25      |
| Nitrobenzene           | 1            | .0 ע | 10       | N-Nitrosodiphenylamine (1) | , 1    | υ 0  | 10      |
| Isophorone             | 1            | .0 ע | 10       | 4-Bromophenyl-phenylether  | 1      | υ 0  | 10      |
| 2-Nitrophenol          | 1            | .0 U | 10       | Hexachlorobenzene          | 1      | υ 0  | 10      |
| 2,4-Dimethylphenol     | 1            | .O U | 10       | Pentachlorophenol          | 2      | 5 U  | 25      |
| Benzoic Acid           | 1            | .0 ע | 10       | Phenanthrene               | 1      | 0 υ  | 10      |
| bis(2-Chloroethoxy)met | hane 1       | .0 σ | 10       | Anthracene                 | 1      | 0 υ  | 10      |
| 2,4-Dichlorophenol     | 1            | .0 σ | 10       | Di-n-butylphthalate        | 1      | 0 υ  | 10      |
| 1,2,4-Trichlorobenzene | 1            | .Ο σ | 10       | Fluoranthene               | 1      | 0 υ  | 10      |
| Naphthalene            | 1            | .0 ע | 10       | Pyrene                     | 1      | 0 υ  | 10      |
| 4-Chloroaniline        | 1            | .0 σ | 10       | Butylbenzylphthalate       | 1      | 0 υ  | 10      |
| Hexachlorobutadiene    | 1            | .0 σ | 10       | 3,3'-Dichlorobenzidine     | 1      | 0 υ  | 10      |
| 4-Chloro-3-methylpheno | 1 1          | .0 σ | 10       | Benzo(a)anthracene         | 1      | 0 U  | 10      |
| 2-Methylnaphthalene    | 1            | .0 σ | 10       | Chrysene                   | 1      | 0 υ  | 10      |
| Hexachlorocyclopentadi | ene 1        | .0 σ | 10       | bis(2-Ethylhexyl)phthalate | . 1    | 0 υ  | 10      |
| 2,4,6-Trichlorophenol  | 1            | υ 0. | 10       | Di-n-octylphthalate        |        | υ 0  | 10      |
| 2,4,5-Trichlorophenol  | 1            | υ 0. | 10       | Benzo(b)fluoranthene       | 1      | 0 υ  | 10      |
| 2-Chloronaphthalene    | 1            | .0 ס | 10       | Benzo(k)fluoranthene       | 1      | 0 U  | 10      |
| 2-Nitroaniline         | 2            | 5 U  | 25       | Benzo(a)pyrene             | 1      | -    | 10      |
| Dimethylphthalate      | 1            | .Ο υ | 10       | Indeno(1,2,3-cd)pyrene     | _      | 0 U  | 10      |
| Acenaphthylene         |              | .Ο υ | 10       | Dibenzo(a,h)anthracene     | 1      |      | 10      |
| <u>-</u>               | _            | _    |          | Benzo(g,h,i)perylene       | 1      |      | 10      |
|                        |              |      |          | \3/, -/Por/ rono           | -      |      |         |

Page: 40 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1554
SAMPLE DATE: 11/18/93
SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|
| Nitrobenzene-D5      | 32*        | 35 - 114 |  |  |  |  |
| 2-Fluorobiphenyl     | 31*        | 43 - 116 |  |  |  |  |
| Terphenyl-D14        | 40         | 33 - 141 |  |  |  |  |
| Phenol-D5            | 29         | 10 - 94  |  |  |  |  |
| 2-Fluorophenol       | 29         | 21 - 100 |  |  |  |  |
| 2,4,6-Tribromophenol | 37         | 10 - 123 |  |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

### Referenced notes for these results:

Sample originally extracted 11/24/93 and analyzed 12/11/93 with two surrogates outside QC limits. Sample was re-extracted 12/13/93 and reanalyzed 12/15/93. Surrogates were within QC limits. Both analyses yielded similar results. Original analysis is reported.

Page: 41 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1554
SAMPLE DATE: 11/18/93
SAMPLE MATRIX: WATER

DILUTION FACTOR (6010): 1.0

UNITS: MG/L

|           | Result  | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |  |
|-----------|---------|----------------|--------------------|---------------------|------------------|--|
| Arsenic   | 0.010   | Ū              | 0.010              | 7060                | 12/02/93         |  |
| Aluminum  | 0.20    | U              | 0.20               | 6010                | 12/17/93         |  |
| Barium    | 0.20    | ប              | 0.20               | 6010                | 12/17/93         |  |
| Beryllium | 0.0050  | υ              | 0.0050             | 6010                | 12/17/93         |  |
| Cadmium   | 0.0050  | บ              | 0.0050             | 6010                | 12/17/93         |  |
| Chromium  | 0.010   | υ              | 0.010              | 6010                | 12/17/93         |  |
| Copper    | 0.0250  | ប              | 0.0250             | 6010                | 12/17/93         |  |
| Iron      | 0.10    | U              | 0.10               | 6010                | 12/17/93         |  |
| Nickel    | 0.040   | บ              | 0.040              | 6010                | 12/17/93         |  |
| Lead      | 0.0030  | บ              | 0.0030             | 7421                | 12/02/93         |  |
| Mercury   | 0.00020 | บ              | 0.00020            | 7471                | 12/01/93         |  |
| Silver    | 0.010   | ប              | 0.010              | 6010                | 12/17/93         |  |
| Zinc      | 0.020   | U              | 0.020              | 6010                | 12/17/93         |  |
|           |         |                |                    |                     |                  |  |

### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA < 0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 42 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-254

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting |       | Date            | Method    |
|-------------|------|--------|-----------|-------|-----------------|-----------|
| Test Name   | Ref  | Result | Limit     | Units | <u>Analyzed</u> | Reference |
| Chromium VI |      | 0.0100 | 0.010     | MG/KG | 12/08/93        | EPA7196   |

Page: 43 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

# IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/01/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                          |            | R | eporting |                           |        |      | Reportin   |
|--------------------------|------------|---|----------|---------------------------|--------|------|------------|
|                          | Result Qua | 1 | Limit    |                           | Result | Qual | Limit      |
| Chloromethane            | 10         | U | 10       | 1,2-Dichloropropane       |        | 5    | บ 5        |
| Bromomethane             | 10         | U | 10       | trans-1,3-Dichloropropene |        | _    | υ 5        |
| Vinyl chloride           | 10         | U | 10       | Trichloroethene           |        | 5    | บ 5        |
| Chloroethane             | 10         | U | 10       | Chlorodibromomethane      |        | 5    | บ 5        |
| Methylene chloride       | 1.4        | J | 10       | 1,1,2-Trichloroethane     |        | 5    | <b>ປ</b> 5 |
| Acetone                  | 3.7        | J | 100      | Benzene                   |        | 5    | <b>ປ</b> 5 |
| Carbon disulfide         | 5          | U | 5        | cis-1,3-Dichloropropene   |        | 5    | บ 5        |
| 1,1-Dichloroethene       | 5          | U | 5        | 2-Chloroethylvinyl ether  |        | LO   | ບ 10       |
| 1,1-Dichloroethane       | 5          | U | 5        | Bromoform                 |        | 5    | ប 5        |
| trans-1,2-Dichloroethene | 5          | U | 5        | 2-Hexanone                | 5      | 0    | ບ 50       |
| cis-1,2-Dichloroethene   | 5          | U | 5        | 4-Methyl-2-pentanone      | 5      | 0    | ປ 50       |
| Chloroform               | 5          | U | 5        | Tetrachloroethene         |        | 5    | υ 5        |
| 1,2-Dichloroethane       | 5          | U | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | T 5        |
| 2-Butanone               | 100        | U | 100      | Toluene                   |        | 5    | υ 5        |
| 1,1,1-Trichloroethane    | 5          | U | 5        | Chlorobenzene             |        | 5    | T 5        |
| Carbon tetrachloride     | 5          | U | 5        | Ethylbenzene              |        | 5    | ช 5        |
| Vinyl acetate            | 10         | U | 10       | Styrene                   |        | 5    | ប 5        |
| Dichlorobromomethane     | 5          | U | 5        | Xylenes, total            |        | 5    | Ŭ 5        |

| Surrogates            | % Recovery | Limits   |  |  |  |
|-----------------------|------------|----------|--|--|--|
| TOLUENE-D8            | 103        | 81 - 117 |  |  |  |
| BROMOFLUOROBENZENE    | 99         | 74 - 121 |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 99         | 70 - 120 |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\ensuremath{\mathtt{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 44 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

# IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |       | Re       | porting |                            |        | 1 | Reportin |
|-----------------------------|-------|----------|---------|----------------------------|--------|---|----------|
| R                           | esult | Qual     | Limit   |                            | Result |   |          |
|                             |       |          |         |                            |        |   |          |
| Phenol                      | 0.330 |          | 0.330   | 2,6-Dinitrotoluene         | 0.330  | U | 0.330    |
| bis(2-Chloroethyl)ether     | 0.330 | _        | 0.330   | 3-Nitroaniline             | 0.825  | U | 0.825    |
| 2-Chlorophenol              | 0.330 | ט כ      | 0.330   | Acenaphthene               | 0.330  | Ū | 0.330    |
| 1,3-Dichlorobenzene         | 0.330 | ט כ      | 0.330   | 2,4-Dinitrophenol          | 0.825  | U | 0.825    |
| 1,4-Dichlorobenzene         | 0.330 | ט כ      | 0.330   | 4-Nitrophenol              | 0.825  | U | 0.825    |
| Benzyl alcohol              | 0.330 | ט כ      | 0.330   | Dibenzofuran               | 0.330  | U | 0.330    |
| 1,2-Dichlorobenzene         | 0.330 | ט כ      | 0.330   | 2,4-Dinitrotoluene         | 0.330  | U | 0.330    |
| 2-Methylphenol              | 0.330 | ט כ      | 0.330   | Diethylphthalate           | 0.330  | ט | 0.330    |
| bis(2-Chloroisopropyl)ether | 0.330 | U C      | 0.330   | 4-Chlorophenyl-phenylether | 0.330  | ט | 0.330    |
| 4-Methylphenol              | 0.330 | υ        | 0.330   | Fluorene                   | 0.330  | ט | 0.330    |
| N-Nitroso-di-n-propylamine  | 0.330 | U C      | 0.330   | 4-Nitroaniline             | 0.825  | U | 0.825    |
| Hexachloroethane            | 0.330 | ט כ      | 0.330   | 4,6-Dinitro-2-methylphenol | 0.825  | U | 0.825    |
| Nitrobenzene                | 0.330 | U C      | 0.330   | N-Nitrosodiphenylamine (1) | 0.330  | U | 0.330    |
| Isophorone                  | 0.330 | U C      | 0.330   | 4-Bromophenyl-phenylether  | 0.330  | U | 0.330    |
| 2-Nitrophenol               | 0.330 | <b>U</b> | 0.330   | Hexachlorobenzene          | 0.330  | บ | 0.330    |
| 2,4-Dimethylphenol          | 0.330 | ט כ      | 0.330   | Pentachlorophenol          | 0.825  | บ | 0.825    |
| Benzoic Acid                | 0.330 | ט כ      | 0.330   | Phenanthrene               | 0.330  | U | 0.330    |
| bis(2-Chloroethoxy)methane  | 0.330 | ט (      | 0.330   | Anthracene                 | 0.330  | U | 0.330    |
| 2,4-Dichlorophenol          | 0.330 | <b>U</b> | 0.330   | Di-n-butylphthalate        | 0.330  |   | 0.330    |
| 1,2,4-Trichlorobenzene      | 0.330 | ט (      | 0.330   | Fluoranthene               | 0.330  |   | 0.330    |
| Naphthalene                 | 0.330 | ט (      | 0.330   | Pyrene                     | 0.330  | U | 0.330    |
| 4-Chloroaniline             | 0.330 |          | 0.330   | Butylbenzylphthalate       | 0.330  |   | 0.330    |
| Hexachlorobutadiene         | 0.330 | <b>U</b> | 0.330   | 3,3'-Dichlorobenzidine     | 0.330  |   | 0.330    |
| 4-Chloro-3-methylphenol     | 0.330 | <b>U</b> | 0.330   | Benzo(a)anthracene         | 0.330  |   | 0.330    |
| 2-Methylnaphthalene         | 0.330 | υ (      | 0.330   | Chrysene                   | 0.330  |   | 0.330    |
| Hexachlorocyclopentadiene   | 0.330 | <b>U</b> | 0.330   | bis(2-Ethylhexyl)phthalate |        |   | 0.330    |
| 2,4,6-Trichlorophenol       | 0.330 | <b>U</b> | 0.330   | Di-n-octylphthalate        | 0.330  |   | 0.330    |
| 2,4,5-Trichlorophenol       | 0.825 |          | 0.825   | Benzo(b) fluoranthene      | 0.330  |   | 0.330    |
| 2-Chloronaphthalene         | 0.330 |          | 0.330   | Benzo(k)fluoranthene       | 0.330  |   | 0.330    |
| 2-Nitroaniline              | 0.825 | υ        | 0.825   | Benzo(a) pyrene            | 0.330  |   | 0.330    |
| Dimethylphthalate           | 0.330 | U        | 0.330   | Indeno(1,2,3-cd)pyrene     | 0.330  | _ | 0.330    |
| Acenaphthylene              | 0.330 |          | 0.330   | Dibenzo(a,h)anthracene     | 0.330  |   | 0.330    |
|                             |       |          |         | Benzo(g,h,i)perylene       | 0.330  |   | 0.330    |
|                             |       |          |         | . J / E 2                  |        | _ |          |

Page: 45 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |
|----------------------|------------|----------|--|--|--|
| Nitrobenzene-D5      | 71         | 23 - 120 |  |  |  |
| 2-Fluorobiphenyl     | 70         | 30 - 115 |  |  |  |
| Terphenyl-D14        | 77         | 18 - 137 |  |  |  |
| Phenol-D5            | 72         | 24 - 113 |  |  |  |
| 2-Fluorophenol       | 60         | 25 - 121 |  |  |  |
| 2,4,6-Tribromophenol | 64         | 19 - 122 |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 46 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 1.0

UNITS: MG/KG

|           |         |                |                    |                     |                  | _ |
|-----------|---------|----------------|--------------------|---------------------|------------------|---|
|           | Result  | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date | _ |
| Arsenic   | 0.010   | ט              | 0.010              | 7060                | 12/09/93         |   |
| Aluminum  | 0.20    | U              | 0.20               | 6010                | 12/09/93         |   |
| Barium    | 0.20    | บ              | 0.20               | 6010                | 12/09/93         |   |
| Beryllium | 0.0050  | U              | 0.0050             | 6010                | 12/09/93         |   |
| Cadmium   | 0.0050  | U              | 0.0050             | 6010                | 12/09/93         |   |
| Chromium  | 0.010   | U              | 0.010              | 6010                | 12/09/93         |   |
| Copper    | 0.025   | U              | 0.025              | 6010                | 12/09/93         |   |
| Iron      | 0.10    | U              | 0.10               | 6010                | 12/09/93         |   |
| Nickel    | 0.040   | บ              | 0.040              | 6010                | 12/09/93         |   |
| Lead      | 0.0030  | U              | 0.0030             | 7421                | 12/09/93         |   |
| Mercury   | 0.00020 | U              | 0.00020            | 7471                | 12/07/93         |   |
| Silver    | 0.010   | U              | 0.010              | 6010                | 12/09/93         |   |
| Zinc      | 0.020   | U              | 0.020              | 6010                | 12/09/93         |   |
|           |         |                |                    |                     |                  |   |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 47 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-254

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: WATER

|             | Note | Reporting |              |       | Date M     | ethod    |
|-------------|------|-----------|--------------|-------|------------|----------|
| Test Name   | Ref  | Result    | <u>Limit</u> | Units | Analyzed R | eference |
| Chromium VI |      | 0.0100    | 0.010        | MG/L  | 11/19/93 E | PA7196   |

Page: 48 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-254

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: KPA8240

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: WATER
ANALYSIS DATE: 11/30/93
DILUTION FACTOR: 1.0

| UNITS: | UG/L |
|--------|------|
|--------|------|

|                          |            | Re | eporting |                           |        |      | Reportin | 1g  |
|--------------------------|------------|----|----------|---------------------------|--------|------|----------|-----|
|                          | Result Qua | al | Limit    |                           | Result | Qual | Limit    | _   |
| Chloromethane            | 10         | ** | 10       | 1.0.51.11                 |        | _    |          |     |
|                          |            | Ŭ  | 10       | 1,2-Dichloropropane       |        | 5    | Ŭ 5      |     |
| Bromomethane             | 10         | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U 5      | - 1 |
| Vinyl chloride           | 10         | U  | 10       | Trichloroethene           |        | 5    | Ŭ 5      | •   |
| Chloroethane             | 10         | U  | 10       | Chlorodibromomethane      |        | 5    | บ 5      | •   |
| Methylene chloride       | 10         | U  | 10       | 1,1,2-Trichloroethane     |        | 5    | υ 5      |     |
| Acetone                  | 100        | U  | 100      | Benzene                   |        | 5    | ช 5      |     |
| Carbon disulfide         | 5          | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | υ 5      |     |
| 1,1-Dichloroethene       | 5          | U  | 5        | 2-Chloroethylvinyl ether  |        | LO   | U 10     | - 1 |
| 1,1-Dichloroethane       | 5          | U  | 5        | Bromoform                 |        | 5    | υ 5      |     |
| trans-1,2-Dichloroethene | 5          | U  | 5        | 2-Hexanone                | !      | 50   | U 50     |     |
| cis-1,2-Dichloroethene   | 5          | U  | 5        | 4-Methyl-2-pentanone      | !      | 50   | U 50     |     |
| Chloroform               | 5          | U  | 5        | Tetrachloroethene         |        | 5    | บ 5      |     |
| 1,2-Dichloroethane       | 5          | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | υ 5      |     |
| 2-Butanone               | 100        | U  | 100      | Toluene                   |        | 5    | U 5      |     |
| 1,1,1-Trichloroethane    | 5          | U  | 5        | Chlorobenzene             |        | 5    | U 5      |     |
| Carbon tetrachloride     | 5          | υ  | 5        | Ethylbenzene              |        | 5    | υ 5      |     |
| Vinyl acetate            | 10         | ប  | 10       | Styrene                   |        | 5    | U 5      |     |
| Dichlorobromomethane     | 5          | Ū  | 5        | Xylenes, total            |        | 5    | υ 5      |     |

| Surrogates            | % Recovery | Limits   |  |  |  |
|-----------------------|------------|----------|--|--|--|
| TOLUENE-D8            | 99         | 88 - 110 |  |  |  |
| BROMOFLUOROBENZENE    | 101        | 86 - 115 |  |  |  |
| 1.2-DICHLOROETHANE-D4 | 101        | 76 - 114 |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 49 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: WATER

EXTRACTION DATE: 11/28/93
ANALYSIS DATE: 12/03/93
DILUTION FACTOR: 1.0

| UNITS: U                | G/L    | R    | eporting |                            |        | F    | Reportin |
|-------------------------|--------|------|----------|----------------------------|--------|------|----------|
|                         | Result | Qual | Limit    |                            | Result | Qual | Limit    |
| Phenol                  | _      |      | 10       | 0.6.51.11.21.22.2          |        |      | 10       |
| <del>-</del>            | _      | .0 U |          | 2,6-Dinitrotoluene         |        | .O U | 10       |
| bis(2-Chloroethyl)ether |        | .0 U |          | 3-Nitroaniline             | _      | .5 U | 25       |
| 2-Chlorophenol          | _      | 10 U |          | Acenaphthene               |        | Ο υ  | 10       |
| 1,3-Dichlorobenzene     | _      | .0 U |          | 2,4-Dinitrophenol          | _      | 5 U  | 25       |
| 1,4-Dichlorobenzene     | _      | .0 U |          | 4-Nitrophenol              | _      | 5 U  | 25       |
| Benzyl alcohol          |        | .O U |          | Dibenzofuran               |        | υ 0. | 10       |
| 1,2-Dichlorobenzene     | _      | .ο σ |          | 2,4-Dinitrotoluene         | -      | .O U | 10       |
| 2-Methylphenol          | -      | .O U | 10       | Diethylphthalate           | _      | υ 0. | 10       |
| bis(2-Chloroisopropyl)  |        | .0 σ | 10       | 4-Chlorophenyl-phenylether |        | υ 0. | 10       |
| 4-Methylphenol          | _      | .0 ס | 10       | Fluorene                   | _      | υ 0  | 10       |
| N-Nitroso-di-n-propylar |        | .0 v |          | 4-Nitroaniline             |        | 0 υ  | 10       |
| Hexachloroethane        | _      | .0 ע |          | 4,6-Dinitro-2-methylphenol |        | 5 U  | 25       |
| Nitrobenzene            | 1      | .0 ע | 10       | N-Nitrosodiphenylamine (1) | 1      | υ 0  | 10       |
| Isophorone              | 1      | .0 ע | 10       | 4-Bromophenyl-phenylether  | 1      | υ 0  | 10       |
| 2-Nitrophenol           | 1      | .0 ע | 10       | Hexachlorobenzene          | 1      | υ 0  | 10       |
| 2,4-Dimethylphenol      | 1      | .0 ע | 10       | Pentachlorophenol          | 2      | 5 Ŭ  | 25       |
| Benzoic Acid            | 1      | .O U | 10       | Phenanthrene               | 1      | υ 0. | 10       |
| bis(2-Chloroethoxy)metl | hane 1 | .0 U | 10       | Anthracene                 | 1      | .O U | 10       |
| 2,4-Dichlorophenol      | 1      | .O U | 10       | Di-n-butylphthalate        | 1      | 0 U  | 10       |
| 1,2,4-Trichlorobenzene  | 1      | .0 σ | 10       | Fluoranthene               | 1      | υ 0  | 10       |
| Naphthalene             | 1      | .O U | 10       | Pyrene                     | 1      | υ 0  | 10       |
| 4-Chloroaniline         | 1      | .0 σ | 10       | Butylbenzylphthalate       | 1      | 0 υ  | 10       |
| Hexachlorobutadiene     | 1      | .0 U | 10       | 3,3'-Dichlorobenzidine     | 1      | υ 0  | 10       |
| 4-Chloro-3-methylpheno: | 1 1    | .0 σ | 10       | Benzo(a)anthracene         | 1      | υ 0  | 10       |
| 2-Methylnaphthalene     | 1      | .O U | 10       | Chrysene                   | 1      | 0 υ  | 10       |
| Hexachlorocyclopentadie | ene 1  | .O U | 10       | bis(2-Ethylhexyl)phthalate | 1      | 0 υ  | 10       |
| 2,4,6-Trichlorophenol   | 1      | .O U | 10       | Di-n-octylphthalate        |        | 0 υ  | 10       |
| 2,4,5-Trichlorophenol   | 1      | .0 ע | 10       | Benzo(b)fluoranthene       | 1      | 0 υ  | 10       |
| 2-Chloronaphthalene     | 1      | .Ο υ | 10       | Benzo(k)fluoranthene       | 1      | υ 0  | 10       |
| 2-Nitroaniline          | 2      | :5 T | 25       | Benzo(a)pyrene             | 1      | υ 0  | 10       |
| Dimethylphthalate       | 1      | .O U | 10       | Indeno(1,2,3-cd)pyrene     | 1      | 0 υ  | 10       |
| Acenaphthylene          | 1      | .0 U | 10       | Dibenzo(a,h)anthracene     | 1      | 0 υ  | 10       |
| - <u>-</u>              |        |      |          | Benzo(g,h,i)perylene       | 1      |      | 10       |
|                         |        |      |          | \ J \ \ -   E 1            | _      |      |          |

Page: 50 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 67         | 35 - 114 |
| 2-Fluorobiphenyl     | 82         | 43 - 116 |
| Terphenyl-D14        | 51         | 33 - 141 |
| Phenol-D5            | 63         | 10 - 94  |
| 2-Fluorophenol       | 51         | 21 - 100 |
| 2,4,6-Tribromophenol | 55         | 10 - 123 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 51 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: WATER

DILUTION FACTOR (6010): 1.00

UNITS: MG/L

|           | Result  | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|---------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 0.010   | ט              | 0.010              | 7060                | 12/02/93         |
| Aluminum  | 0.20    | U              | 0.2                | 6010                | 12/17/93         |
| Barium    | 0.20    | U              | 0.2                | 6010                | 12/17/93         |
| Beryllium | 0.0050  | บ              | 0.005              | 6010                | 12/17/93         |
| Cadmium   | 0.0050  | ซ              | 0.005              | 6010                | 12/17/93         |
| Chromium  | 0.010   | บ              | 0.01               | 6010                | 12/17/93         |
| Copper    | 0.0250  | U              | 0.025              | 6010                | 12/17/93         |
| Iron      | 0.10    | U              | 0.1                | 6010                | 12/17/93         |
| Nickel    | 0.040   | Ü              | 0.04               | 6010                | 12/17/93         |
| Lead      | 0.0030  | U              | 0.0030             | 7421                | 12/02/93         |
| Mercury   | 0.00020 | U              | 0.00020            | 7471                | 12/01/93         |
| Silver    | 0.010   | U              | 0.01               | 6010                | 12/17/93         |
| Zinc      | 0.046   |                | 0.02               | 6010                | 12/17/93         |
|           |         |                |                    |                     |                  |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- ${\tt N}$  spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 52 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: LAB BLANK #2

SAMPLE DATE:

SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

| ·                        |            | Re | eporting |                           |        |      | Re | eporting |
|--------------------------|------------|----|----------|---------------------------|--------|------|----|----------|
|                          | Result Qua | 1  | Limit    |                           | Result | Qua. | 1  | Limit    |
| Chloromethane            | 10         | U  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5        |
| Bromomethane             | 10         | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5        |
| Vinyl chloride           | 10         | U  | 10       | Trichloroethene           |        | 5    | U  | 5        |
| Chloroethane             | 10         | U  | 10       | Chlorodibromomethane      |        | 5    | U  | 5        |
| Methylene chloride       | 10         | U  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5        |
| Acetone                  | 3.5        | J  | 100      | Benzene                   |        | 5    | U  | 5        |
| Carbon disulfide         | 5          | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5        |
| 1,1-Dichloroethene       | 5          | U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10       |
| 1,1-Dichloroethane       | 5          | U  | 5        | Bromoform                 |        | 5    | U  | 5        |
| trans-1,2-Dichloroethene | 5          | U  | 5        | 2-Hexanone                | 1      | 50   | U  | 50       |
| cis-1,2-Dichloroethene   | 5          | U  | 5        | 4-Methyl-2-pentanone      |        | 50   | U  | 50       |
| Chloroform               | 5          | U  | 5        | Tetrachloroethene         |        | 5    | U  | 5        |
| 1,2-Dichloroethane       | 5          | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5        |
| 2-Butanone               | 100        | U  | 100      | Toluene                   |        | 5    | U  | 5        |
| 1,1,1-Trichloroethane    | 5          | U  | 5        | Chlorobenzene             |        | 5    | U  | 5        |
| Carbon tetrachloride     | 5          | U  | 5        | Ethylbenzene              |        | 5    | U  | 5        |
| Vinyl acetate            | 10         | U  | 10       | Styrene                   |        | 5    | U  | . 5      |
| Dichlorobromomethane     | 5          | U  | 5        | Xvlenes, total            |        | 5    | Ū  | 5        |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 102        | 81 - 117 |
| BROMOFLUOROBENZENE    | 100        | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 100        | 70 - 120 |

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 53 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

#### Referenced notes for this work order:

B311254

Prep blank for ICP analysis had zinc level greater than 20ppb PQL. All samples with concentration levels greater than 20ppb were repreped and reanalyzed, except for sample #09C which was non-detect. No blank correction was performed.

Page: 54 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

#### IV. Methodology

Requested analyses were performed according to the following methods.

TEST NAME ICP Metals

TEST CODE 6010

Metals by ICP

Inductively coupled emission spectroscopy according to Method 6010, "Test Methods for Evaluating Solid Waste Physical/Chemical Methods", SW-846, Third Edition.

TEST NAME Hazardous Substance Vols. TEST CODE 8240TK

Hazardous Substance List Volatiles

Method 8240, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. GC/MS Purge and Trap analysis.

TEST NAME ABN HSL GC/MS Extractables TEST CODE 8270TK

Hazardous Substance List Extractables Method 8270, SW-846, Test Methods for Evaluating Solid Waste, Third Edition. Acid/Base-Neutral extraction followed by GC/MS analysis.

TEST NAME Arsenic - Graphite Furnace TEST CODE AS GF

Arsenic

Graphite Furnace Method 7060, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. EPA 206.2-Technical Additions to Methods for Chemical Analysis of Water and Wastes, EPA-600/4-82-055, December 1982.

TEST NAME Chromium VI

TEST CODE CR VI

Chromium VI

Method 7196, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Colorimetric analysis. Equivalent to Standard Methods 3500-Cr D.

TEST NAME Mercury

TEST CODE HG AA

Mercury

Method 7471, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Cold vapor atomic absorption. Method 7470 is used for water.

Page: 55 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

**AUSTIN, TX** (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME Mercury

TEST CODE HG AA

Method 245.5-"Technical Additions to Methods for Chemical Analysis of Water and Wastes,"

EPA-600/4-82-055, December 1982.

TEST NAME Metals

TEST CODE ICPTK2

Method not available.

TEST NAME Lead - Graphite Furnace

TEST CODE PB\_GF

Lead

EPA 7421, SW-846, Test Methods for Evaluating Solid

Graphite Wastes, Third Edition.

Furnace

EPA 239.2-Technical Additions to Methods for Chemical

Analysis of Water and Wastes, " EPA-600/4-82-055,

December 1982.

TEST NAME ICPES Digestion - Water TEST CODE 23005

Water Digestion

Method 3005A, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Digestion procedure for the preparation of surface and ground water samples for analysis by flame atomic absorption spectroscopy and inductively coupled plasma spectroscopy. The procedure

determines total recoverable or dissolved metals.

TEST NAME GFAA Digestion - Water TEST CODE 23020

Water Digestion

Method 3020, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Acid digestion technique for

Graphite Furnace.

TEST NAME GFAA Digestion - Soil

TEST CODE 23050F

Page: 56 of 56

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-254

TEST NAME GFAA Digestion - Soil TEST CODE 23050F

Soil Digestion

Method 3050, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Acid digestion technique for

Graphite Furnace/Flame AA analysis.

TEST NAME ICPES Digestion - Soil TEST CODE 23050P

Soil Digestion Method 305

Method 3050, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Acid digestion technique for ICPES analysis. Equivalent to Method 3050A, SW-846

Update I, July 1992.



## CHAIN OF CUSTODY RECORD\* **ANALYSIS REQUEST AND**

Page 1 of 2 Reference Document No. 514076

Sample Team Members? m. wilson, K. Henrington Project Name/No. 1 Tinker 5001 Profit Center No. 3 3527 Samples Shipment Date 7 11 /18 / 93 Lab Destination 8 ITA> Austin

Bill to:5 409832.03

Purchase Order No. 6 4 4 9 8 3 A OO3 Project Manager 4 J. Taylor

Lab Contact 9 Kerman Dens McGray Report to: 10 Tim Jannings
Project Contact/Phone 12 Dens McGray Report to: 10 Tim Jannings
T. T. Awstin

2. Relinquished by (Signature/Affiliation) 3. Relinquished by (Signature/Affiliation) (Signature/Affiliation) Special Instructions: 23 Comments: 29 Normal 4 Turnaround Time Required: 26 Non-hazard \_i Possible Hazard Identification: 24 Required Report Date 11 A 1550 A1550 A1549 A155 A1551 **HIS49** A1548 Relinquished by 28 A 1548 Sample <sup>14</sup> Number Rush: Flammable 🗓 2-64 A - Soil Description/Type Warmed King Sample 15 41548 ms/ms) Skin Irritant Date/Time Collected 三 2 2 1113 1100 1100 1053 00 1053 1100 Time: Date: Time: Date: Date: Time: Poison B 6 MISSO Dueliands of Container Glass ONE CONTAINER PER LINE Туре 800 11/18/53 QC Level: 27 Unknown Li 500m Volume Sample 18 125 m! 200 H 500 M 1mood 25 M 12 5 m (2) 125 M Received by (Signature/Affiliation) 2. Received by (Signature/Affiliation) 1. Received by 28 (/ (Signature/Affiliation) servative **Pre** 19 682 **BNS18** Return to Client Sample Disposal: 25 8270 8270 2012 8270 500c Project Specific (specify) 30 AS Requested Testing 20 0428-20V 200 0hz8 2011 10c-8240 Program 6010/7000 6010/7000 metalo 6010/2000 metals 601017000 824D datad mc to b Disposal by Lab buch 17 Cood 1.19.90 **Condition on** Receipt 2 See KVK Archive 21 Date: Date: Time: Time: Time: Date 11-19-67 0820 Disposal <sup>22</sup> Record No. (mos.)



# CHAIN OF CUSTODY RECORD (cont.)\* **ANALYSIS REQUEST AND**

Page 2\_of Reference Document No.30 314096

Project Name Tinker 500)

Project No. 40983A

Samples Shipment Date 11/18/93

| MCA 3/15/91      |                         |                  |                     |           |                   |                           |                            |                     |
|------------------|-------------------------|------------------|---------------------|-----------|-------------------|---------------------------|----------------------------|---------------------|
| ,                | 7                       |                  |                     | ·         |                   |                           |                            |                     |
| Suo              |                         |                  | /                   |           |                   |                           |                            |                     |
| rncti            |                         |                  |                     |           |                   |                           |                            |                     |
| sui le           | /                       |                  |                     |           |                   |                           |                            |                     |
| check            |                         |                  |                     |           |                   |                           |                            |                     |
| not m            | /                       |                  |                     |           |                   |                           |                            |                     |
| tof for          |                         |                  |                     |           |                   |                           |                            |                     |
| s pack           |                         |                  |                     |           |                   |                           |                            |                     |
| 995*             |                         |                  |                     |           |                   |                           |                            |                     |
|                  |                         |                  |                     |           |                   |                           |                            |                     |
|                  |                         |                  |                     |           |                   |                           |                            |                     |
| Ádos             |                         |                  |                     |           |                   |                           |                            |                     |
| o pjaj-          |                         |                  |                     |           |                   |                           |                            |                     |
| low: F           | 4                       | 1, 16            | <b>←</b>            | 1251      | Phatic            | -                         | <b>K</b>                   | H551 H              |
| ÐД               |                         | Metals 6010/7000 | (Forn)              | Soom      | Pashic            |                           |                            | A 1554              |
| B 3 24400A       |                         | YOC - 8240       | (CH)                | Homi      | States & States   | +                         |                            | AISsy               |
| m (2.5/ £ 6/1/// | 7                       | Syac - 8270      | Coal                | -         | abes              | 11/10/23 1215             | Rine Blank                 | AISSY               |
| 8 3 244100 C BB  |                         |                  | <u> </u>            | HOM       | <b>←</b>          | 4                         | Trip Blank                 | A1883               |
| Sccon            |                         | <b>DO</b>        |                     | 25 k      |                   |                           | <b>←</b>                   | A 1552              |
| - 1              | Good 100 Sugar          | Suac metals      | (60)                | 500m      | Sless             | عار دولهارا               | 2-64A Soil                 | A1552               |
| Disposal 22 S    | Condition on 21 Receipt | 3 -              | Pre-19<br>servative | Volume 18 | Container 17 Type | Date/Time 16<br>Collected | Sample 15 Description/Type | Sample 14<br>Number |
|                  |                         | PER LINE         | CONTAINER I         | CONT/     | ONE               |                           |                            |                     |
|                  |                         |                  |                     |           |                   |                           |                            |                     |

Work order : B311254

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 01B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311254-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 101            |
|      | Chromium VI | B311254-10B        | 1208CR VI1  | 12/07/93     | 12/08/93         | 50.0           |
|      | Mercury     | B311254-10B        | 1207HGAA2   | 12/07/93     | 12/07/93         | 149            |
|      | Lead        | B311254-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 202            |

Work order: B311254

Sample ID : A1548-MS

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 02B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311254-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 105            |
|      | Chromium VI | B311254-10B        | 1208CR VI1  | 12/07/93     | 12/08/93         | 50.0           |
|      | Mercury     | B311254-10B        | 1207HGAA2   | 12/07/93     | 12/07/93         | 167            |
|      | Lead        | B311254-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 421            |

Work order: B311254

Sample ID : A1548-MSD

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 03B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311254-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 109            |
|      | Chromium VI | B311254-10B        | 1208CR VI1  | 12/07/93     | 12/08/93         | 50.0           |
|      | Mercury     | B311254-10B        | 1207HGAA2   | 12/07/93     | 12/07/93         | 152            |
|      | Lead        | B311254-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 435            |

Work order : B311254

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 04B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311254-10B        | 12043050F1  | 12/07/93     | 12/09/93         | 110            |
|      | Chromium VI | B311254-10B        | 1208CR VI1  | 12/07/93     | 12/08/93         | 50.0           |
|      | Mercury     | B311254-10B        | 1207HGAA2   | 12/04/93     | 12/07/93         | 156            |
|      | Lead        | B311254-10B        | 12043050F1  | 12/07/93     | 12/09/93         | 110            |

Work order : B311254

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID   | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|---------------|--------------|------------------|----------------|
| 05B  |             |                    | - <del></del> |              |                  |                |
|      | Arsenic     | B311254-10B        | 12043050F1    | 12/04/93     | 12/09/93         | 106            |
|      | Chromium VI | B311254-10B        | 1208CR VI1    | 12/07/93     | 12/08/93         | 50.0           |
|      | Mercury     | B311254-10B        | 1207HGAA2     | 12/07/93     | 12/07/93         | 161            |
|      | Lead        | B311254-10B        | 12043050F1    | 12/04/93     | 12/09/93         | 106            |

Work order : B311254

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 06B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311254-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 86.2           |
|      | Chromium VI | B311254-10B        | 1208CR VI1  | 12/07/93     | 12/08/93         | 50.0           |
|      | Mercury     | B311254-10B        | 1207HGAA2   |              | 12/07/93         | 149            |
|      | Lead        | B311254-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 345            |

Work order: B311254

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 07B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311254-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 118            |
|      | Chromium VI | B311254-10B        | 1208CR VI1  | 12/07/93     | 12/08/93         | 50.0           |
|      | Mercury     | B311254-10B        | 1207HGAA2   | 12/07/93     | 12/07/93         | 159            |
|      | Lead        | B311254-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 118            |

Work order : B311254

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 09C  | Lead        | B311254-11C        | 113030201   | 11/30/93     | 12/02/93         | 1.0            |
| 09D  | Chromium VI | B311254-11D        | 1119CR_VI1  | 11/19/93     | 11/19/93         | 1.0            |

Work order : B311254

Sample ID : LAB BLANK #1

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 10B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311254-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 1.0            |
|      | Chromium VI | B311254-10B        | 1208CR_VI1  | 12/08/93     | 12/08/93         | 1.0            |
|      | Mercury     | B311254-10B        | 1207HGAA2   | 12/07/93     | 12/07/93         | 1.0            |
|      | Lead        | B311254-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 1.0            |

Work order : B311254

Sample ID : LAB BLANK #1

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 11c  |             |                    |             |              |                  |                |
|      | Arsenic     | B311254-11C        | 113030201   | 11/30/93     | 12/02/93         | 1.0            |
|      | Mercury     | B311254-11C        | 1201HGAA2   | 12/01/93     | 12/01/93         | 1.0            |
|      | Lead        | B311254-11C        | 113030201   | 11/30/93     | 12/02/93         | 1.0            |
| 11D  | Chromium VI | B311254-11D        | 1119CR_VI1  | 11/19/93     | 11/19/93         | 1.0            |

|  | · |  |  |
|--|---|--|--|
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |



### ANALYTICAL SERVICES



Date: 12/23/93

#### CERTIFICATE OF ANALYSIS

IT CORPORATION 1250 CAPITAL OF TX HWY BLDG. 3, SUITE 200 AUSTIN, TX 78746-6443 TIM JENNINGS

Work Order: B3-11-255

This is the Certificate of Analysis for the following samples:

Client Work ID: D.O.5001 Date Received: 11/20/93 Number of Samples: 12 Sample Type: SOIL 409832-003-01

#### I. Introduction

Samples were labeled as follows:

| SAMPLE IDENTIFICATION | LABORATORY # |
|-----------------------|--------------|
| A1555                 | B3-11-255-01 |
| A1555-MS              | B3-11-255-02 |
| A1555-MSD             | B3-11-255-03 |
| A1556                 | B3-11-255-04 |
| 2-63A                 | B3-11-255-05 |
| A1557                 | B3-11-255-06 |
| A1558                 | B3-11-255-07 |
| A1559                 | B3-11-255-08 |
| A1560                 | B3-11-255-09 |
| LAB BLANK #1          | B3-11-255-10 |
| LAB BLANK #2          | B3-11-255-11 |
| LAB BLANK #1          | B3-11-255-12 |

Reviewed and Approved:

Jon Bartell

Laboratory Director

Page: 2 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-11-255

#### II. QA/QC

The results presented in this report meet the statement of work requirements in accordance with Quality Control and Quality Assurance protocol except as noted in Section IV or in an optional sample narrative at the end of Section III.

In the presented analytical data, 'ND' or '<' indicates that the compound is not detected at the specified limit.

#### III. Analytical Data

The following page(s) supply results for requested analyses performed on the samples listed above.

The test results relate to tested items only. ITAS-Austin reserves the right to control report production except in whole.

Page: 3 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work 0-2 Work Order: B3-11-255

SAMPLE ID: A1555

SAMPLE DATE: 11/19/93 08:50:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting    |       | Date     | Method    |
|-------------|------|--------|--------------|-------|----------|-----------|
| Test Name   | Ref  | Result | <u>Limit</u> | Units | Analyzed | Reference |
| Chromium VI |      | 0.500  | 0.50         | MG/KG | 12/03/93 | EPA7196   |

Page: 4 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1555

SAMPLE DATE: 11/19/93
SAMPLE MATRIX: SOIL

ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

| 0N113. 00/ NO            |           | Re | eporting |                           |        |      | Re | porting |
|--------------------------|-----------|----|----------|---------------------------|--------|------|----|---------|
|                          | Result Qu |    | Limit    |                           | Result | Qual | L  | Limit   |
| Chloromethane            | 10        | U  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
|                          | 10        | บ  |          | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Bromomethane             |           | บ  | 10       | Trichloroethene           |        | 5    | U  | 5       |
| Vinyl chloride           | 10        | _  |          | Chlorodibromomethane      |        | 5    | U  | 5       |
| Chloroethane             | 10        | U  |          |                           |        | 5    | U  | 5       |
| Methylene chloride       | 7.9       | J  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 6.5       | JB |          | Benzene                   |        | •    | _  | 5       |
| Carbon disulfide         | 5         | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  |         |
| 1,1-Dichloroethene       | 5         | U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| 1,1-Dichloroethane       | 5         | U  | 5        | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene | 5         | U  | 5        | 2-Hexanone                |        | 50   | U  | 50      |
| cis-1,2-Dichloroethene   | 5         | U  | 5        | 4-Methyl-2-pentanone      |        | 50   | U  | 50      |
| Chloroform               | 5         | U  | 5        | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       | 5         | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 3.2       | J  | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    | 3.8       | J  | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     | 5         | Ū  |          | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 10        | U  |          | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     | 5         | Ū  |          | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 103        | 81 - 117 |
| BROMOFLUOROBENZENE    | 94         | 74 - 121 |
| 1.2-DICHLOROETHANE-D4 | 108        | 70 - 120 |

#### Data Qualifier Key:

- U none detected
- ${\tt J}$  estimated value (less than the sample quantitation limit)
- $\ensuremath{\mathtt{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 5 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1555
SAMPLE DATE: 11/19/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |          | Reporting |                            |        | F        | Reportin |
|-----------------------------|----------|-----------|----------------------------|--------|----------|----------|
| Re                          | esult Qu | al Limit  |                            | Result |          | Limit    |
| Dhana I                     |          |           |                            |        |          |          |
| Phenol                      | 0.330    | U 0.330   | 2,6-Dinitrotoluene         | 0.330  |          | 0.330    |
| bis(2-Chloroethyl)ether     | 0.330    | U 0.330   | 3-Nitroaniline             | 0.82   |          | 0.825    |
| 2-Chlorophenol              | 0.330    | U 0.330   | Acenaphthene               | 0.330  |          | 0.330    |
| 1,3-Dichlorobenzene         | 0.330    | U 0.330   | 2,4-Dinitrophenol          | 0.829  | 5 U      | 0.825    |
| 1,4-Dichlorobenzene         | 0.330    | U 0.330   | 4-Nitrophenol              | 0.825  | 5 U      | 0.825    |
| Benzyl alcohol              | 0.330    | U 0.330   | Dibenzofuran               | 0.330  | <b>U</b> | 0.330    |
| 1,2-Dichlorobenzene         | 0.330    | U 0.330   | 2,4-Dinitrotoluene         | 0.330  | ט כ      | 0.330    |
| 2-Methylphenol              | 0.330    | U 0.330   | Diethylphthalate           | 0.330  | <b>U</b> | 0.330    |
| bis(2-Chloroisopropyl)ether | 0.330    | U 0.330   | 4-Chlorophenyl-phenylether | 0.330  | ט כ      | 0.330    |
| 4-Methylphenol              | 0.330    | U 0.330   | Fluorene                   | 0.330  | <b>U</b> | 0.330    |
| N-Nitroso-di-n-propylamine  | 0.330    | บ 0.330   | 4-Nitroaniline             | 0.825  | <b>U</b> | 0.825    |
| Hexachloroethane            | 0.330    | U 0.330   | 4,6-Dinitro-2-methylphenol | 0.825  | T T      | 0.825    |
| Nitrobenzene                | 0.330    | U 0.330   | N-Nitrosodiphenylamine (1) | 0.330  | ט (      | 0.330    |
| Isophorone                  | 0.330    | บ 0.330   | 4-Bromophenyl-phenylether  | 0.330  | <b>U</b> | 0.330    |
| 2-Nitrophenol               | 0.330    | บ 0.330   | Hexachlorobenzene          | 0.330  | บ (      | 0.330    |
| 2,4-Dimethylphenol          | 0.330    | U 0.330   | Pentachlorophenol          | 0.825  | U        | 0.825    |
| Benzoic Acid                | 0.330    | U 0.330   | Phenanthrene               | 0.330  | บ (      | 0.330    |
| bis(2-Chloroethoxy)methane  | 0.330    | U 0.330   | Anthracene                 | 0.330  | υ (      | 0.330    |
| 2,4-Dichlorophenol          | 0.330    | U 0.330   | Di-n-butylphthalate        | 1.7    |          | 0.330    |
| 1,2,4-Trichlorobenzene      | 0.330    | U 0.330   | Fluoranthene               | 0.330  |          | 0.330    |
| Naphthalene                 | 0.330    | บ 0.330   | Pyrene                     | 0.330  |          | 0.330    |
| 4-Chloroaniline             | 0.330    | ប 0.330   | Butylbenzylphthalate       | 0.330  |          | 0.330    |
| Hexachlorobutadiene         | 0.330    | ប 0.330   | 3,3'-Dichlorobenzidine     | 0.330  |          | 0.330    |
| 4-Chloro-3-methylphenol     | 0.330    | U 0.330   | Benzo(a)anthracene         | 0.330  |          | 0.330    |
| 2-Methylnaphthalene         | 0.330    | U 0.330   | Chrysene                   | 0.330  | _        | 0.330    |
| Hexachlorocyclopentadiene   | 0.330    | U 0.330   | bis(2-Ethylhexyl)phthalate |        |          | 0.330    |
| 2,4,6-Trichlorophenol       | 0.330    | U 0.330   | Di-n-octylphthalate        | 0.330  | _        | 0.330    |
| 2,4,5-Trichlorophenol       | 0.825    | U 0.825   | Benzo(b)fluoranthene       | 0.330  |          | 0.330    |
| 2-Chloronaphthalene         | 0.330    | U 0.330   | Benzo(k)fluoranthene       | 0.330  |          | 0.330    |
| 2-Nitroaniline              | 0.825    | U 0.825   | Benzo(a) pyrene            | 0.330  | -        | 0.330    |
| Dimethylphthalate           | 0.330    | U 0.330   | Indeno(1,2,3-cd)pyrene     | 0.330  | _        | 0.330    |
| Acenaphthylene              | 0.330    | U 0.330   | Dibenzo(a,h)anthracene     | 0.330  |          | 0.330    |
|                             |          |           | Benzo(g,h,i)perylene       | 0.330  |          | 0.330    |
|                             |          |           |                            | 0.000  | _        |          |

Page: 6 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1555

SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|
| Nitrobenzene-D5      | 57         | 23 - 120 |  |  |  |  |
| 2-Fluorobiphenyl     | 57         | 30 - 115 |  |  |  |  |
| Terphenyl-D14        | 77         | 18 - 137 |  |  |  |  |
| Phenol-D5            | 62         | 24 - 113 |  |  |  |  |
| 2-Fluorophenol       | 53         | 25 - 121 |  |  |  |  |
| 2,4,6-Tribromophenol | 67         | 19 - 122 |  |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 7 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1555

SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 92.5926

UNITS: MG/KG

|           |        |                |                    |                     |                  | _ |
|-----------|--------|----------------|--------------------|---------------------|------------------|---|
|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |   |
| Arsenic   | 3.0    | N              | 1.1                | 7060                | 12/09/93         | _ |
| Aluminum  | 11000  | *N             | 19                 | 6010                | 12/09/93         |   |
| Barium    | 900    | *N             | 19                 | 6010                | 12/09/93         |   |
| Beryllium | 1.7    |                | 0.46               | 6010                | 12/09/93         |   |
| Cadmium   | 0.71   |                | 0.46               | 6010                | 12/09/93         |   |
| Chromium  | 13     | *              | 0.93               | 6010                | 12/09/93         |   |
| Copper    | 9.9    | *              | 2.3                | 6010                | 12/09/93         |   |
| Iron      | 15000  | *N             | 9.3                | 6010                | 12/09/93         |   |
| Nickel    | 19     | *              | 3.7                | 6010                | 12/09/93         |   |
| Lead      | 13     | N              | 1.3                | 7421                | 12/09/93         |   |
| Mercury   | 0.023  | บ              | 0.023              | 7471                | 12/07/93         |   |
| Silver    | 0.93   | ซ              | 0.93               | 6010                | 12/07/93         |   |
| Zinc      | 18     | *              | 1.9                | 6010                | 12/09/93         |   |
|           |        |                |                    |                     |                  |   |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

#### Referenced notes for these results:

Duplicate analysis outside control limits due to matrix interference on aluminum, barium, chromium, copper, iron, nickel and zinc analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

Page: 8 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01

Work Order: B3-11-255

SAMPLE ID: A1555-MS

SAMPLE DATE: 11/19/93 08:50:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting    |       | Date     | Nethod    |
|-------------|------|--------|--------------|-------|----------|-----------|
| Test Name   | Ref  | Result | <u>Limit</u> | Units | Analyzed | Reference |
| Chromium VI |      | 97     |              | % REC | 12/03/93 | EPA7196   |

Page: 9 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1555-MS
SAMPLE DATE: 11/19/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93

DILUTION FACTOR: 1.0
UNITS: % REC

|                    | Result |                 |    |  |  |
|--------------------|--------|-----------------|----|--|--|
| 1,1-Dichloroethene | 103    | Trichloroethene | 82 |  |  |
|                    |        | Benzene         | 97 |  |  |
|                    |        | Toluene         | 96 |  |  |
| <i>'</i>           |        | Chlorobenzene   | 96 |  |  |

| Surrogates            | % Recovery | Limits   |  |  |  |
|-----------------------|------------|----------|--|--|--|
| TOLUENE-D8            | 102        | 81 - 117 |  |  |  |
| BROMOFLUOROBENZENE    | 96         | 74 - 121 |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 106        | 70 - 120 |  |  |  |

#### Data Qualifier Key:

U - none detected

 ${\tt J}$  - estimated value (less than the sample quantitation limit)

B - analyte is found in the associated blank as well as in the sample

'blank' - positive result

\* - Surrogate recovery is outside QC limit

D - compound identified at a secondary dilution factor

E - concentration exceeds calibration range

Page: 10 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1555-MS
SAMPLE DATE: 11/19/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 467.29

UNITS: % REC

|           | Result | Method<br>Reference | Analysis<br>Date |
|-----------|--------|---------------------|------------------|
| Arsenic   | 96     | 7060                | 12/09/93         |
| Aluminum  | 951    | 6010                | 12/09/93         |
| Barium    | 0      | 6010                | 12/09/93         |
| Beryllium | 92     | 6010                | 12/09/93         |
| Cadmium   | 89     | 6010                | 12/09/93         |
| Chromium  | 90     | 6010                | 12/09/93         |
| Copper    | 83     | 6010                | 12/09/93         |
| Iron      | 231    | 6010                | 12/09/93         |
| Nickel    | 80     | 6010                | 12/09/93         |
| Lead      | 162    | 7421                | 12/09/93         |
| Mercury   | 110    | 7471                | 12/07/93         |
| Silver    | 87     | 6010                | 12/09/93         |
| Zinc      | 90     | 6010                | 12/09/93         |
|           |        |                     | , , , -          |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

#### Referenced notes for these results:

Matrix spike outside control limits due to matrix interference on aluminum, barium and iron analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

% RPD for matrix spikes outside control limits due to matrix interference on aluminum and iron analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable. Page: 11 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

SAMPLE ID: A1555-MSD

SAMPLE DATE: 11/19/93 08:50:00

SAMPLE MATRIX: SOIL

|             | Note | Reporting |       |       |       | te   | Method    |
|-------------|------|-----------|-------|-------|-------|------|-----------|
| Test Name   | Ref  | Result    | Limit | Units | Analy | zed  | Reference |
| Chromium VI |      | 90        |       | % REC | 12/03 | 3/93 | EPA7196   |

Page: 12 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1555-MSD SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL ANALYSIS DATE: 12/02/93 DILUTION FACTOR: 1.0

UNITS: % REC

|                    | Result |                                                        |                                |
|--------------------|--------|--------------------------------------------------------|--------------------------------|
| 1,1-Dichloroethene | 101    | Trichloroethene<br>Benzene<br>Toluene<br>Chlorobenzene | Result<br>82<br>97<br>98<br>98 |

| Surrogates TOLUENE-D8 BROMOFLUOROBENZENE 1,2-DICHLOROETHANE-D4 | % Recovery<br>106<br>99<br>108 | Limits<br>81 - 117<br>74 - 121 |
|----------------------------------------------------------------|--------------------------------|--------------------------------|
|                                                                | 100                            | /0 - 120                       |

#### Data Qualifier Key:

U - none detected

J - estimated value (less than the sample quantitation limit)

B - analyte is found in the associated blank as well as in the sample 'blank' - positive result

\* - Surrogate recovery is outside QC limit

D - compound identified at a secondary dilution factor

E - concentration exceeds calibration range

Page: 13 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-255

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1555-MSD SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 96.1538

Result Arsenic Method Analysis Aluminum 67 Barium 1406 Beryllium 7060 0 12/09/93 6010 12/09/93 Cadmium 89 Chromium 6010 12/09/93 87 Copper 6010 97 12/09/93 Iron 6010 86 12/09/93 Nickel 6010 500 12/09/93 Lead 6010 81 12/09/93 Mercury 6010 73 12/09/93 Silver 6010 110 12/09/93 Zinc 7421 84 12/09/93 7471 Data qualifier key: 91 12/07/93 6010 12/09/93 6010 12/09/93

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits S - determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), \* - duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL U - none detected

- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

## eferenced notes for these results:

Matrix spike duplicate outside control limits due to matrix interference on aluminum, barium and iron analysis by ICPES. / LCSD results and method Quality Control were

% RPD for matrix spikes outside control limits due to matrix interference on aluminum and iron analysis by ICPES. LCS /

Page: 14 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-255

SAMPLE ID: A1556

SAMPLE DATE: 11/19/93 08:55:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting | Date  | Method          |           |
|-------------|------|--------|-----------|-------|-----------------|-----------|
| Test Name   | Ref  | Result | Limit     | Units | <u>Analyzed</u> | Reference |
| Chromium VI |      | 0.500  | 0.50      | MG/KG | 12/03/93        | EPA7196   |

Page: 15 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1556

SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL ANALYSIS DATE: 12/02/93 DILUTION FACTOR: 1.0

UNITS: UG/KG

| Chloromethane                                                                                                                                                                                                                                                                                   | Result Q                                                                                                                    | R<br>ual                              | eporting<br>Limit                                                             |                                                                                                                                                                                                                                                                                                                   | Result | F<br>Qual                               | Reporting<br>Limit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|--------------------|
| Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethene 1-Dichloroethane crans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Vinyl acetate Dichlorobromomethane | 10<br>10<br>10<br>5.4<br>9.1<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | O O O O O O O O O O O O O O O O O O O | 10<br>10<br>10<br>10<br>100<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 2-Hexanone 4-Methyl-2-pentanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Xylenes, total | !      | 5 U U U U U U U U U U U U U U U U U U U | 5<br>5<br>5        |

| Surrogates<br>TOLUENE-D8 | % Recovery | Limits               |
|--------------------------|------------|----------------------|
| BROMOFLUOROBENZENE       | 106<br>100 | 81 - 117<br>74 - 121 |
| 1,2-DICHLOROETHANE-D4    | 109        | 70 - 121             |

#### Data Qualifier Key:

- U none detected
- ${\sf J}$  estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' - positive result
- - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 16 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01

Work Order: B3-11-255

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1556
SAMPLE DATE: 11/19/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |       | Re       | eporting |                            |        | F        | Reportin |
|-----------------------------|-------|----------|----------|----------------------------|--------|----------|----------|
| Res                         | ult   | Qual     | Limit    |                            | Result | Qual     | Limit    |
|                             |       |          |          |                            |        |          |          |
|                             | 0.330 | _        | 0.330    | 2,6-Dinitrotoluene         | 0.330  | -        | 0.330    |
| 2                           | 0.330 |          | 0.330    | 3-Nitroaniline             | 0.82   |          | 0.825    |
|                             | 0.330 |          | 0.330    | Acenaphthene               | 0.330  | -        | 0.330    |
| •                           | 0.330 |          | 0.330    | 2,4-Dinitrophenol          | 0.82   |          | 0.825    |
| •                           | 0.330 | _        | 0.330    | 4-Nitrophenol              | 0.82   |          | 0.825    |
| -                           | 0.330 |          | 0.330    | Dibenzofuran               | 0.330  | -        | 0.330    |
| •                           | 0.330 | <b>U</b> | 0.330    | 2,4-Dinitrotoluene         | 0.330  | _        | 0.330    |
| 2-Methylphenol              | 0.330 | <b>U</b> | 0.330    | Diethylphthalate           | 0.330  | ט כ      | 0.330    |
| bis(2-Chloroisopropyl)ether | 0.330 | <b>U</b> | 0.330    | 4-Chlorophenyl-phenylether | 0.330  | U C      | 0.330    |
| 4-Methylphenol              | 0.330 | ט (      | 0.330    | Fluorene                   | 0.330  | υ (      | 0.330    |
| N-Nitroso-di-n-propylamine  | 0.330 | ט (      | 0.330    | 4-Nitroaniline             | 0.82   | 5 U      | 0.825    |
| Hexachloroethane            | 0.330 | -        | 0.330    | 4,6-Dinitro-2-methylphenol | 0.82   | 5 U      | 0.825    |
| Nitrobenzene                | 0.330 | U (      | 0.330    | N-Nitrosodiphenylamine (1) | 0.330  | ) U      | 0.330    |
| Isophorone                  | 0.330 | U (      | 0.330    | 4-Bromophenyl-phenylether  | 0.330  | U (      | 0.330    |
| 2-Nitrophenol               | 0.330 | U (      | 0.330    | Hexachlorobenzene          | 0.330  | <b>U</b> | 0.330    |
| 2,4-Dimethylphenol          | 0.330 | U (      | 0.330    | Pentachlorophenol          | 0.825  | 5 U      | 0.825    |
| Benzoic Acid                | 0.330 | <b>U</b> | 0.330    | Phenanthrene               | 0.330  | ט כ      | 0.330    |
| bis(2-Chloroethoxy)methane  | 0.330 | <b>U</b> | 0.330    | Anthracene                 | 0.330  | υ (      | 0.330    |
| 2,4-Dichlorophenol          | 0.330 | <b>U</b> | 0.330    | Di-n-butylphthalate        | 0.34   | ŀ        | 0.330    |
| 1,2,4-Trichlorobenzene      | 0.330 | ט (      | 0.330    | Fluoranthene               | 0.330  | U (      | 0.330    |
| Naphthalene                 | 0.330 | ט כ      | 0.330    | Pyrene                     | 0.330  | U (      | 0.330    |
| 4-Chloroaniline             | 0.330 | <b>U</b> | 0.330    | Butylbenzylphthalate       | 0.330  | <b>U</b> | 0.330    |
| Hexachlorobutadiene         | 0.330 | <b>U</b> | 0.330    | 3,3'-Dichlorobenzidine     | 0.330  | <b>U</b> | 0.330    |
| 4-Chloro-3-methylphenol     | 0.330 | ט (      | 0.330    | Benzo(a)anthracene         | 0.330  | U (      | 0.330    |
| 2-Methylnaphthalene         | 0.330 | ט ט      | 0.330    | Chrysene                   | 0.330  | U (      | 0.330    |
| Hexachlorocyclopentadiene   | 0.330 | ט כ      | 0.330    | bis(2-Ethylhexyl)phthalate | 0.330  | U (      | 0.330    |
| 2,4,6-Trichlorophenol       | 0.330 | <b>U</b> | 0.330    | Di-n-octylphthalate        | 0.330  | U (      | 0.330    |
| 2,4,5-Trichlorophenol       | 0.825 | <b>U</b> | 0.825    | Benzo(b) fluoranthene      | 0.330  | ) บ      | 0.330    |
| 2-Chloronaphthalene         | 0.330 | ט (      | 0.330    | Benzo(k)fluoranthene       | 0.330  | บ (      | 0.330    |
| 2-Nitroaniline              | 0.825 | ט פ      | 0.825    | Benzo(a)pyrene             | 0.330  | บ (      | 0.330    |
| Dimethylphthalate           | 0.330 | <b>U</b> | 0.330    | Indeno(1,2,3-cd)pyrene     | 0.330  | <b>U</b> | 0.330    |
| Acenaphthylene              | 0.330 | ט (      | 0.330    | Dibenzo(a,h)anthracene     | 0.330  | <b>U</b> | 0.330    |
|                             |       |          |          | Benzo(g,h,i)perylene       | 0.330  | ט כ      | 0.330    |

Page: 17 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1556 SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |
|----------------------|------------|----------|--|--|--|
| Nitrobenzene-D5      | 14*        | 23 - 120 |  |  |  |
| 2-Fluorobiphenyl     | 15*        | 30 - 115 |  |  |  |
| Terphenyl-D14        | 14*        | 18 - 137 |  |  |  |
| Phenol-D5            | 21         | 24 - 113 |  |  |  |
| 2-Fluorophenol       | 18*        | 25 - 121 |  |  |  |
| 2,4,6-Tribromophenol | 16         | 19 - 122 |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

### Referenced notes for these results:

Sample was re-extracted 12/09/93 and re-analyzed 12/11/93. The surrogate recoveries were within QC limits on the reprep. The original analysis is reported.

Page: 18 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1556

SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 96.1538

UNITS: MG/KG

|                      | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|----------------------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic              | 1.2    | UN             | 1.2                | 7060                | 12/09/93         |
| Aluminum             | 11000  | *N             | 19                 | 6010                | 12/09/93         |
| Barium               | 22     | *N             | 19                 | 6010                | 12/09/93         |
| Beryllium<br>Cadmium | 1.4    |                | 0.48               | 6010                | 12/09/93         |
| Chromium             | 0.48   | U              | 0.48               | 6010                | 12/09/93         |
| Copper               | 11     | *              | 0.96               | 6010                | 12/09/93         |
| Iron                 | 15     | *              | 2.4                | 6010                | 12/09/93         |
| Nickel               | 10000  | *N             | 9.6                | 6010                | 12/09/93         |
| Lead                 | 18     | *              | 3.8                | 6010                | 12/09/93         |
| Mercury              | 7.3    | N              | 0.35               | 7421                | 12/09/93         |
| Silver               | 0.025  | U              | 0.025              | 7471                | 12/07/93         |
| Zinc                 | 0.96   | U              | 0.96               | 6010                | 12/09/93         |
| - <b></b>            | 24     | *              | 1.9                | 6010                | 12/09/93         |

## Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 19 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order Work Order: B3-11-255

SAMPLE ID: A1557

SAMPLE DATE: 11/19/93 09:20:00

SAMPLE MATRIX: SOIL

| Test Name<br>Chromium VI | Note Ref Result 0.500 | Unite |  | Method<br>Reference<br>EPA7196 |
|--------------------------|-----------------------|-------|--|--------------------------------|
|--------------------------|-----------------------|-------|--|--------------------------------|

Page: 20 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1557 SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL ANALYSIS DATE: 12/03/93 DILUTION FACTOR: 1.0

UNITS: UG/KG

| Chloromethane Bromomethane                                                                                                                                                                                                                                  | Result Q                                                               | R<br>ual<br>U           | eporting<br>Limit<br>10<br>10                      | 1,2-Dichloropropane                                                                                                                                                                                                                                                    | Result | F<br>Qual<br>5 U |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|------------------|
| Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethene 1-Dichloroethane ans-1,2-Dichloroethene Cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Vinyl acetate | 10<br>10<br>10<br>15<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | ם מ מ מ מ מ מ מ נ מ מ מ | 10<br>10<br>100<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 2-Hexanone 4-Methyl-2-pentanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene | !      | 55 U U U U U     | 5<br>5<br>5<br>5 |
| Dichlorobromomethane                                                                                                                                                                                                                                        | 5                                                                      | Ū                       |                                                    | Styrene<br>Xylenes, total                                                                                                                                                                                                                                              | 5<br>5 | ט<br>ט           | 5<br>5           |

| Surrogates<br>TOLUENE-D8 | % Recovery | Limits   |
|--------------------------|------------|----------|
| BROMOFLUOROBENZENE       | 104        | 81 - 117 |
| 1,2-DICHLOROETHANE-D4    | 99         | 74 - 121 |
|                          | 107        | 70 - 120 |

- U none detected
- ${\it J}$  estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' - positive result
- - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 21 of 44

Company: IT CORPORATION

Date: 12/23/93 Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-11-255

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1557 SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93 ANALYSIS DATE: 12/09/93 DILUTION FACTOR: 0.033 UNITS:

| UNITS: MG/F                                 | 0.033              |                                         |                                         |                   |
|---------------------------------------------|--------------------|-----------------------------------------|-----------------------------------------|-------------------|
| MO/ KG                                      |                    | Report :                                |                                         |                   |
| Phenol                                      | Result             | Reporti<br>Qual Limit                   | ng                                      |                   |
| bis(2-Chloropt)                             | 0.330              |                                         |                                         | Result Oual Tring |
| 2-Chlorophenol                              | 0.330              | 0.330                                   | 2,6-Dini+                               | Result Qual Limit |
| 1/3-Dichlorope                              | 0.330              | 0.330                                   | 2,6-Dinitrotoluene 3-Nitroaniline       | 0.330             |
| 1,4-Dichlorobenzene Benzyl                  | 0.330              | • •••330                                | Acenaphe                                | 0.330 U 0.330     |
| Benzyl alcohol                              | 0.330              | - 0.330                                 | Acenaphthene                            | 0.825 U 0.825     |
| 1,2-Dichlorobenzene                         | 0.330              | 9 0.330                                 | 2,4-Dinitrophenol                       | 0.330 U 0.330     |
| 2-Methylphenol                              | 0.330              | U 0.330                                 | · ····································  | 0.825 U 0 par     |
| b ?=ch1                                     | 0.330              | ช 0.330                                 | Dibenzofuran                            | 0.825 II O ear    |
| b ?-Chloroisopropyl)ether                   | 0.330              | U 0.330                                 | 2,4-Dinitrotoluene                      | 0.330 B 0.330     |
| 4. chylphenol N-Nitron                      |                    | U 0.330                                 | ~ -~ - LIIVIDD+ hal                     |                   |
| N-Nitroso-di-n-propylamine Hexachloroethane | 0.330              | <sup>Ծ</sup> 0.330                      | - CILLOFODhomas                         | 0.04 J 0.330      |
| Hexachloroethane Nitrobenzene               | 0.330              | υ 0.330                                 | Fluorene Fluorene                       | 0 0.336           |
| Isophorone                                  | 0.330              | υ 0.330                                 | 4-Nitroaniline                          | U. 140            |
| 2-Ni+man                                    | 0.330              | <sup>Ծ</sup> 0.330                      | T/O-Dinitro-2                           |                   |
| 2-Nitrophenol                               | 0.330              | U 0.330                                 | N-Nitrosodiphenylamine (1)              | U D 29F           |
| 2,4-Dimethylphenol                          | 0.330              | U 0.330                                 | 4-Bromophenyl-phenylether Hexachlorober | 0 0 222           |
| 1                                           | 0.330              | U 0.330                                 | Hexachlorobenzene                       | 0.330 0.330       |
| >is(2-Chloroethoxy)methane                  | 0.330              | υ 0.330                                 | - chedeniorophe-                        | 0.330 U 0.330     |
| ,4-Dichlorophenol                           | 0.330              | U 0.330                                 | - "CHANTARPA                            | 0.825 U O Bar     |
| '-' Ifichlorobenzo-                         | 0.330              | 77 0 0-                                 | Anthracene                              | 0.330 B 0 330     |
|                                             | 9.330              | II O 335                                | Di-n-butylphthalate                     | 0.330 11 0.330    |
| -Chloroaniline                              | 7.330 j            | T 0 335                                 |                                         | 0.83              |
| *xachlorobutadiene                          | /•330 <sub>T</sub> | 7 0 -                                   | Pyrene                                  | 0.330 11 0.330    |
| 01010-3-mo+1                                | '•330 <sub>[</sub> | 7 0 - 1                                 | Butylbenzylphthalate                    | 0.330 U 330       |
| Methylnaphthalene 0                         | •330 m             |                                         |                                         | 0.330 0 330       |
|                                             | •330 11            |                                         |                                         | 0.330 U 0.330     |
| 4,6-Trichlorophenol                         | .330 T             | A =                                     | 7 0 E N G                               | 0.330 U 0.330     |
| ' Uniopo U.                                 | .330 U             | ^ ~~                                    | is(2-Ethylhexyl)phthalate               | 0.330 U 0.330     |
|                                             | 025 17             | 0.825 B                                 | i-n-octylphthalate                      | 0.330 U 0.330     |
| Lerodnijine U.                              | 330 U              |                                         |                                         | 0.330 U 0.330     |
| ethylphthalata 0.8                          | 825 U              | ^ ^ -                                   |                                         | 0.330 U 0.330     |
| "aphthylene 0.3                             | 330 U              |                                         |                                         | 0.330 U 0.330     |
| 0.3                                         | 330 U              | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | deno(1.2 2 (                            | 0.330 U 0.330     |
|                                             |                    |                                         |                                         | 0.330 U 0.330     |
|                                             |                    | Be                                      | nzo(g,h,i)perylene                      | 0.330 U 0.330     |
|                                             |                    |                                         | 0 o                                     | .330 U 0.330      |
|                                             |                    |                                         |                                         | ~ 0.330           |

Page: 22 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: BPA8270

SAMPLE ID: A1557
SAMPLE DATE: 11/19/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 39         | 23 - 120 |
| 2-Fluorobiphenyl     | 41         | 30 - 115 |
| Terphenyl-D14        | 43         | 18 - 137 |
| Phenol-D5            | 46         | 24 - 113 |
| 2-Fluorophenol       | 39         | 25 - 121 |
| 2,4,6-Tribromophenol | 39         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 23 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1557

SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 116.279

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 1.2    | UN             | 1.2                | 7060                | 12/09/93         |
| Aluminum  | 12000  | *N             | 23                 | 6010                | 12/09/93         |
| Barium    | 110    | *N             | 23                 | 6010                | 12/09/93         |
| Beryllium | 1.9    |                | 0.58               | 6010                | 12/09/93         |
| Cadmium   | 0.77   |                | 0.58               | 6010                | 12/09/93         |
| Chromium  | 20     | *              | 1.2                | 6010                | 12/09/93         |
| Copper    | 18     | *              | 2.9                | 6010                | 12/09/93         |
| Iron      | 17000  | *N             | 12                 | 6010                | 12/09/93         |
| Nickel    | 20     | *              | 4.7                | 6010                | 12/09/93         |
| Lead      | 7.0    | N              | 0.35               | 7421                | 12/09/93         |
| Mercury   | 0.024  | ט<br>ט         | 0.024              | 7471                | 12/07/93         |
| Silver    | 1.2    | บ              | 1.2                | 6010                | 12/09/93         |
| Zinc      | 27     | *              | 2.3                | 6010                | 12/09/93         |

### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- ${\tt N}$  spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 24 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01

Work Order: B3-11-255

SAMPLE ID: A1558

SAMPLE DATE: 11/19/93 09:33:00

SAMPLE MATRIX: SOIL

|             | Note | Reporting |       |       | <b>Date</b> | Method    |
|-------------|------|-----------|-------|-------|-------------|-----------|
| Test Name   | Ref  | Result    | Limit | Units | Analyzed    | Reference |
| Chromium VI |      | 0.500     | 0.50  | MG/KG | 12/03/93    | EPA7196   |

Page: 25 of 44

Company: IT CORPORATION

Date: 12/23/93 Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX (512) 892-6684 409832-003-01 Work Order: B3-11-255

TEST NAME: Hazardous Substance Vols. METHOD REFERENCE: EPA8240

SAMPLE ID: A1558 SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL ANALYSIS DATE: 12/02/93 DILUTION FACTOR: 1.0

UNITS: UG/KG

| 7.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Bromomethane Vinyl Chlorid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reporting Result Qual Limit  10 U 10 1,2-Dichler                                                                          | Report<br>Result Qual Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ing |
| Chloroethane Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloroethene Methylene chloride Methylene chloride Methylene chloride Methylene chloride Methylene chloroethene Met | 10 U 10 trans-1,3-Dichloropropene 10 U 10 Trichloroethene 10 U 10 Chlorodibromomethane 110 U 10 I,1,2-Trichloroethane 111 | 5 U 5<br>5 U 5 | 5   |
| Surrogates<br>TOLUENE-D8<br>BROMOFINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | % Recovery                                                                                                                | 5 U 5<br>5 U 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |

| Surrogates TOLUENE-D8 BROMOFLUOROBENZENE 1,2-DICHLOROETHANE-D4 | % Recovery<br>98<br>99 | Limits<br>81 - 117<br>74 - 121 |
|----------------------------------------------------------------|------------------------|--------------------------------|
| fier Key:                                                      | 108                    | 70 - 121                       |

# Data Qualifier Key:

U - none detected

J - estimated value (less than the sample quantitation limit)

B - analyte is found in the associated blank as well as in the sample 'blank' - positive result \* - Surrogate recovery is outside QC limit

D - compound identified at a secondary dilution factor

E - concentration exceeds calibration range

Page: 26 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

# IT ANALYTICAL SERVICES AUSTIN, TX

0.330 U 0.330

(512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1558 SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93 ANALYSIS DATE: 12/09/93 DILUTION FACTOR: 0.033

| DILUTION FACTOR:<br>UNITS: MG/KG                                                                                                               |                                           |                                                                           |                                                                                                                                 |                                                    |                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
|                                                                                                                                                | D                                         | Reporting Qual Limit                                                      |                                                                                                                                 |                                                    |                                                     |
| Phenol                                                                                                                                         |                                           |                                                                           |                                                                                                                                 | Result                                             | Reporting                                           |
| bis(2-Chloroethyl)ether                                                                                                                        | 0.330                                     | U U 3 411                                                                 | 2 6 74                                                                                                                          | WEBUIL                                             | Qual Limit                                          |
| 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol (2-Chloroisopropyl)ether iethylphenol | 0.330<br>0.330<br>0.330<br>0.330<br>0.330 | U 0.330<br>U 0.330<br>U 0.330<br>U 0.330<br>U 0.330<br>U 0.330<br>U 0.330 | 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate | 0.330<br>0.825<br>0.330<br>0.825<br>0.825<br>0.330 | U 0.330<br>U 0.825<br>U 0.330<br>U 0.825<br>U 0.825 |
| N-Nitroso-di-n-propylamine Hexachloroethan                                                                                                     | 0.330                                     | 77 0 222                                                                  | 4-Chlorophenyl-phenylether Fluorene                                                                                             | 0.330<br>0.330                                     | U 0.330<br>U 0.330                                  |

| 1.3-Dieta                                      | 0 220    | ( 0.33  |                            | 0.33    | 30 11 0 222 |
|------------------------------------------------|----------|---------|----------------------------|---------|-------------|
| 1,3-Dichlorobenzene                            | 0.330    | 9 0.330 |                            | 0.82    | 0.330       |
| -/- Diculoroben                                | 0.330    | U 0.330 | ) 2 4 p:                   | 0.33    | - 0.025     |
| alcohol                                        | 0.330    | U 0.330 | , Dillicrophenol           |         | - 0.000     |
| 1,2-Dichlorobon-                               | 0.330    | υ 0.330 | T-Nitrophenol              | 0.82    | - 0.023     |
| - Methylphenol                                 | 0.330    | υ 0.330 |                            | 0.82    | 5 U 0.825   |
| (2-Chloroisopropyl)ethe                        | 0.330    | υ 0.330 | 2,4-Dinitrotolyona         | 0.330   | 0 0.330     |
| iethylphenol                                   | er 0.330 | 7 0.330 | orecult Duthalato          | 0.330   | U 0.330     |
| N-Nitroso-di                                   | 0.330    | U 0.330 | 4-('D   0ma-1;             | 0.330   | υ 0.330     |
| N-Nitroso-di-n-propylamine<br>Hexachloroethane | 0.330    | U 0.330 | Fluorene Fluorene          | r 0.330 | U 0.330     |
|                                                | 0.330    | υ 0.330 | 4-Nitroaniline             | 0.330   | 0.330       |
| Nitrobenzene                                   |          | U 0.330 | 4.6-Dinitar                |         | 0.330       |
| Isophorone                                     | 0.330    | U 0.330 | 4,6-Dinitro-2-methylpheno  | 0.825   | 0.025       |
| 2-Nitrophenol                                  | 0.330    | υ 0.330 |                            | 0.330   |             |
| 2,4-Dimethylphenol                             | 0.330    | U 0.330 |                            |         | U 0.330     |
| Denzoic Acid                                   | 0.330    | U 0.330 |                            | 0.330   | U 0.330     |
| bis(2-Chloroethoxy)methane                     | 0.330    | υ 0.330 | rentachlorophenol          | 0.330   | ប 0.330     |
|                                                | 0.330    | U 0.330 | rnenanthrene               | 0.825   | U 0.825     |
| -/2/4-Trichloroba-                             | 0.330    | υ 0.330 | Anthracene                 | 0.330   | U 0.330     |
| Fricialene                                     | 0.330    | U 0.330 | Di-n-butylphthalate        | 0.330   | U 0.330     |
| 4-Chloroaniline                                | 0.330    | U 0.330 | ridoranthene               | 0.76    | 0.330       |
| Hexachlorobutadiene                            |          | U 0.330 | Pyrene                     | 0.330   | U 0.330     |
| 4-Chloro-3                                     | _        | U 0.330 | Butylbenzylphthele         | 0.330   | U 0.330     |
| 4-Chloro-3-methylphenol                        | • •      | υ 0.330 | 3,3'-Dichlorobenzidine     | 0.63    | 0.330       |
|                                                | 0        | U 0.330 | Benzo(a)anthracene         | 0.330   | υ 0.330     |
| Hexachlorocyclopentadiene 2,4,6-Trichloro      |          | U 0.330 | Chrysene                   | 0.330   | 0.330       |
|                                                |          | U 0.330 | bis/2-makes                | 0.330   | U 0.330     |
| -,-/3_11[CU OxOmb-                             | 0.330    | 0.330   | bis(2-Ethylhexyl)phthalate | 1.7     | υ 0.330     |
| onitoronaphthalass                             | 0.825 t  | J 0.825 |                            | 0.330   | 0.330       |
| · Microaniline                                 | U.330 t  | 0.330   | Delizo(D)fluorantha-       |         | U 0.330     |
| 'imethylphthalato                              | U.825 U  | 0.825   | DCM2U(K)Iluoranthon-       | 0.330   | U 0.330     |
| .cenaphthylene                                 | 0.330 B  |         | JCH2O(d)Dyrene             | 0.330   | U 0.330     |
|                                                | 0.330 U  | A       | Indeno(1,2,3-cd)           | 0.330   | U 0.330     |
|                                                | · ·      |         |                            | 0.330   | ช 0.330     |
|                                                |          |         | Benzo(g,h,i)perylene       | 0.330   | U 0.330     |
|                                                |          |         | · - \ Lor l relie          | 0.330   | U 0.330     |

Page: 27 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1558

SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 58         | 23 - 120 |
| 2-Fluorobiphenyl     | 62         | 30 - 115 |
| Terphenyl-D14        | 74         | 18 - 137 |
| Phenol-D5            | 67         | 24 - 113 |
| 2-Fluorophenol       | 53         |          |
| 2,4,6-Tribromophenol | 61         | 25 - 121 |
| , -, omopiicitor     | 91         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 28 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01

Work Order: B3-11-255

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1558

SAMPLE DATE: 11/19/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 97.0874

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 0.95   | UN             | 0.95               | 7060                | 12/09/93         |
| Aluminum  | 900    | *N             | 19                 | 6010                | 12/09/93         |
| Barium    | 20     | *N             | 19                 | 6010                | 12/09/93         |
| Beryllium | 0.49   | ប              | 0.49               | 6010                | 12/09/93         |
| Cadmium   | 0.49   | U              | 0.49               | 6010                | 12/09/93         |
| Chromium  | 3.9    | *              | 0.97               | 6010                | 12/09/93         |
| Copper    | 2.4    | <b>U</b> ≠     | 2.4                | 6010                | 12/09/93         |
| Iron      | 2800   | *N             | 9.7                | 6010                | 12/09/93         |
| Nickel    | 3.9    | บ*             | 3.9                | 6010                | 12/09/93         |
| Lead      | 0.88   | N              | 0.29               | 7421                | 12/09/93         |
| Mercury   | 0.023  | U              | 0.023              | 7471                | 12/07/93         |
| Silver    | 0.97   | U              | 0.97               | 6010                | 12/09/93         |
| Zinc      | 4.7    | *              | 1.9                | 6010                | 12/09/93         |

### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance</p>
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 29 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

SAMPLE ID: A1559

SAMPLE DATE: 11/19/93 09:49:00

SAMPLE MATRIX: SOIL

|             | Note |               | Reporting    |       | Date     | Method    |
|-------------|------|---------------|--------------|-------|----------|-----------|
| Test Name   | Ref  | <u>Result</u> | <u>Limit</u> | Units | Analyzed | Reference |
| Chromium VI |      | 0.500         | 0.50         | MG/KG | 12/03/93 | EPA7196   |

Page: 30 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

# IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1559

SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL

ANALYSIS DATE: 12/03/93 DILUTION FACTOR: 1.0

UNITS: UG/KG

| •                                               |        |        |        |                   |                                              |        |        |        |          |
|-------------------------------------------------|--------|--------|--------|-------------------|----------------------------------------------|--------|--------|--------|----------|
|                                                 | Result | Oua    |        | eporting<br>Limit |                                              |        |        | Re     | porting  |
| Chloromethane                                   |        |        |        | חדווודר           |                                              | Result | Qua    | 1      | Limit    |
| Bromomethane                                    | _      | .0     | U<br>U | 10                | 1,2-Dichloropropane                          |        | 5      | U      | 5        |
| Vinyl chloride<br>Chloroethane                  |        | .0     | Ū      | 10<br>10          | trans-1,3-Dichloropropene<br>Trichloroethene |        | 5      | U      | 5        |
| Methylene chloride                              | _      | 0      | U      | 10                | Chlorodibromomethane                         |        | 5<br>5 | U<br>U | 5<br>5   |
| Acetone                                         | _      | 0<br>7 | U<br>J | 10<br>100         | 1,1,2-Trichloroethane                        |        | 5      | U      | 5        |
| Carbon disulfide<br>1,1-Dichloroethene          |        | 5      | Ū      | 5                 | Benzene<br>cis-1,3-Dichloropropene           |        | 5<br>5 | U      | 5        |
| .,1-Dichloroethane                              |        | 5<br>5 | U<br>U | 5<br>5            | 2-Chloroethylvinyl ether                     | 1      | -      | U<br>U | 5<br>10  |
| trans-1,2-Dichloroethene cis-1,2-Dichloroethene | `      | 5      | U      | 5                 | Bromoform<br>2-Hexanone                      | -      | _      | U      | 5        |
| Chloroform                                      | -      | 5<br>5 | U<br>U | 5                 | 4-Methyl-2-pentanone                         | 5<br>5 | _      | U<br>U | 50<br>50 |
| 1,2-Dichloroethane<br>2-Butanone                |        |        | U      | 5<br>5            | Tetrachloroethene 1,1,2,2-Tetrachloroethane  |        |        | U      | 5        |
| 1,1,1-Trichloroethane                           | 15     |        | В      | 100               | Toluene                                      | •      | _      | U<br>U | 5<br>5   |
| Carbon tetrachloride                            | 5      |        | U<br>U | 5<br>5            | Chlorobenzene<br>Ethylbenzene                | •      | 5      | U      | 5        |
| Vinyl acetate<br>Dichlorobromomethane           | 10     |        | IJ     | 10                | Styrene                                      |        |        | U<br>U | 5<br>5   |
|                                                 | 5      | •      | U      | 5                 | Xylenes, total                               |        |        | IJ     | 5        |

| Surrogates<br>TOLUENE-D8 | % Recovery | Limits   |
|--------------------------|------------|----------|
| BROMOFLUOROBENZENE       | 104        | 81 - 117 |
| 1,2-DICHLOROETHANE-D4    | 96         | 74 - 121 |
|                          | 110        | 70 - 120 |

- U none detected
- ${\tt J}$  estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' - positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 31 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01

Work Order: B3-11-255

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1559
SAMPLE DATE: 11/19/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93 ANALYSIS DATE: 12/09/93 DILUTION FACTOR: 0.033

| Phenol bis(2-Chloroethyl)eth 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene '-Methylphenol is(2-Chloroisopropyl 4-Methylphenol N-Nitroso-di-n-propyl Hexachloroethane Nitrobenzene | er<br>)ether   | 0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330          | Qual  U U U U U U U U U U U U U U U U U U | eporting Limit  0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol | 0.330<br>0.825<br>0.330<br>0.825<br>0.825<br>0.330<br>0.330<br>0.330<br>0.330<br>0.825<br>0.825 | U 0.825<br>U 0.330<br>U 0.825<br>U 0.825<br>U 0.330<br>U 0.330<br>U 0.330<br>U 0.330<br>U 0.330<br>U 0.825<br>U 0.825 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene  -Methylphenol is(2-Chloroisopropyl 4-Methylphenol N-Nitroso-di-n-propyl Hexachloroethane                                                                              | amine<br>chane | 0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330 |                                           | 0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0.300<br>0. | 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline                                                                           | 0.825<br>0.825<br>0.330<br>0.330<br>0.04<br>0.330<br>0.330                                      | U 0.825<br>U 0.825<br>U 0.330<br>U 0.330<br>J 0.330<br>U 0.330<br>U 0.330<br>U 0.825                                  |

Page: 32 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01

Work Order: B3-11-255

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1559 SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 46         | 23 - 120 |
| 2-Fluorobiphenyl     | 52         | 30 - 115 |
| Terphenyl-D14        | 51         | 18 - 137 |
| Phenol-D5            | 58         | 24 - 113 |
| 2-Fluorophenol       | 45         | 25 - 121 |
| 2,4,6-Tribromophenol | 62         | 19 - 121 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- ${\it J}$  estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 33 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1559

SAMPLE DATE: 11/19/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 113.636

UNITS: MG/KG

|                                                                                                | Result                                                                                 | Result<br>Qual                             | Reporting<br>Limit                                                                         | Method<br>Reference                                          | Analysis<br>Date                                                                                                                             |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Arsenic Aluminum Barium Beryllium Cadmium Chromium Copper Iron Nickel Lead Mercury Silver Zinc | 0.85<br>1500<br>23<br>0.57<br>0.90<br>4.0<br>2.8<br>3700<br>4.5<br>1.2<br>0.021<br>1.1 | UN  *N  U*N  U*  *  U*  *N  U*  *N  U*  U* | 0.85<br>23<br>23<br>0.57<br>0.57<br>1.1<br>2.8<br>11<br>4.5<br>0.25<br>0.021<br>1.1<br>2.3 | 7060<br>6010<br>6010<br>6010<br>6010<br>6010<br>6010<br>6010 | 12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93 |

# Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 34 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: KPA8240

SAMPLE ID: A1560
SAMPLE DATE: 11/16/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 11/30/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          | Reporting |      |       | 1                         |        |      | Reporting |  |
|--------------------------|-----------|------|-------|---------------------------|--------|------|-----------|--|
|                          | Result    | Qual | Limit |                           | Result | Qual | Limit     |  |
| Chloromethane            |           | 10 τ | 10    | 1,2-Dichloropropane       |        | 5    | ช 5       |  |
| Bromomethane             | •         | 10 t | 10    | trans-1,3-Dichloropropene |        | 5    | υ 5       |  |
| Vinyl chloride           |           | 10 τ | 10    | Trichloroethene           |        | 5    | Ŭ 5       |  |
| Chloroethane             |           | 10 t | 10    | Chlorodibromomethane      |        | 5    | Ŭ 5       |  |
| Methylene chloride       |           | 10 τ | 10    | 1,1,2-Trichloroethane     |        | 5    | Ŭ 5       |  |
| Acetone                  | 10        | າ 00 | 100   | Benzene                   |        | 5    | υ 5       |  |
| Carbon disulfide         |           | 5 t  | 5     | cis-1,3-Dichloropropene   |        | _    | υ 5       |  |
| 1,1-Dichloroethene       |           | 5 t  | 5     | 2-Chloroethylvinyl ether  |        | _    | บ 10      |  |
| 1,1-Dichloroethane       |           | 5 t  | 5     | Bromoform                 |        | 5    | U 5       |  |
| trans-1,2-Dichloroethene |           | 5 t  | 5     | 2-Hexanone                | !      | 50   | บ 50      |  |
| cis-1,2-Dichloroethene   |           | 5 U  | 5     | 4-Methyl-2-pentanone      |        | 50   | ช 50      |  |
| Chloroform               |           | 5 U  | 5     | Tetrachloroethene         |        | 5    | υ 5       |  |
| 1,2-Dichloroethane       |           | 5 U  | 5     | 1,1,2,2-Tetrachloroethane |        | 5    | U 5       |  |
| 2-Butanone               | 10        | 00 U | 100   | Toluene                   |        | _    | U 5       |  |
| 1,1,1-Trichloroethane    |           | 5 U  | 5     | Chlorobenzene             |        | _    | บ 5       |  |
| Carbon tetrachloride     |           | 5 U  | 5     | Ethylbenzene              |        | _    | U 5       |  |
| Vinyl acetate            |           | ιο υ | 10    | Styrene                   |        | 5    | บ 5       |  |
| Dichlorobromomethane     |           | 5 U  | 5     | Xylenes, total            |        | 5    | U 5       |  |

| Surrogates            | % Recovery | Limits   |  |  |  |
|-----------------------|------------|----------|--|--|--|
| TOLUENE-D8            | 97         | 88 - 110 |  |  |  |
| BROMOFLUOROBENZENE    | 101        | 86 - 115 |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 103        | 76 - 114 |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 35 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01

Work Order: B3-11-255

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: SOIL

|             | Note | Reporting |       |       | Date Method        |
|-------------|------|-----------|-------|-------|--------------------|
| Test Name   | Ref  | Result    | Limit | Units | Analyzed Reference |
| Chromium VI |      | 0.0100    | 0.010 | MG/KG | 12/03/93 EPA7196   |

Page: 36 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01

Work Order: B3-11-255

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: LAB BLANK #1 SAMPLE DATE: not spec SAMPLE MATRIX: SOIL ANALYSIS DATE: 12/02/93 DILUTION FACTOR: 1.0

UNITS: UG/KG

| <b>Gh</b> law va                                                                                                                                                                                                                                                                                                | Result Qu                                                                               | R<br>ual                  | eporting<br>Limit                                                             |                                                                                                                                                                                                                                                                                                    | Result                | F<br>Qual                               | Reporting<br>Limit                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|----------------------------------------------------------|
| Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethene .,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Vinyl acetate Dichlorobromomethane | 10<br>10<br>10<br>10<br>3.5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | ם ם ם ם ם ם ם ם ם ם ם ם ם | 10<br>10<br>10<br>10<br>100<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 2-Hexanone 4-Methyl-2-pentanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene | 1<br>5<br>5<br>5<br>9 | 5 U U U U U U U U U U U U U U U U U U U | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
|                                                                                                                                                                                                                                                                                                                 | 3                                                                                       | U                         | 5                                                                             | Xylenes, total                                                                                                                                                                                                                                                                                     | 5                     | ט פ                                     | 5                                                        |

| Surrogates            | % Recovery | Limits   |  |  |  |  |
|-----------------------|------------|----------|--|--|--|--|
| TOLUENE-D8            | 102        | 81 - 117 |  |  |  |  |
| BROMOFLUOROBENZENE    | 99         | 74 - 121 |  |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 100        | 70 - 120 |  |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 37 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1 SAMPLE DATE: not spec SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/28/93 ANALYSIS DATE: 12/09/93 DILUTION FACTOR: 0.033

| Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene ^-Methylphenol                                                                                                                                                                                                                                                           | 0.033  Result  0.330 0.330 0.330 0.330 0.330 0.330                                                                                                    | U 0.330<br>U 0.330<br>U 0.330<br>U 0.330<br>U 0.330                                                                                                                                                                     | 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                   | Result 0.330 0.825 0.330 0.825 0.825 0.330                                                                                                | 0.825<br>0 0.330<br>0 0.825<br>0 0.825                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene | 0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330<br>0.330 | U 0.330 | 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine (1) 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate Fluoranthene Pyrene Butylbenzylphthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene | 0.825 0.830 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 | U 0.825 U 0.330 |

Page: 38 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|
| Nitrobenzene-D5      | 71         | 23 - 120 |  |  |  |  |
| 2-Fluorobiphenyl     | 70         | 30 - 115 |  |  |  |  |
| Terphenyl-D14        | 77         | 18 - 137 |  |  |  |  |
| Phenol-D5            | 72         | 24 - 113 |  |  |  |  |
| 2-Fluorophenol       | 60         | 25 - 121 |  |  |  |  |
| 2,4,6-Tribromophenol | 64         | 19 - 122 |  |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\ensuremath{\mathtt{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 39 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01

Work Order: B3-11-255

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: LAB BLANK #1 SAMPLE DATE: not spec SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 1.0

UNITS: MG/KG

| Arsenic                                                                                | Result                                                                                                     | Result<br>Qual                            | Reporting<br>Limit                                                                                         | Method<br>Reference                                          | Analysis<br>Date                                                                                                                 |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Aluminum Barium Beryllium Cadmium Chromium Copper Iron Nickel Lead Mercury Silver Zinc | 0.010<br>0.20<br>0.20<br>0.0050<br>0.0050<br>0.010<br>0.025<br>0.10<br>0.040<br>0.0030<br>0.00020<br>0.010 | ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט<br>ט | 0.010<br>0.20<br>0.20<br>0.0050<br>0.0050<br>0.010<br>0.025<br>0.10<br>0.040<br>0.0030<br>0.00020<br>0.010 | 7060<br>6010<br>6010<br>6010<br>6010<br>6010<br>6010<br>6010 | 12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93<br>12/09/93 |
| Data qualifier key:                                                                    |                                                                                                            |                                           |                                                                                                            | 6010                                                         | 12/09/93                                                                                                                         |

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits S - determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance \* - duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995 B - < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 40 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

### IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: LAB BLANK #2

SAMPLE DATE:

SAMPLE MATRIX: SOIL

ANALYSIS DATE: 12/03/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

| ·                        | Result Qual |   | eporting<br>Limit |                           | Result | Qua |   | eporting<br>Limit |
|--------------------------|-------------|---|-------------------|---------------------------|--------|-----|---|-------------------|
| Chloromethane            | 10          | ט | 10                | 1,2-Dichloropropane       |        | 5   | U | 5                 |
| Bromomethane             | 10          | U | 10                | trans-1,3-Dichloropropene |        | 5   | U | 5                 |
| Vinyl chloride           | 10          | U | 10                | Trichloroethene           |        | 5   | U | 5                 |
| Chloroethane             | 10          | U | 10                | Chlorodibromomethane      |        | 5   | U | 5                 |
| Methylene chloride       | 10          | U | 10                | 1,1,2-Trichloroethane     |        | 5   | U | 5                 |
| Acetone                  | 100         | U | 100               | Benzene                   |        | 5   | U | 5                 |
| Carbon disulfide         | 5           | U | 5                 | cis-1,3-Dichloropropene   |        | 5   | U | 5                 |
| 1,1-Dichloroethene       | 5           | U | 5                 | 2-Chloroethylvinyl ether  |        | 10  | U | 10                |
| 1,1-Dichloroethane       | 5           | U | 5                 | Bromoform                 |        | 5   | U | 5                 |
| trans-1,2-Dichloroethene | 5           | U | 5                 | 2-Hexanone                | !      | 50  | U | 50                |
| cis-1,2-Dichloroethene   | 5           | U | 5                 | 4-Methyl-2-pentanone      | !      | 50  | U | 50                |
| Chloroform               | 5           | U | 5                 | Tetrachloroethene         |        | 5   | U | 5                 |
| 1,2-Dichloroethane       | 5           | U | 5                 | 1,1,2,2-Tetrachloroethane |        | 5   | U | 5                 |
| 2-Butanone               | 2.8         | J | 100               | Toluene                   |        | 5   | U | 5                 |
| 1,1,1-Trichloroethane    | 5           | U | 5                 | Chlorobenzene             |        | 5   | U | 5                 |
| Carbon tetrachloride     | 5           | U | 5                 | Ethylbenzene              |        | 5   | U | 5                 |
| Vinyl acetate            | 10          | U | 10                | Styrene                   |        | 5   | U | 5                 |
| Dichlorobromomethane     | 5           | U | 5                 | Xylenes, total            |        | 5   | U | 5                 |
|                          |             |   |                   |                           |        |     |   |                   |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 102        | 81 - 117 |
| BROMOFLUOROBENZENE    | 97         | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 99         | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 41 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: WATER
ANALYSIS DATE: 11/30/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |        | R          | eporting |                                    |          | R   | eporting |
|--------------------------|--------|------------|----------|------------------------------------|----------|-----|----------|
|                          | Result | Qual       | Limit    |                                    | Result ( |     |          |
| Chloromethane            | 1      | .O U       | 10       | 1,2-Dichloropropane                | 5        | . U | 5        |
| Bromomethane             | 1      | .0 σ       | 10       | trans-1,3-Dichloropropene          |          | •   | _        |
| Vinyl chloride           | . 1    | .0 ປ       |          | Trichloroethene                    | 5        | _   | _        |
| Chloroethane             | 1      | .0 ע       |          | Chlorodibromomethane               | 5        | •   | •        |
| Methylene chloride       | 1      | .0 ช       |          | 1,1,2-Trichloroethane              | _        |     |          |
| Acetone                  | 10     | -          |          | Benzene                            | 5        | _   | •        |
| Carbon disulfide         |        | 5 U        |          | · — —                              | 5        | _   | •        |
| 1,1-Dichloroethene       |        | 5 U        | _        | cis-1,3-Dichloropropene            | 5        | _   | •        |
| 1,1-Dichloroethane       |        | 5 U        | •        | 2-Chloroethylvinyl ether Bromoform | 10       | _   | 10       |
| trans-1,2-Dichloroethene |        | ว บ<br>5 บ | •        |                                    | 5        | •   | 5        |
| cis-1,2-Dichloroethene   |        | 5 U        | •        | 2-Hexanone                         | 50       | _   | 50       |
| Chloroform               |        | •          | •        | 4-Methyl-2-pentanone               | 50       | U   | 50       |
| 1,2-Dichloroethane       |        | 5 U        | •        | Tetrachloroethene                  | 5        | ប   | 5        |
| 2-Butanone               |        | 5 U        | •        | 1,1,2,2-Tetrachloroethane          | 5        | U   | 5        |
|                          | 10     | _          | 100      | Toluene                            | 5        | U   | 5        |
| 1,1,1-Trichloroethane    |        | 5 บ        | 5        | Chlorobenzene                      | 5        | U   | 5        |
| Carbon tetrachloride     |        | 5 U        | 5        | Ethylbenzene                       | 5        | บ   | 5        |
| Vinyl acetate            | 10     | υ 0        | 10       | Styrene                            | 5        | U   | 5        |
| Dichlorobromomethane     | !      | 5 U        | 5        | Xylenes, total                     | 5        | Ū   | 5        |

| Surrogates            | % Recovery | Limits   |  |  |  |
|-----------------------|------------|----------|--|--|--|
| TOLUENE-D8            | 99         | 88 - 110 |  |  |  |
| BROMOFLUOROBENZENE    | 101        | 86 - 115 |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 101        | 76 - 114 |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 42 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

### IV. Methodology

Requested analyses were performed according to the following methods.

### TEST NAME ICP Metals

### TEST CODE 6010

Metals by ICP

Inductively coupled emission spectroscopy according to Method 6010, "Test Methods for Evaluating Solid Waste Physical/Chemical Methods", SW-846, Third Edition.

### TEST NAME Hazardous Substance Vols. TEST CODE 8240TK

List Volatiles

Hazardous Substance Method 8240, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. GC/MS Purge and Trap analysis.

# TEST NAME ABN HSL GC/MS Extractables TEST CODE 8270TK

Hazardous Substance List Extractables

Method 8270, SW-846, Test Methods for Evaluating Solid Waste, Third Edition. Acid/Base-Neutral extraction followed by GC/MS analysis.

## TEST NAME Arsenic - Graphite Furnace TEST CODE AS GF

Arsenic

Graphite Furnace

Method 7060, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. EPA 206.2-Technical Additions to Methods for Chemical Analysis of Water and Wastes, EPA-600/4-82-055, December 1982.

### TEST NAME Cation Exchange Capacity TEST CODE CEC A

Cation exchange

Capacity

Part 2: Chemical and microbiological properties method 57-3. American Society of Agronomy, Methods of soil Analysis 2nd Edition.

### TEST NAME Chromium VI

### TEST CODE CR VI

Chromium VI

Method 7196, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Colorimetric analysis. Equivalent to Standard Methods 3500-Cr D.

Page: 43 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-11-255

TEST NAME Grain Size Distriubtion

TEST CODE GRAIN

Method not available.

TEST NAME Mercury

TEST CODE HG\_AA

Mercury

Method 7471, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Cold vapor atomic absorption.

Method 7470 is used for water.

Method 245.5-"Technical Additions to Methods for

Chemical Analysis of Water and Wastes,"

EPA-600/4-82-055, December 1982.

TEST NAME Metals

TEST CODE ICPTK2

Method not available.

TEST NAME Moisture Content

TEST CODE MOIS G

Method not available.

TEST NAME Lead - Graphite Furnace

TEST CODE PB\_GF

Lead

EPA 7421, SW-846, Test Methods for Evaluating Solid

Graphite

Wastes, Third Edition.

Furnace

EPA 239.2-Technical Additions to Methods for Chemical

Analysis of Water and Wastes, " EPA-600/4-82-055,

December 1982.

TEST NAME Vertical Permeability

TEST CODE V\_PERM

Method not available.

Page: 44 of 44

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-1

TEST NAME GFAA Digestion - Soil

TEST CODE 23050F

Soil Digestion

Method 3050, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Acid digestion technique for Graphite Furnace/Flame AA analysis.

TEST NAME ICPES Digestion - Soil

TEST CODE 23050P

Soil Digestion

Method 3050, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Acid digestion technique for ICPES analysis. Equivalent to Method 3050A, SW-846 Update I, July 1992.

White: To accompany samples 03/255 Reference Document No. 314097 Yellow: Field copy \*See back of form for special instructions. Disposal 22 Record No. (mos.) 11-20-53 180 Lab Contact 9 Karmer Denne Project Contact/Phone 12 Dan McCreysor Report to: 10 Tim Jennings Ser. R.S. A. Bill to:5 409832.03 Disposal by Lab 4 Archive H.T. Awstin Date: 2 Time: Date: Time: Date: 11-20 lime: Condition on Page 1 of 2 Receipt 6000 20 6010/2000 6016/2000 6010/2000 9 Pain Size, wanishus, CEC Requested Testing geote chricoli vert K; Project Specific (specify): Metals M CFELL VOC -8240 Sample Disposal: 25 Return to Client VOC. 8240 Carrier/Waybill No. <sup>13</sup> F & & 8 460 7.5 55 75 Program ONE CONTAINER PER LINE Ve-8240 Lab Destination 8\_ITAS- Austin ANALYSIS Rf JEST AND CHAIN OF CUST JY RECORD\* 500c 8220 Samples Shipment Date 7 11/19 /93 8270 Svoc 8270 1. Received by 28 2. Received by (Signature/Affiliation) 3. Received by (Signature/Affiliation) (Signature/Affiliation) **Pre** 19 Servative 700 C001 100 000 7 780 1007 100) Poison B : Unknown | Collected Type Volume Volume Sooml 125 m - 12 " x 6" 1 je 6" liner 500 IN 1 125 m 1/z" × Som  $\zeta_{2}$ OC Level: 27 125 m 11/19/93 5003 Metal metal 99 2940 19425 Sample Team Members 2 M.W. bon, K. Herrington 11/19/43 OSS 0906 0855 Date: Time: Time: 250 1 Date: Normal - 15 working एडमाड्स Skin Irritant Project Name/No. 1 Tinker Sool Purchase Order No. 6 409832 003 Project Manager 4 그 Tcy lor Sample 15 Description/Type 12-63 B - Soil A1555 3527 A-63A- Sai 2-63A - Soil Possible Hazard Identification: 24 furnaround Time Required: 26 TECHNOLOGY Flammable Profit Center No. 3 Required Report Date 11 ٠ Special Instructions: 23 1. Relinquished by 28 (Signature/Affiliation) Normal 4 Rush Sample 14 Number Relinquished by 3. Relinquished by Non-hazard A1555 A1556 A 1557 A1555 Comments: 29 2-63A A-62 M A1586 A 155 7 (Signature/Affiliation)



# ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD (cont.)\*

Reference Document No.30 314092 Page 2 of 2

Project Name Tinia 5001

003 Project No. 409832

Samples Shipment Date

|                       | White                                | e: To a                       | accon     | npany                   | samp     | oles           | Yı  | ellow: | Field | сору | $\angle$ | <u> </u> | *See | e baci | k of fo | rm fo | rspe | cial in: | structi | ons. |   |
|-----------------------|--------------------------------------|-------------------------------|-----------|-------------------------|----------|----------------|-----|--------|-------|------|----------|----------|------|--------|---------|-------|------|----------|---------|------|---|
| 11/11/193             | Disposal 22<br>Record No.            |                               | ****<br>• |                         |          | B3244100C      |     |        |       |      |          |          |      |        |         |       |      |          |         |      |   |
| Samples Snipment Date | Condition on 21<br>Receipt           | (9000) 1°C SorkW              | Sec.   1  | - 300<br>- 300<br>- 300 |          |                |     |        |       | /    |          |          |      |        |         |       |      |          | 7       |      |   |
| S &!<br>ER LINE       | Requested Testing 20<br>Program      | 540c metals<br>8210 6010/1000 | Voc 8 240 |                         | J        | Moc Azun       | i . |        |       |      |          |          |      |        |         |       |      |          | 7       |      |   |
| 0                     | Pre-19<br>servative                  | 100)                          | -         | _                       | <b>^</b> | 7              |     |        |       |      |          |          |      |        | /       | /     |      |          |         |      | ; |
| CONTAINER             | Sample 18<br>Volume                  | 1 W QS 5                      | 125 m l   | 50m                     | 125 mi   | 40 m           |     |        |       |      |          |          |      |        |         |       |      |          |         |      |   |
| ONE                   | Container <sup>17</sup>              | 9 (4.53                       | ->        |                         | <b>→</b> | <b>→</b>       |     |        |       |      |          |          |      |        |         |       |      |          |         |      |   |
|                       | Date/Time <sup>16</sup><br>Collected | 11/19/93 5933                 | 7         | 64.60                   | <b>→</b> | 1              |     |        |       |      |          |          |      |        |         |       |      |          |         |      |   |
|                       | Sample 15<br>Description/Type        | 2-63A - Soil                  |           | *                       | 7        | Trip Blank/wat |     |        |       |      |          |          |      |        |         |       |      |          |         |      |   |
|                       | Sample 14<br>Number                  | A1558                         | A1558     | A1559                   | A1559    | A1560          |     |        |       |      |          |          |      |        |         |       |      |          |         |      |   |

# Auxiliary Data Summary 12/21/93

Work order : B311255

| FRAC | Tests       | Blank<br>Reference | Batch Prep<br>ID Date |          | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-----------------------|----------|------------------|----------------|
| 01B  |             |                    |                       |          |                  |                |
|      | Arsenic     | B311255-10B        | 12043050F1            | 12/04/93 | 12/09/93         | 105            |
|      | Chromium VI | B311255-10B        | 1203CR VI1            | 12/02/93 | 12/03/93         | 50.0           |
|      | Mercury     | B311255-10B        | 1207HGAA1             | 12/07/93 | 12/07/93         | 115            |
|      | Lead        | B311255-10B        | 12043050F1            | 12/04/93 | 12/09/93         | 421            |

Work order : B311255

Sample ID : A1555-MS

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 02B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311255-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 102            |
|      | Chromium VI | B311255-10B        | 1203CR VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311255-10B        | 1207HGAA1   | 12/07/93     | 12/07/93         | 106            |
|      | Lead        | B311255-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 408            |

Work order : B311255

Sample ID : A1555-MSD

| FRAC | Tests                                     | Blank<br>Reference                                       | Batch<br>ID                                         | Prep<br>Date                                 | Analysis<br>Date     | Dil.<br>Factor             |
|------|-------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------|----------------------------|
| 03B  | Arsenic<br>Chromium VI<br>Mercury<br>Lead | B311255-10B<br>B311255-10B<br>B311255-10B<br>B311255-10B | 12043050F1<br>1203CR_VI1<br>1207HGAA1<br>12043050F1 | 12/04/93<br>12/02/93<br>12/07/93<br>12/04/93 | 12/03/93<br>12/07/93 | 85.5<br>50.0<br>132<br>354 |

# Auxiliary Data Summary

12/21/93

Work order : B311255

| FRAC   | Tests                                     | Blank<br>Reference                                       | Batch<br>ID                                         | Prep<br>Date                                 | Analysis<br>Date     | Dil.<br>Factor            |
|--------|-------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------|---------------------------|
| C<br>M | Arsenic<br>Chromium VI<br>Mercury<br>Mead | B311255-10B<br>B311255-10B<br>B311255-10B<br>B311255-10B | 12043050F1<br>1203CR_VI1<br>1207HGAA1<br>12043050F1 | 12/04/93<br>12/02/93<br>12/07/93<br>12/04/93 | 12/03/93<br>12/07/93 | 115<br>50.0<br>123<br>115 |

Work order : B311255

| FRAC     | Tests                                 | Blank<br>Reference                                       | Batch<br>ID                                         | Prep<br>Date                                 | Analysis<br>Date | Dil.<br>Factor |  |
|----------|---------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|------------------|----------------|--|
| C)<br>Me | rsenic<br>hromium VI<br>ercury<br>ead | B311255-10B<br>B311255-10B<br>B311255-10B<br>B311255-10B | 12043050F1<br>1203CR_VI1<br>1207HGAA1<br>12043050F1 | 12/04/93<br>12/02/93<br>12/07/93<br>12/04/93 | 12/03/93         | 118            |  |

# Auxiliary Data Summary 12/21/93

Work order : B311255

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 07B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311255-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 95.2           |
|      | Chromium VI | B311255-10B        | 1203CR VI1  | 12/03/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311255-10B        | 1207HGAA1   | 12/07/93     | 12/07/93         | 116            |
|      | Lead        | B311255-10B        | 12043050F1  | 12/04/93     | 12/09/93         | 95.2           |

# Auxiliary Data Summary 12/21/93

Work order : B311255

Sample ID : A1559

| FRAC | Tests                                     | Blank<br>Reference                                       | Batch<br>ID                                         | Prep<br>Date                                 | Analysis<br>Date     | Dil.<br>Factor |  |
|------|-------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------|----------------|--|
| 08B  | Arsenic<br>Chromium VI<br>Mercury<br>Lead | B311255-10B<br>B311255-10B<br>B311255-10B<br>B311255-10B | 12043050F1<br>1203CR_VI1<br>1207HGAA1<br>12043050F1 | 12/04/93<br>12/02/93<br>12/07/93<br>12/04/93 | 12/03/93<br>12/07/93 | 50.0<br>104    |  |

Work order : B311255

# Sample ID : LAB BLANK #1

| FRAC | Tests                                     | Blank<br>Reference                                       | Batch<br>ID                                         | Prep<br>Date                                 | Analysis<br>Date     | Dil.<br>Factor    |
|------|-------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------|-------------------|
| 10B  | Arsenic<br>Chromium VI<br>Mercury<br>Lead | B311255-10B<br>B311255-10B<br>B311255-10B<br>B311255-10B | 12043050F1<br>1203CR_VI1<br>1207HGAA1<br>12043050F1 | 12/04/93<br>12/03/93<br>12/07/93<br>12/04/93 | 12/03/93<br>12/07/93 | 1.0<br>1.0<br>1.0 |



# ANALYTICAL SERVICES

Routed to KK, TL, CF

Date: 12/23/93

12/28/93

# CERTIFICATE OF ANALYSIS

IT CORPORATION
1250 CAPITAL OF TX HWY
BLDG. 3, SUITE 200
AUSTIN, TX 78746-6443
TIM JENNINGS

Work Order: B3-11-282

This is the Certificate of Analysis for the following samples:

Client Work ID: D.O.5001
Date Received: 11/23/93
Number of Samples: 19

Sample Type: SOIL

409832-003

#### I. Introduction

Samples were labeled as follows:

| SAMPLE IDENTIFICATION | LABORATORY # |
|-----------------------|--------------|
| A1561                 | B3-11-282-01 |
| A1561-MS              | B3-11-282-02 |
| A1561-MSD             | B3-11-282-03 |
| A1562                 | B3-11-282-04 |
| J5432                 | B3-11-282-05 |
| A1563                 | B3-11-282-06 |
| A1564                 | B3-11-282-07 |
| A1565                 | B3-11-282-08 |
| A1566                 | B3-11-282-09 |
| A1567                 | B3-11-282-10 |
| A1568                 | B3-11-282-11 |
| A1569                 | B3-11-282-12 |
| A1570                 | B3-11-282-13 |

Reviewed and Approved:

Jon Bartell

Laboratory Director

Page: 2 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003

(512) 892-6684 Work Order: B3-11-282

Samples, continued from above:

| SAMPLE IDENTIFICATION | LABORATORY # |
|-----------------------|--------------|
| A1571                 | B3-11-282-14 |
| A1572                 | B3-11-282-15 |
| A1573                 | B3-11-282-16 |
| LAB BLANK #1          | B3-11-282-17 |
| LAB BLANK #1          | B3-11-282-18 |
| LAB BLANK #2          | B3-11-282-19 |

# II. QA/QC

The results presented in this report meet the statement of work requirements in accordance with Quality Control and Quality Assurance protocol except as noted in Section IV or in an optional sample narrative at the end of Section III.

In the presented analytical data, 'ND' or '<' indicates that the compound is not detected at the specified limit.

# III. Analytical Data

The following page(s) supply results for requested analyses performed on the samples listed above.

The test results relate to tested items only. ITAS-Austin reserves the right to control report production except in whole.

Page: 3 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 Work Order: B3-11-282

SAMPLE ID: A1561

SAMPLE DATE: 11/22/93 07:55:00

SAMPLE MATRIX: SOIL

|             | Note | e Reporting |              |       | Date     | Method    |  |  |
|-------------|------|-------------|--------------|-------|----------|-----------|--|--|
| Test Name   | Ref  | Result      | <u>Limit</u> | Units | Analyzed | Reference |  |  |
| Chromium VI | _    | 0.500       | 0.50         | MG/KG | 12/03/93 | EPA7196   |  |  |

409832-003

Page: 4 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1561

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93

DILUTION FACTOR: 1.0

UNITS: UG/KG

|                          |          | I    | Reporting |                           |        |            | Re | porting |
|--------------------------|----------|------|-----------|---------------------------|--------|------------|----|---------|
|                          | Result ( | Qual | Limit     |                           | Result | Qual       | L  | Limit   |
| Chloromethane            | 10       | τ    | J 10      | 1,2-Dichloropropane       |        | 5          | U  | 5       |
| Bromomethane             | 10       | ) (  | J 10      | trans-1,3-Dichloropropene |        | <b>5</b> . | U  | 5       |
| Vinyl chloride           | 10       | ) t  | J 10      | Trichloroethene           |        | 5          | U  | 5       |
| Chloroethane             | 10       | τ    | J 10      | Chlorodibromomethane      |        | 5          | U  | 5       |
| Methylene chloride       | 2.9      | 9 3  | 10        | 1,1,2-Trichloroethane     |        | 5          | U  | 5       |
| Acetone                  | 100      | ) (  | J 100     | Benzene                   |        | 5          | U  | 5       |
| Carbon disulfide         | Ę        | 5 (  | J 5       | cis-1,3-Dichloropropene   |        | 5          | U  | 5       |
| 1,1-Dichloroethene       | ţ        | 5 t  | J 5       | 2-Chloroethylvinyl ether  | •      | 10         | U  | 10      |
| 1,1-Dichloroethane       |          | 5 t  | J 5       | Bromoform                 |        | 5          | U  | 5       |
| trans-1,2-Dichloroethene | į        | 5 t  | J 5       | 2-Hexanone                | !      | 50         | U  | 50      |
| cis-1,2-Dichloroethene   | į        | 5 (  | J 5       | 4-Methyl-2-pentanone      | !      | 50         | U  | 50      |
| Chloroform               | Ę        | 5 t  | 5         | Tetrachloroethene         |        | 5          | U  | 5       |
| 1,2-Dichloroethane       |          | 5 t  | J 5       | 1,1,2,2-Tetrachloroethane |        | 5          | U  | 5       |
| 2-Butanone               | 100      | ) t  | J 100     | Toluene                   |        | 5          | U  | 5       |
| 1,1,1-Trichloroethane    | 3.:      | ı s  | 5         | Chlorobenzene             |        | 5          | U  | 5       |
| Carbon tetrachloride     | 1        | 5 t  | J 5       | Ethylbenzene              |        | 5          | U  | 5       |
| Vinyl acetate            | 10       | ) t  | J 10      | Styrene                   |        | 5          | U  | 5       |
| Dichlorobromomethane     | ţ        | 5 t  | J 5       | Xylenes, total            |        | 5          | U  | 5       |

| Surrogates            | % Recovery | Limits   |  |  |  |
|-----------------------|------------|----------|--|--|--|
| TOLUENE-D8            | 101        | 81 - 117 |  |  |  |
| BROMOFLUOROBENZENE    | 100        | 74 - 121 |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 97         | 70 - 120 |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 5 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: BPA8270

SAMPLE ID: A1561 SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |       | Re   | porting |                            |        | I        | Reporting |
|-----------------------------|-------|------|---------|----------------------------|--------|----------|-----------|
| Re                          | esult | Qual | Limit   |                            | Result | Qual     | Limit     |
|                             |       | _    | •       |                            |        |          |           |
| Phenol                      | 0.330 | U    | 0.330   | 2,6-Dinitrotoluene         | 0.330  | U        | 0.330     |
| bis(2-Chloroethyl)ether     | 0.330 | U    | 0.330   | 3-Nitroaniline             | 0.825  | υ        | 0.825     |
| 2-Chlorophenol              | 0.330 | U    | 0.330   | Acenaphthene               | 0.330  | U        | 0.330     |
| 1,3-Dichlorobenzene         | 0.330 | U    | 0.330   | 2,4-Dinitrophenol          | 0.825  | U        | 0.825     |
| 1,4-Dichlorobenzene         | 0.330 | U    | 0.330   | 4-Nitrophenol              | 0.825  | U        | 0.825     |
| Benzyl alcohol              | 0.330 | U    | 0.330   | Dibenzofuran               | 0.330  | U (      | 0.330     |
| 1,2-Dichlorobenzene         | 0.330 | U    | 0.330   | 2,4-Dinitrotoluene         | 0.330  | ) U      | 0.330     |
| 2-Methylphenol              | 0.330 | υ    | 0.330   | Diethylphthalate           | 0.330  | U        | 0.330     |
| bis(2-Chloroisopropyl)ether | 0.330 | υ    | 0.330   | 4-Chlorophenyl-phenylether | 0.330  | U        | 0.330     |
| 4-Methylphenol              | 0.330 | υ    | 0.330   | Fluorene                   | 0.330  | U (      | 0.330     |
| N-Nitroso-di-n-propylamine  | 0.330 | U    | 0.330   | 4-Nitroaniline             | 0.825  | U        | 0.825     |
| Hexachloroethane            | 0.330 | υ    | 0.330   | 4,6-Dinitro-2-methylphenol | 0.825  | U        | 0.825     |
| Nitrobenzene                | 0.330 | U    | 0.330   | N-Nitrosodiphenylamine (1) | 0.330  | U (      | 0.330     |
| Isophorone                  | 0.330 | U    | 0.330   | 4-Bromophenyl-phenylether  | 0.330  | U        | 0.330     |
| 2-Nitrophenol               | 0.330 | ប    | 0.330   | Hexachlorobenzene          | 0.330  | U        | 0.330     |
| 2,4-Dimethylphenol          | 0.330 | υ    | 0.330   | Pentachlorophenol          | 0.825  | σ        | 0.825     |
| Benzoic Acid                | 0.330 | U    | 0.330   | Phenanthrene               | 0.330  | U        | 0.330     |
| bis(2-Chloroethoxy)methane  | 0.330 | U    | 0.330   | Anthracene                 | 0.330  | U        | 0.330     |
| 2,4-Dichlorophenol          | 0.330 | U    | 0.330   | Di-n-butylphthalate        | 0.330  | U (      | 0.330     |
| 1,2,4-Trichlorobenzene      | 0.330 | ט    | 0.330   | Fluoranthene               | 0.330  | U        | 0.330     |
| Naphthalene                 | 0.330 | U    | 0.330   | Pyrene                     | 0.330  | <b>U</b> | 0.330     |
| 4-Chloroaniline             | 0.330 | ט    | 0.330   | Butylbenzylphthalate       | 0.330  | <b>U</b> | 0.330     |
| Hexachlorobutadiene         | 0.330 | ט    | 0.330   | 3,3'-Dichlorobenzidine     | 0.330  | U        | 0.330     |
| 4-Chloro-3-methylphenol     | 0.330 | ט י  | 0.330   | Benzo(a)anthracene         | 0.330  | <b>U</b> | 0.330     |
| 2-Methylnaphthalene         | 0.330 | ט י  | 0.330   | Chrysene                   | 0.330  | <b>U</b> | 0.330     |
| Hexachlorocyclopentadiene   | 0.330 | U    | 0.330   | bis(2-Ethylhexyl)phthalate | 0.330  | υ (      | 0.330     |
| 2,4,6-Trichlorophenol       | 0.330 | U    | 0.330   | Di-n-octylphthalate        | 0.330  | <b>U</b> | 0.330     |
| 2,4,5-Trichlorophenol       | 0.825 | σ    | 0.825   | Benzo(b)fluoranthene       | 0.330  | U (      | 0.330     |
| 2-Chloronaphthalene         | 0.330 | U    | 0.330   | Benzo(k)fluoranthene       | 0.330  | <b>U</b> | 0.330     |
| 2-Nitroaniline              | 0.825 | U    | 0.825   | Benzo(a)pyrene             | 0.330  | <b>U</b> | 0.330     |
| Dimethylphthalate           | 0.330 | U    | 0.330   | Indeno(1,2,3-cd)pyrene     | 0.330  | U        | 0.330     |
| Acenaphthylene              | 0.330 | U    | 0.330   | Dibenzo(a,h)anthracene     | 0.330  | <b>U</b> | 0.330     |
|                             |       |      |         | Benzo(g,h,i)perylene       | 0.330  | U        | 0.330     |
|                             |       |      |         |                            |        |          |           |

Page: 6 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1561 SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 63         | 23 - 120 |
| 2-Fluorobiphenyl     | 65         | 30 - 115 |
| Terphenyl-D14        | 76         | 18 - 137 |
| Phenol-D5            | 63         | 24 - 113 |
| 2-Fluorophenol       | 52         | 25 - 121 |
| 2,4,6-Tribromophenol | 60         | 19 - 122 |

409832-003

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 7 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003

(512) 892-6684

Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1561

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 105.263

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |  |
|-----------|--------|----------------|--------------------|---------------------|------------------|--|
| Arsenic   | 1.0    |                | 0.86               | 7060                | 12/10/93         |  |
| Aluminum  | 11000  | *N             | 21                 | 6010                | 12/15/93         |  |
| Barium    | 630    | *N             | 21                 | 6010                | 12/15/93         |  |
| Beryllium | 0.94   |                | 0.53               | 6010                | 12/15/93         |  |
| Cadmium   | 0.69   |                | 0.53               | 6010                | 12/15/93         |  |
| Chromium  | 13     | *              | 1.1                | 6010                | 12/15/93         |  |
| Copper    | 9.8    | *              | 2.6                | 6010                | 12/15/93         |  |
| Iron      | 11000  | *N             | 11                 | 6010                | 12/15/93         |  |
| Nickel    | 17     | *              | 4.2                | 6010                | 12/15/93         |  |
| Lead      | 5.0    | N              | 0.26               | 7421                | 12/10/93         |  |
| Mercury   | 0.025  | U              | 0.025              | 7471                | 12/08/93         |  |
| Silver    | 0.41   |                | 1.1                | 6010                | 12/15/93         |  |
| Zinc      | 22     | *              | 2.1                | 6010                | 12/15/93         |  |

# Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

# Referenced notes for these results:

Duplicate analysis outside control limits due to matrix interference on aluminum, barium, chromium, copper, iron, nickel and zinc analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

Page: 8 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 Work Order: B3-11-282

SAMPLE ID: A1561-MS

SAMPLE DATE: 11/22/93 07:55:00

SAMPLE MATRIX: SOIL

| R           |     |        | Date  |       | Method |          |           |
|-------------|-----|--------|-------|-------|--------|----------|-----------|
| Test Name   | Ref | Result | Limit | Units |        | Analyzed | Reference |
| Chromium VI |     | 116    |       | % REC |        | 12/03/93 | EPA7196   |

409832-003

Page: 9 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003

74 - 121

70 - 120

(512) 892-6684 Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1561-MS **SAMPLE DATE: 11/22/93** SAMPLE MATRIX: SOIL ANALYSIS DATE: 12/02/93 DILUTION FACTOR: 1.0

UNITS: % REC

|                    | Result     |            |          | Result |
|--------------------|------------|------------|----------|--------|
| 1,1-Dichloroethene | 101        | Trichloroe | ethene   | 79     |
|                    |            | Benzene    |          | 93     |
|                    |            | Toluene    |          | 94     |
|                    |            | Chlorobenz | ene      | 94     |
|                    | Surrogates | % Recovery | Limits   |        |
|                    | TOLUENE-D8 | 102        | 81 - 117 |        |

## Data Qualifier Key:

U - none detected

BROMOFLUOROBENZENE

1,2-DICHLOROETHANE-D4

J - estimated value (less than the sample quantitation limit)

B - analyte is found in the associated blank as well as in the sample

97 99

'blank' - positive result

\* - Surrogate recovery is outside QC limit

D - compound identified at a secondary dilution factor

E - concentration exceeds calibration range

Page: 10 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003

(512) 892-6684 Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1561-MS SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93 ANALYSIS DATE: 12/11/93 DILUTION FACTOR: 0.033

UNITS: % REC

| Re                         |    | Result             |    |
|----------------------------|----|--------------------|----|
| Phenol                     | 63 | Acenaphthene       | 63 |
| 2-Chlorophenol             | 68 | 4-Nitrophenol      | 57 |
| 1,4-Dichlorobenzene        | 47 | 2,4-Dinitrotoluene | 62 |
| N-Nitroso-di-n-propylamine | 61 | Pentachlorophenol  | 34 |
| 1,2,4-Trichlorobenzene     | 52 | Pyrene             | 86 |
| 4-Chloro-3-methylphenol    | 64 |                    |    |

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 51         | 23 - 120 |
| 2-Fluorobiphenyl     | 61         | 30 - 115 |
| Terphenyl-D14        | 67         | 18 - 137 |
| Phenol-D5            | 64         | 24 - 113 |
| 2-Fluorophenol       | 54         | 25 - 121 |
| 2,4,6-Tribromophenol | 58         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 11 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1561-MS
SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 83.3333

UNITS: % REC

|      |        | Result      | = | Method<br>Reference | Analysis<br>ce Date |
|------|--------|-------------|---|---------------------|---------------------|
| Arse | enic   | 100         |   | 7060                | 12/10/93            |
| Alu  | ninum  | 475         |   | 6010                | 12/15/93            |
| Bar. | Lum    | 0           |   | 6010                | 12/15/93            |
| Ber  | /llium | 89          |   | 6010                | 12/15/93            |
| Cadi | nium   | 85          |   | 6010                | 12/15/93            |
| Chr  | omium  | 89          |   | 6010                | 12/15/93            |
| Cop  | per    | 88          |   | 6010                | 12/15/93            |
| Iro  | n.     | 0           |   | 6010                | 12/15/93            |
| Nic  | cel    | 82          |   | 6010                | 12/15/93            |
| Lea  | i      | 210         |   | 7421                | 12/10/93            |
| Mer  | cury   | 115         |   | 7471                | 12/08/93            |
| Sil  | •      | 85          |   | 6010                | 12/15/93            |
| Zin  | 3      | 82          |   | 6010                | 12/15/93            |
|      |        | <del></del> |   |                     |                     |

# Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA < 0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

# Referenced notes for these results:

Matrix spike outside control limits due to matrix interference on aluminum, barium and iron analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

% RPD for matrix spikes outside control limits due to matrix interference on barium and iron analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable. Page: 12 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 Work Order: B3-11-282

SAMPLE ID: A1561-MSD

SAMPLE DATE: 11/22/93 07:55:00

SAMPLE MATRIX: SOIL

|             | Note       |        | Reporting | Date Method |                    |
|-------------|------------|--------|-----------|-------------|--------------------|
| Test Name   | <u>Ref</u> | Result | Limit     | Units       | Analyzed Reference |
| Chromium VI |            | 101    |           | % REC       | 12/03/93 EPA7196   |

409832-003

Page: 13 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003

(512) 892-6684 Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1561-MSD SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL ANALYSIS DATE: 12/02/93 DILUTION FACTOR: 1.0

UNITS: % REC

|                    | Result |                 | Result |
|--------------------|--------|-----------------|--------|
| 1,1-Dichloroethene | 101    | Trichloroethene | 79     |
|                    |        | Benzene         | 92     |
|                    |        | Toluene         | 94     |
|                    |        | Chlorobenzene   | 93     |

| Surrogates            | <pre>% Recovery</pre> | Limits   |
|-----------------------|-----------------------|----------|
| TOLUENE-D8            | 101                   | 81 - 117 |
| BROMOFLUOROBENZENE    | 97                    | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 101                   | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 14 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1561-MSD SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/11/93
DILUTION FACTOR: 0.033

UNITS: % REC

| Re                         | Result |                    |    |
|----------------------------|--------|--------------------|----|
| Phenol                     | 63     | Acenaphthene       | 69 |
| 2-Chlorophenol             | 68     | 4-Nitrophenol      | 49 |
| 1,4-Dichlorobenzene        | 68     | 2,4-Dinitrotoluene | 52 |
| N-Nitroso-di-n-propylamine | 60     | Pentachlorophenol  | 34 |
| 1,2,4-Trichlorobenzene     | 68     | Pyrene             | 67 |
| 4-Chloro-3-methylphenol    | 57     | -                  |    |

| Surrogates           | % Recovery | Limits   |  |  |  |
|----------------------|------------|----------|--|--|--|
| Nitrobenzene-D5      | 59         | 23 - 120 |  |  |  |
| 2-Fluorobiphenyl     | 71         | 30 - 115 |  |  |  |
| Terphenyl-D14        | 60         | 18 - 137 |  |  |  |
| Phenol-D5            | 61         | 24 - 113 |  |  |  |
| 2-Fluorophenol       | 57         | 25 - 121 |  |  |  |
| 2,4,6-Tribromophenol | 47         | 19 - 122 |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 15 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003

(512) 892-6684 Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1561-MSD SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 106.382

UNITS: % REC

|           | Result | Method<br>Reference | Analysis<br>Date |
|-----------|--------|---------------------|------------------|
| Arsenic   | 110    | 7060                | 12/10/93         |
| Aluminum  | 472    | 6010                | 12/15/93         |
| Barium    | 0      | 6010                | 12/15/93         |
| Beryllium | 88     | 6010                | 12/15/93         |
| Cadmium   | 85     | 6010                | 12/15/93         |
| Chromium  | 90     | 6010                | 12/15/93         |
| Copper    | 88     | 6010                | 12/15/93         |
| Iron      | 154    | 6010                | 12/15/93         |
| Nickel    | 84     | 6010                | 12/15/93         |
| Lead      | 130    | 7421                | 12/10/93         |
| Mercury   | 115    | 7471                | 12/08/93         |
| Silver    | 84     | 6010                | 12/15/93         |
| Zinc      | 83     | 6010                | 12/15/93         |
|           |        |                     |                  |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA < 0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

# Referenced notes for these results:

Matrix spike duplicate outside control limits due to matrix interference on aluminum, barium and iron analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

% RPD for matrix spikes outside control limits due to matrix interference on barium and iron analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable. Page: 16 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 Work Order: B3-11-282

SAMPLE ID: A1562

SAMPLE DATE: 11/22/93 08:04:00

SAMPLE MATRIX: SOIL

|             | Note | Reporting     |       |       | Date         | Method    |
|-------------|------|---------------|-------|-------|--------------|-----------|
| Test Name   | Ref  | Result        | Limit | Units | <br>Analyzed | Reference |
| Chromium VI |      | 0.50 <b>ʊ</b> | 0.50  | MG/KG | 12/03/93     | EPA7196   |

409832-003

Page: 17 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003

(512) 892-6684 Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1562
SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                          |           | R | eporting |                           |        |      | Re | porting        |
|--------------------------|-----------|---|----------|---------------------------|--------|------|----|----------------|
|                          | Result Qu |   | _        |                           | Result | Qual |    | Limit          |
| Chloromethane            | 10        | U | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5              |
| Bromomethane             | 10        | U | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5              |
| Vinyl chloride           | 10        | U | 10       | Trichloroethene           |        | 5    | U  | 5              |
| Chloroethane             | 10        | บ | 10       | Chlorodibromomethane      |        | 5    | U  | 5              |
| Methylene chloride       | 1.9       | J | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5              |
| Acetone                  | 6.8       | J | 100      | Benzene                   |        | 5    | U  | 5              |
| Carbon disulfide         | 5         | U | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5              |
| 1,1-Dichloroethene       | 5         | บ | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10             |
| 1,1-Dichloroethane       | 5         | U | 5        | Bromoform                 |        | 5    | U  | 5              |
| trans-1,2-Dichloroethene | 5         | U | 5        | 2-Hexanone                |        | 50   | U  | 50             |
| cis-1,2-Dichloroethene   | 5         | U | 5        | 4-Methyl-2-pentanone      |        | 50   | U  | 50             |
| Chloroform               | 5         | U | 5        | Tetrachloroethene         |        | 5    | U  | 5              |
| 1,2-Dichloroethane       | 5         | U | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5              |
| 2-Butanone               | 100       | U | 100      | Toluene                   |        | 5    | U  | 5              |
| 1,1,1-Trichloroethane    | 6.7       |   | 5        | Chlorobenzene             |        | 5    | U  | 5              |
| Carbon tetrachloride     | 5         | U | 5        | Ethylbenzene              |        | 5    | U  | 5              |
| Vinyl acetate            | 10        | U | 10       | Styrene                   |        | 5    | U  | <sub>.</sub> 5 |
| Dichlorobromomethane     | 5         | U | 5        | Xylenes, total            |        | 5    | U  | 5              |

| Surrogates            | <pre>% Recovery</pre> | Limits   |
|-----------------------|-----------------------|----------|
| TOLUENE-D8            | 100                   | 81 - 117 |
| BROMOFLUOROBENZENE    | 98                    | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 100                   | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 18 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1562

SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |      | Re   | eporting |                            |        | F    | Reportin |
|-----------------------------|------|------|----------|----------------------------|--------|------|----------|
| Re                          | sult | Qual | Limit    |                            | Result | Qual | Limit    |
|                             |      |      |          |                            |        |      |          |
| Phenol                      | 0.33 |      | 0.330    | 2,6-Dinitrotoluene         | 0.33   |      | 0.330    |
| bis(2-Chloroethyl)ether     | 0.33 |      | 0.330    | 3-Nitroaniline             | 0.82   |      | 0.825    |
| 2-Chlorophenol              | 0.33 | -    | 0.330    | Acenaphthene               | 0.330  |      | 0.330    |
| 1,3-Dichlorobenzene         | 0.33 |      | 0.330    | 2,4-Dinitrophenol          | 0.82   | -    | 0.825    |
| 1,4-Dichlorobenzene         | 0.33 |      | 0.330    | 4-Nitrophenol              | 0.82   | _    | 0.825    |
| Benzyl alcohol              | 0.33 | 0 υ  | 0.330    | Dibenzofuran               | 0.33   |      | 0.330    |
| 1,2-Dichlorobenzene         | 0.33 | 0 υ  | 0.330    | 2,4-Dinitrotoluene         | 0.33   |      | 0.330    |
| 2-Methylphenol              | 0.33 | 0 σ  | 0.330    | Diethylphthalate           | 0.33   |      | 0.330    |
| bis(2-Chloroisopropyl)ether | 0.33 | 0 υ  | 0.330    | 4-Chlorophenyl-phenylether |        |      | 0.330    |
| 4-Methylphenol              | 0.33 | υ 0  | 0.330    | Fluorene                   | 0.33   |      | 0.330    |
| N-Nitroso-di-n-propylamine  | 0.33 | 0 υ  | 0.330    | 4-Nitroaniline             | 0.82   | 5 U  | 0.825    |
| Hexachloroethane            | 0.33 | υ 0  | 0.330    | 4,6-Dinitro-2-methylphenol | 0.82   | -    | 0.825    |
| Nitrobenzene                | 0.33 | 0 υ  | 0.330    | N-Nitrosodiphenylamine (1) | 0.33   | ט כ  | 0.330    |
| Isophorone                  | 0.33 | 0 υ  | 0.330    | 4-Bromophenyl-phenylether  | 0.33   | ט כ  | 0.330    |
| 2-Nitrophenol               | 0.33 | 0 υ  | 0.330    | Hexachlorobenzene          | 0.33   | ט כ  | 0.330    |
| 2,4-Dimethylphenol          | 0.33 | 0 υ  | 0.330    | Pentachlorophenol          | 0.82   | 5 U  | 0.825    |
| Benzoic Acid                | 0.33 | 0 υ  | 0.330    | Phenanthrene               | 0.33   | U C  | 0.330    |
| bis(2-Chloroethoxy)methane  | 0.33 | υ 0  | 0.330    | Anthracene                 | 0.33   | ט כ  | 0.330    |
| 2,4-Dichlorophenol          | 0.33 | υ 0  | 0.330    | Di-n-butylphthalate        | 0.33   | u c  | 0.330    |
| 1,2,4-Trichlorobenzene      | 0.33 | υ 0  | 0.330    | Fluoranthene               | 0.33   | ט כ  | 0.330    |
| Naphthalene                 | 0.33 | 0 υ  | 0.330    | Pyrene                     | 0.33   | ט כ  | 0.330    |
| 4-Chloroaniline             | 0.33 | 0 υ  | 0.330    | Butylbenzylphthalate       | 0.33   | ט כ  | 0.330    |
| Hexachlorobutadiene         | 0.33 | 0 U  | 0.330    | 3,3'-Dichlorobenzidine     | 0.33   | ט כ  | 0.330    |
| 4-Chloro-3-methylphenol     | 0.33 | 0 υ  | 0.330    | Benzo(a)anthracene         | 0.33   | ט כ  | 0.330    |
| 2-Methylnaphthalene         | 0.33 | 0 υ  | 0.330    | Chrysene                   | 0.33   | ט כ  | 0.330    |
| Hexachlorocyclopentadiene   | 0.33 | υ 0  | 0.330    | bis(2-Ethylhexyl)phthalate | 0.33   | o c  | 0.330    |
| 2,4,6-Trichlorophenol       | 0.33 | 0 υ  | 0.330    | Di-n-octylphthalate        | 0.33   | U C  | 0.330    |
| 2,4,5-Trichlorophenol       | 0.82 |      | 0.825    | Benzo(b)fluoranthene       | 0.33   | ט כ  | 0.330    |
| 2-Chloronaphthalene         | 0.33 | 0 U  | 0.330    | Benzo(k)fluoranthene       | 0.33   | o u  | 0.330    |
| 2-Nitroaniline              | 0.82 |      | 0.825    | Benzo(a)pyrene             | 0.33   | ט כ  | 0.330    |
| Dimethylphthalate           | 0.33 |      | 0.330    | Indeno(1,2,3-cd)pyrene     | 0.33   | υ 0  | 0.330    |
| Acenaphthylene              | 0.33 |      | 0.330    | Dibenzo(a,h)anthracene     | 0.33   | ט כ  | 0.330    |
| - •                         |      |      |          | Benzo(g,h,i)perylene       | 0.33   | ט כ  | 0.330    |

Page: 19 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1562 SAMPLE DATE: 11/2

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|--|
| Nitrobenzene-D5      | 58         | 23 - 120 |  |  |  |  |  |
| 2-Fluorobiphenyl     | 67         | 30 - 115 |  |  |  |  |  |
| Terphenyl-D14        | 76         | 18 - 137 |  |  |  |  |  |
| Phenol-D5            | 57         | 24 - 113 |  |  |  |  |  |
| 2-Fluorophenol       | 49         | 25 - 121 |  |  |  |  |  |
| 2,4,6-Tribromophenol | 56         | 19 - 122 |  |  |  |  |  |

409832-003

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 20 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1562 SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 95.2380

UNITS: MG/KG

|             | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-------------|--------|----------------|--------------------|---------------------|------------------|
| <br>Arsenic | 3.4    |                | 0.95               | 7060                | 12/10/93         |
| Aluminum    | 15000  | *N             | 19                 | 6010                | 12/15/93         |
| Barium      | 32     | *N             | 19                 | 6010                | 12/15/93         |
| Beryllium   | 1.3    |                | 0.48               | 6010                | 12/15/93         |
| Cadmium     | 0.48   | ប              | 0.48               | 6010                | 12/15/93         |
| Chromium    | 14     | *              | 0.95               | 6010                | 12/15/93         |
| Copper      | 22     | *              | 2.4                | 6010                | 12/15/93         |
| Iron        | 11000  | *N             | 9.5                | 6010                | 12/15/93         |
| Nickel      | 25     | *              | 3.8                | 6010                | 12/15/93         |
| Lead        | 5.0    | N              | 0.29               | 7421                | 12/10/93         |
| Mercury     | 0.022  | บ              | 0.022              | 7471                | 12/08/93         |
| Silver      | 0.95   | U              | 0.95               | 6010                | 12/15/93         |
| Zinc        | 29     | *              | 1.9                | 6010                | 12/15/93         |
|             |        |                |                    |                     |                  |

# Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 21 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 Work Order: B3-11-282

SAMPLE ID: A1563

SAMPLE DATE: 11/22/93 08:25:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting |       | Date            | Method    |
|-------------|------|--------|-----------|-------|-----------------|-----------|
| Test Name   | Ref  | Result | Limit     | Units | <u>Analyzed</u> | Reference |
| Chromium VI |      | 0.500  | 0.50      | MG/KG | 12/03/93        | EPA7196   |

409832-003

Page: 22 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1563

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93

DILUTION FACTOR: 1.0

UNITS: UG/KG

|                          |            | Re | eporting |                           |        |      | Re | porting |
|--------------------------|------------|----|----------|---------------------------|--------|------|----|---------|
|                          | Result Qua | 1  | Limit    |                           | Result | Qua: | 1  | Limit   |
| Chloromethane            | 10         | U  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 10         | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 10         | U  | 10       | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane             | 10         | U  | 10       | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride       | 2.1        | J  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 100        | U  | 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         | 5          | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene       | 5          | U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| 1,1-Dichloroethane       | 5          | U  | 5        | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene | 5          | U  | 5        | 2-Hexanone                |        | 50   | U  | 50      |
| cis-1,2-Dichloroethene   | 5          | U  | 5        | 4-Methyl-2-pentanone      |        | 50   | U  | 50      |
| Chloroform               | 5          | U  | 5        | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       | 5          | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 100        | U  | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    | 5.6        |    | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     | 5          | U  | 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 10         | U  | 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     | 5          | U  | 5        | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 101        | 81 - 117 |
| BROMOFLUOROBENZENE    | 99         | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 97         | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 23 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1563

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

| DILUTION FACTOR:           | 0.033      | _        |          |                            |        | ,        | Reportin |
|----------------------------|------------|----------|----------|----------------------------|--------|----------|----------|
| UNITS: MG/KG               | <b>5</b> 1 |          | eporting |                            | Result |          | Limit    |
|                            | Result     | Qual     | Limit    |                            | REBUIL | Quar     | DIMIC    |
| Phenol                     | 0.330      | u u      | 0.330    | 2,6-Dinitrotoluene         | 0.330  | <b>U</b> | 0.330    |
| bis(2-Chloroethyl)ether    | 0.330      | Ū        | 0.330    | 3-Nitroaniline             | 0.82   | ช ซ      | 0.825    |
| 2-Chlorophenol             | 0.330      | U        | 0.330    | Acenaphthene               | 0.330  | ) ซ      | 0.330    |
| 1,3-Dichlorobenzene        | 0.330      | υ        | 0.330    | 2,4-Dinitrophenol          | 0.82   | 5 ប      | 0.825    |
| 1,4-Dichlorobenzene        | 0.330      | U        | 0.330    | 4-Nitrophenol              | 0.82   | 5 U      | 0.825    |
| Benzyl alcohol             | 0.330      | U        | 0.330    | Dibenzofuran               | 0.33   | <b>U</b> | 0.330    |
| 1,2-Dichlorobenzene        | 0.330      | U        | 0.330    | 2,4-Dinitrotoluene         | 0.33   |          | 0.330    |
| 2-Methylphenol             | 0.330      | ) U      | 0.330    | Diethylphthalate           | 0.33   | ט כ      | 0.330    |
| bis(2-Chloroisopropyl)ethe | er 0.330   | U        | 0.330    | 4-Chlorophenyl-phenylether |        | -        | 0.330    |
| 4-Methylphenol             | 0.330      | U        | 0.330    | Fluorene                   | 0.33   | <b>U</b> | 0.330    |
| N-Nitroso-di-n-propylamine | 0.330      | U (      | 0.330    | 4-Nitroaniline             | 0.82   | 5 U      | 0.825    |
| Hexachloroethane           | 0.330      | ) U      | 0.330    | 4,6-Dinitro-2-methylphenol | 0.82   | -        | 0.825    |
| Nitrobenzene               | 0.330      | ) U      | 0.330    | N-Nitrosodiphenylamine (1) | 0.33   | ט כ      | 0.330    |
| Isophorone                 | 0.330      | ) U      | 0.330    | 4-Bromophenyl-phenylether  | 0.33   |          | 0.330    |
| 2-Nitrophenol              | 0.330      | U (      | 0.330    | Hexachlorobenzene          | 0.33   | ט כ      | 0.330    |
| 2,4-Dimethylphenol         | 0.330      | <b>U</b> | 0.330    | Pentachlorophenol          | 0.82   | 5 U      | 0.825    |
| Benzoic Acid               | 0.330      | <b>U</b> | 0.330    | Phenanthrene               | 0.33   | ט כ      | 0.330    |
| bis(2-Chloroethoxy)methane | e 0.330    | <b>U</b> | 0.330    | Anthracene                 | 0.33   | ט כ      | 0.330    |
| 2,4-Dichlorophenol         | 0.330      | ) U      | 0.330    | Di-n-butylphthalate        | 0.33   | ט כ      | 0.330    |
| 1,2,4-Trichlorobenzene     | 0.330      | ) U      | 0.330    | Fluoranthene               | 0.33   | ט כ      | 0.330    |
| Naphthalene                | 0.330      | <b>U</b> | 0.330    | Pyrene                     | 0.33   | ט כ      | 0.330    |
| 4-Chloroaniline            | 0.330      | υ (      | 0.330    | Butylbenzylphthalate       | 0.33   | <b>U</b> | 0.330    |
| Hexachlorobutadiene        | 0.330      | ) U      | 0.330    | 3,3'-Dichlorobenzidine     | 0.33   | ט כ      | 0.330    |
| 4-Chloro-3-methylphenol    | 0.330      | <b>U</b> | 0.330    | Benzo(a)anthracene         | 0.33   | ט כ      | 0.330    |
| 2-Methylnaphthalene        | 0.330      | ) ซ      | 0.330    | Chrysene                   | 0.33   | ט כ      | 0.330    |
| Hexachlorocyclopentadiene  | 0.330      | <b>U</b> | 0.330    | bis(2-Ethylhexyl)phthalate | e 0.33 | ט כ      | 0.330    |
| 2,4,6-Trichlorophenol      | 0.330      | υ (      | 0.330    | Di-n-octylphthalate        | 0.33   | ט כ      | 0.330    |
| 2,4,5-Trichlorophenol      | 0.825      | <b>U</b> | 0.825    | Benzo(b)fluoranthene       | 0.33   | ט כ      | 0.330    |
| 2-Chloronaphthalene        | 0.330      | บ (      | 0.330    | Benzo(k)fluoranthene       | 0.33   | ט כ      | 0.330    |
| 2-Nitroaniline             | 0.825      | <b>U</b> | 0.825    | Benzo(a)pyrene             | 0.33   | ט כ      | 0.330    |
| Dimethylphthalate          | 0.330      | <b>U</b> | 0.330    | Indeno(1,2,3-cd)pyrene     | 0.33   | -        | 0.330    |
| Acenaphthylene             | 0.330      | <b>U</b> | 0.330    | Dibenzo(a,h)anthracene     | 0.33   |          | 0.330    |
|                            |            |          |          | Benzo(g,h,i)perylene       | 0.33   | ט כ      | 0.330    |

Page: 24 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1563 SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|--|
| Nitrobenzene-D5      | 72         | 23 - 120 |  |  |  |  |  |
| 2-Fluorobiphenyl     | 77         | 30 - 115 |  |  |  |  |  |
| Terphenyl-D14        | 79         | 18 - 137 |  |  |  |  |  |
| Phenol-D5            | 66         | 24 - 113 |  |  |  |  |  |
| 2-Fluorophenol       | 54         | 25 - 121 |  |  |  |  |  |
| 2.4.6-Tribromophenol | 61         | 19 - 122 |  |  |  |  |  |

409832-003

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 25 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1563

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 109.890

UNITS: MG/KG

|             | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-------------|--------|----------------|--------------------|---------------------|------------------|
| <br>Arsenic | 5.4    |                | 1.1                | 7060                | 12/10/93         |
| Aluminum    | 10000  | *N             | 22                 | 6010                | 12/15/93         |
| Barium      | 22     | U*N            | 22                 | 6010                | 12/15/93         |
| Beryllium   | 1.2    |                | 0.55               | 6010                | 12/15/93         |
| Cadmium     | 0.55   | U              | 0.55               | 6010                | 12/15/93         |
| Chromium    | 14     | *              | 1.1                | 6010                | 12/15/93         |
| Copper      | 21     | *              | 2.7                | 6010                | 12/15/93         |
| Iron        | 14000  | *N             | 11                 | 6010                | 12/15/93         |
| Nickel      | 21     | *              | 4.4                | 6010                | 12/15/93         |
| Lead        | 7.1    | N              | 0.32               | 7421                | 12/10/93         |
| Mercury     | 0.024  | ט              | 0.024              | 7471                | 12/08/93         |
| Silver      | 1.1    | ប              | 1.1                | 6010                | 12/15/93         |
| Zinc        | 22     | *              | 2.2                | 6010                | 12/15/93         |
|             |        |                |                    |                     |                  |

# Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 26 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

(512) 892-6684 Work Order: B3-11-282

SAMPLE ID: A1564

SAMPLE DATE: 11/22/93 08:38:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting |       | Date     | Method    |
|-------------|------|--------|-----------|-------|----------|-----------|
| Test Name   | Ref  | Result | Limit     | Units | Analyzed | Reference |
| Chromium VI |      | 0.500  | 0.50      | MG/KG | 12/03/93 | EPA7196   |

409832-003

Page: 27 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001 409832-003 Work Order: B3-11-282

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1564

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

| ·                        |          | 1    | Reportin   | a .                       |        |      | Re | porting |
|--------------------------|----------|------|------------|---------------------------|--------|------|----|---------|
|                          | Result ( | Qual | Limit      |                           | Result | Qual | L  | Limit   |
| Chloromethane            | 10       | ο τ  | J 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 10       | 0 1  | J 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 10       | 0 1  | J 10       | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane             | 10       | 0 1  | J 10       | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride       | 2.0      | ο ,  | J 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 6.       | в .  | J 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         | !        | 5 1  | J 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene       | !        | 5 1  | <b>5</b>   | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| 1,1-Dichloroethane       | :        | 5 1  | ت 5        | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene |          | 5 1  | U 5        | 2-Hexanone                |        | 50   | U  | 50      |
| cis-1,2-Dichloroethene   |          | 5 1  | <b>5</b>   | 4-Methyl-2-pentanone      |        | 50   | U  | 50      |
| Chloroform               |          | 5 1  | <b>U</b> 5 | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       |          | 5 1  | U 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 10       | 0 1  | J 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    | 5.       | 2    | 5          | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     |          | 5 1  | U 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 1        | 0 1  | U 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     |          | 5 1  | U 5        | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |  |  |  |
|-----------------------|------------|----------|--|--|--|
| TOLUENE-D8            | 100        | 81 - 117 |  |  |  |
| BROMOFLUOROBENZENE    | 97         | 74 - 121 |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 99         | 70 - 120 |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 28 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1564
SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

|                             | .033    |      |          |                                   |        | _    |          |
|-----------------------------|---------|------|----------|-----------------------------------|--------|------|----------|
| UNITS: MG/KG                |         |      | eporting |                                   |        |      | Reportin |
| Re                          | esult ( | Qual | Limit    |                                   | Result | Qual | Limit    |
| Phenol                      | 0 220   | **   | 0 330    | 2 6-Dimitmetalwana                | 0.330  |      | 0.330    |
| bis(2-Chloroethyl)ether     | 0.330   |      | 0.330    | 2,6-Dinitrotoluene 3-Nitroaniline | 0.825  |      | 0.825    |
| 2-Chlorophenol              | 0.330   | _    | 0.330    | Acenaphthene                      | 0.330  |      | 0.330    |
| 1,3-Dichlorobenzene         | 0.330   |      | 0.330    | 2,4-Dinitrophenol                 | 0.825  | _    | 0.825    |
| 1,4-Dichlorobenzene         | 0.330   |      | 0.330    | 4-Nitrophenol                     | 0.825  |      | 0.825    |
| Benzyl alcohol              | 0.330   |      | 0.330    | Dibenzofuran                      | 0.330  |      | 0.330    |
| 1,2-Dichlorobenzene         | 0.330   |      | 0.330    | 2,4-Dinitrotoluene                | 0.330  | _    | 0.330    |
| 2-Methylphenol              | 0.330   |      | 0.330    | Diethylphthalate                  | 0.330  |      | 0.330    |
| bis(2-Chloroisopropyl)ether | 0.330   |      | 0.330    | 4-Chlorophenyl-phenylether        |        |      | 0.330    |
| 4-Methylphenol              | 0.330   |      | 0.330    | Fluorene                          | 0.330  | _    | 0.330    |
| N-Nitroso-di-n-propylamine  | 0.330   |      | 0.330    | 4-Nitroaniline                    | 0.825  |      | 0.825    |
| Hexachloroethane            | 0.330   |      | 0.330    | 4,6-Dinitro-2-methylphenol        |        |      | 0.825    |
| Nitrobenzene                | 0.330   |      | 0.330    | N-Nitrosodiphenylamine (1)        |        |      | 0.330    |
| Isophorone                  | 0.330   |      | 0.330    | 4-Bromophenyl-phenylether         | 0.330  |      | 0.330    |
| 2-Nitrophenol               | 0.330   |      | 0.330    | Hexachlorobenzene                 | 0.330  |      | 0.330    |
| 2,4-Dimethylphenol          | 0.330   |      | 0.330    | Pentachlorophenol                 | 0.825  |      | 0.825    |
| Benzoic Acid                | 0.330   |      | 0.330    | Phenanthrene                      | 0.330  |      | 0.330    |
| bis(2-Chloroethoxy)methane  | 0.330   |      | 0.330    | Anthracene                        | 0.330  |      | 0.330    |
| 2,4-Dichlorophenol          | 0.330   |      | 0.330    | Di-n-butylphthalate               | 0.330  |      | 0.330    |
| 1,2,4-Trichlorobenzene      | 0.330   |      | 0.330    | Fluoranthene                      | 0.330  |      | 0.330    |
| Naphthalene                 | 0.330   |      | 0.330    | Pyrene                            | 0.330  | _    | 0.330    |
| 4-Chloroaniline             | 0.330   |      | 0.330    | Butylbenzylphthalate              | 0.330  |      | 0.330    |
| Hexachlorobutadiene         | 0.330   |      | 0.330    | 3,3'-Dichlorobenzidine            | 0.330  |      | 0.330    |
| 4-Chloro-3-methylphenol     | 0.330   |      | 0.330    | Benzo(a)anthracene                | 0.330  |      | 0.330    |
| 2-Methylnaphthalene         | 0.330   |      | 0.330    | Chrysene                          | 0.330  |      | 0.330    |
| Hexachlorocyclopentadiene   | 0.330   |      | 0.330    | bis(2-Ethylhexyl)phthalate        |        |      | 0.330    |
| 2,4,6-Trichlorophenol       | 0.330   |      | 0.330    | Di-n-octylphthalate               | 0.330  | _    | 0.330    |
| 2,4,5-Trichlorophenol       | 0.825   |      | 0.330    | Benzo(b)fluoranthene              | 0.330  |      | 0.330    |
| 2-Chloronaphthalene         | 0.330   |      | 0.330    | Benzo(k)fluoranthene              | 0.330  |      | 0.330    |
| 2-Nitroaniline              | 0.825   |      | 0.825    | Benzo(a)pyrene                    | 0.330  | _    | 0.330    |
| Dimethylphthalate           | 0.330   |      | 0.825    | Indeno(1,2,3-cd)pyrene            | 0.330  |      | 0.330    |
| Acenaphthylene              | 0.330   |      | 0.330    | Dibenzo(a,h)anthracene            | 0.330  |      | 0.330    |
|                             | 0.330   | J    | 0.550    | Benzo(g,h,i)perylene              | 0.330  |      | 0.330    |
|                             |         |      |          | Denzo (G, n, I) per yrene         | 0.550  |      | 5.550    |

Page: 29 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1564

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

| Surrogates '         | % Recovery Limi |          |  |
|----------------------|-----------------|----------|--|
| Nitrobenzene-D5      | 50              | 23 - 120 |  |
| 2-Fluorobiphenyl     | 53              | 30 - 115 |  |
| Terphenyl-D14        | 61              | 18 - 137 |  |
| Phenol-D5            | 56              | 24 - 113 |  |
| 2-Fluorophenol       | 47              | 25 - 121 |  |
| 2,4,6-Tribromophenol | 49              | 19 - 122 |  |

409832-003

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 30 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1564

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 105.263

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 1.2    |                | 1.1                | 7060                | 12/10/93         |
| Aluminum  | 1700   | *N             | 21                 | 6010                | 12/15/93         |
| Barium    | 21     | U*N            | 21                 | 6010                | 12/15/93         |
| Beryllium | 0.53   | ប              | 0.53               | 6010                | 12/15/93         |
| Cadmium   | 0.57   |                | 0.53               | 6010                | 12/15/93         |
| Chromium  | 7.6    | *              | 1.1                | 6010                | 12/15/93         |
| Copper    | 1.7    | *              | 2.6                | 6010                | 12/15/93         |
| Iron      | 7300   | *N             | 11                 | 6010                | 12/15/93         |
| Nickel    | 7.3    | *              | 4.2                | 6010                | 12/15/93         |
| Lead      | 3.2    | N              | 0.32               | 7421                | 12/10/93         |
| Mercury   | 0.023  | U              | 0.023              | 7471                | 12/08/93         |
| Silver    | 1.1    | U              | 1.1                | 6010                | 12/15/93         |
| Zinc      | 7.1    | *              | 2.1                | 6010                | 12/15/93         |

# Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 31 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

SAMPLE ID: A1565

SAMPLE DATE: 11/22/93 08:38:00

SAMPLE MATRIX: SOIL

|             | Note |        | Reporting |       | Date     | Method    |  |
|-------------|------|--------|-----------|-------|----------|-----------|--|
| Test Name   | Ref  | Result | Limit     | Units | Analyzed | Reference |  |
| Chromium VI |      | 0.500  | 0.50      | MG/KG | 12/03/93 | EPA7196   |  |

Page: 32 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1565

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93

DILUTION FACTOR: 1.0

UNITS: UG/KG

| 20,200                   |          | R        | eporting |                           |        |     | Re | portin |
|--------------------------|----------|----------|----------|---------------------------|--------|-----|----|--------|
|                          | Result Q | ual      | Limit    |                           | Result | Qua | 1  | Limit  |
| Chloromethane            | 10       | υ        | 10       | 1,2-Dichloropropane       |        | 5   | บ  | 5      |
| Bromomethane             | 10       | U        | 10       | trans-1,3-Dichloropropene |        | 5   | U  | 5      |
| Vinyl chloride           | 10       | U        | 10       | Trichloroethene           |        | 5   | U  | 5      |
| Chloroethane             | 10       | U        | 10       | Chlorodibromomethane      |        | 5   | U  | 5      |
| Methylene chloride       | 2.1      | J        | 10       | 1,1,2-Trichloroethane     |        | 5   | U  | 5      |
| Acetone                  | 5.8      | J        | 100      | Benzene                   |        | 5   | U  | 5      |
| Carbon disulfide         | 5        | U        | 5        | cis-1,3-Dichloropropene   |        | 5   | U  | 5      |
| 1,1-Dichloroethene       | 5        | U        | 5        | 2-Chloroethylvinyl ether  |        | 10  | U  | 10     |
| 1,1-Dichloroethane       | 5        | U        | 5        | Bromoform                 |        | 5   | U  | 5      |
| trans-1,2-Dichloroethene | 5        | U        | 5        | 2-Hexanone                |        | 50  | U  | 50     |
| cis-1,2-Dichloroethene   | 5        | U        | 5        | 4-Methyl-2-pentanone      |        | 50  | U  | 50     |
| Chloroform               | 5        | υ        | 5        | Tetrachloroethene         |        | 5   | U  | 5      |
| 1,2-Dichloroethane       | 5        | υ        | 5        | 1,1,2,2-Tetrachloroethane |        | 5   | U  | 5      |
| 2-Butanone               | 100      | U        | 100      | Toluene                   |        | 5   | U  | 5      |
| 1,1,1-Trichloroethane    | 5.4      |          | 5        | Chlorobenzene             |        | 5   | U  | 5      |
| Carbon tetrachloride     | 5        | υ        | 5        | Ethylbenzene              |        | 5   | U  | 5      |
| Vinyl acetate            | 10       | <b>U</b> | 10       | Styrene                   |        | 5   | U  | 5      |
| Dichlorobromomethane     | 5        | ט כ      | 5        | Xylenes, total            |        | 5   | U  | 5      |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 100        | 81 - 117 |
| BROMOFLUOROBENZENE    | 100        | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 100        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 33 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001 409832-003 Work Order: B3-11-282

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1565

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                | 0.033 | ъ.         |                   |                            |        | τ          | Reportin |
|-----------------------------|-------|------------|-------------------|----------------------------|--------|------------|----------|
| •                           | esult |            | eporting<br>Limit |                            | Result |            | Limit    |
| K                           | esuic | Qual       | TIMIL             |                            | Kebuit | Quar       | DIME     |
| Phenol                      | 0.330 | <b>U</b>   | 0.330             | 2,6-Dinitrotoluene         | 0.330  | ) U        | 0.330    |
| bis(2-Chloroethyl)ether     | 0.330 | U (        | 0.330             | 3-Nitroaniline             | 0.825  | រ ប        | 0.825    |
| 2-Chlorophenol              | 0.330 | <b>U</b>   | 0.330             | Acenaphthene               | 0.330  | ט (        | 0.330    |
| 1,3-Dichlorobenzene         | 0.330 | <b>U</b>   | 0.330             | 2,4-Dinitrophenol          | 0.825  | ; U        | 0.825    |
| 1,4-Dichlorobenzene         | 0.330 | <b>U</b>   | 0.330             | 4-Nitrophenol              | 0.825  | j u        | 0.825    |
| Benzyl alcohol              | 0.330 | <b>U</b>   | 0.330             | Dibenzofuran               | 0.330  | ) U        | 0.330    |
| 1,2-Dichlorobenzene         | 0.330 | υ (        | 0.330             | 2,4-Dinitrotoluene         | 0.330  | U (        | 0.330    |
| 2-Methylphenol              | 0.330 | ט כ        | 0.330             | Diethylphthalate           | 0.330  | -          | 0.330    |
| bis(2-Chloroisopropyl)ether | 0.330 | <b>U</b>   | 0.330             | 4-Chlorophenyl-phenylether | 0.330  | <b>U</b>   | 0.330    |
| 4-Methylphenol              | 0.330 | <b>U</b>   | 0.330             | Fluorene                   | 0.330  | -          | 0.330    |
| N-Nitroso-di-n-propylamine  | 0.330 | <b>U</b>   | 0.330             | 4-Nitroaniline             | 0.825  | ט נ        | 0.825    |
| Hexachloroethane            | 0.330 | <b>U</b>   | 0.330             | 4,6-Dinitro-2-methylphenol | 0.825  | ט נ        | 0.825    |
| Nitrobenzene                | 0.330 | U C        | 0.330             | N-Nitrosodiphenylamine (1) | 0.330  | <b>U</b>   | 0.330    |
| Isophorone                  | 0.330 | υ (        | 0.330             | 4-Bromophenyl-phenylether  | 0.330  | ט (        | 0.330    |
| 2-Nitrophenol               | 0.330 | <b>U</b>   | 0.330             | Hexachlorobenzene          | 0.330  | ) U        | 0.330    |
| 2,4-Dimethylphenol          | 0.330 | <b>U</b>   | 0.330             | Pentachlorophenol          | 0.825  | ; U        | 0.825    |
| Benzoic Acid                | 0.330 | <b>U</b>   | 0.330             | Phenanthrene               | 0.330  | U (        | 0.330    |
| bis(2-Chloroethoxy)methane  | 0.330 | ט כ        | 0.330             | Anthracene                 | 0.330  | <b>U</b>   | 0.330    |
| 2,4-Dichlorophenol          | 0.330 | ט כ        | 0.330             | Di-n-butylphthalate        | 0.330  | U (        | 0.330    |
| 1,2,4-Trichlorobenzene      | 0.330 | ט כ        | 0.330             | Fluoranthene               | 0.330  | ) U        | 0.330    |
| Naphthalene                 | 0.330 | ט כ        | 0.330             | Pyrene                     | 0.330  | ) U        | 0.330    |
| 4-Chloroaniline             | 0.330 | ט כ        | 0.330             | Butylbenzylphthalate       | 0.330  | ) U        | 0.330    |
| Hexachlorobutadiene         | 0.330 | ט כ        | 0.330             | 3,3'-Dichlorobenzídine     | 0.330  | ) U        | 0.330    |
| 4-Chloro-3-methylphenol     | 0.330 | υ (        | 0.330             | Benzo(a)anthracene         | 0.330  | U (        | 0.330    |
| 2-Methylnaphthalene         | 0.330 | ט כ        | 0.330             | Chrysene                   | 0.330  | <b>U</b>   | 0.330    |
| Hexachlorocyclopentadiene   | 0.330 | ט כ        | 0.330             | bis(2-Ethylhexyl)phthalate | 0.330  | ט כ        | 0.330    |
| 2,4,6-Trichlorophenol       | 0.330 | ט כ        | 0.330             | Di-n-octylphthalate        | 0.330  | <b>U</b> ( | 0.330    |
| 2,4,5-Trichlorophenol       | 0.825 | <b>5 U</b> | 0.825             | Benzo(b) fluoranthene      | 0.330  | <b>U</b>   | 0.330    |
| 2-Chloronaphthalene         | 0.330 | ט כ        | 0.330             | Benzo(k)fluoranthene       | 0.330  | ט כ        | 0.330    |
| 2-Nitroaniline              | 0.825 | 5 U        | 0.825             | Benzo(a)pyrene             | 0.330  | ט כ        | 0.330    |
| Dimethylphthalate           | 0.330 | ט כ        | 0.330             | Indeno(1,2,3-cd)pyrene     | 0.330  | ט כ        | 0.330    |
| Acenaphthylene              | 0.330 | ט כ        | 0.330             | Dibenzo(a,h)anthracene     | 0.330  | <b>U</b>   | 0.330    |
|                             |       |            |                   | Benzo(g,h,i)perylene       | 0.330  | ט (        | 0.330    |

Page: 34 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1565

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 52         | 23 - 120 |
| 2-Fluorobiphenyl     | 59         | 30 - 115 |
| Terpnenyl-D14        | 59         | 18 - 137 |
| Phenol-D5            | 60         | 24 - 113 |
| 2-Fluorophenol       | 49         | 25 - 121 |
| 2,4,6-Tribromophenol | 51         | 19 - 122 |

409832-003

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 35 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1565 SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 107.526

UNITS: MG/KG

|           | Result | Result<br>Oual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
|           |        |                |                    |                     |                  |
| Arsenic   | 1.1    | U              | 1.1                | 7060                | 12/10/93         |
| Aluminum  | 750    | *N             | 22                 | 6010                | 12/15/93         |
| Barium    | 60     | *N             | 22                 | 6010                | 12/15/93         |
| Beryllium | 0.54   | U              | 0.54               | 6010                | 12/15/93         |
| Cadmium   | 0.54   | บ              | 0.54               | 6010                | 12/15/93         |
| Chromium  | 3.0    | *              | 1.1                | 6010                | 12/15/93         |
| Copper    | 1.1    | *              | 2.7                | 6010                | 12/15/93         |
| Iron      | 2400   | *N             | 11                 | 6010                | 12/15/93         |
| Nickel    | 4.3    | Ծ*             | 4.3                | 6010                | 12/15/93         |
| Lead      | 1.5    | N              | 0.32               | 7421                | 12/10/93         |
| Mercury   | 0.023  | ប              | 0.023              | 7471                | 12/08/93         |
| Silver    | 1.1    | ប              | 1.1                | 6010                | 12/15/93         |
| Zinc      | 3.1    | *              | 2.2                | 6010                | 12/15/93         |

### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 36 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

# IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1566

SAMPLE DATE: 11/16/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 11/30/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |            | R  | eporting |                           |        |      | Re | portin |
|--------------------------|------------|----|----------|---------------------------|--------|------|----|--------|
|                          | Result Qua | ıl | Limit    |                           | Result | Qua] | L  | Limit  |
| Chloromethane            | 10         | U  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5      |
| Bromomethane             | 10         | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5      |
| Vinyl chloride           | 10         | U  | 10       | Trichloroethene           |        | 5    | U  | 5      |
| Chloroethane             | 10         | U  | 10       | Chlorodibromomethane      |        | 5    | U  | 5      |
| Methylene chloride       | 10         | U  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5      |
| Acetone                  | 100        | U  | 100      | Benzene                   |        | 5    | U  | 5      |
| Carbon disulfide         | 5          | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5      |
| 1,1-Dichloroethene       | 5          | U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10     |
| 1,1-Dichloroethane       | 5          | U  | 5        | Bromoform                 |        | 5    | U  | 5      |
| trans-1,2-Dichloroethene | 5          | U  | 5        | 2-Hexanone                | 1      | 50   | U  | 50     |
| cis-1,2-Dichloroethene   | 5          | U  | 5        | 4-Methyl-2-pentanone      | !      | 50   | U  | 50     |
| Chloroform               | 5          | U  | 5        | Tetrachloroethene         |        | 5    | U  | 5      |
| 1,2-Dichloroethane       | 5          | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5      |
| 2-Butanone               | 100        | U  | 100      | Toluene                   |        | 5    | U  | 5      |
| 1,1,1-Trichloroethane    | 5          | U  | 5        | Chlorobenzene             |        | 5    | U  | 5      |
| Carbon tetrachloride     | 5          | U  | 5        | Ethylbenzene              |        | 5    | U  | 5      |
| Vinyl acetate            | 10         | U  | 10       | Styrene                   |        | 5    | U  | 5      |
| Dichlorobromomethane     | 5          | U  | 5        | Xylenes, total            |        | 5    | U  | 5      |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 98         | 88 - 110 |
| BROMOFLUOROBENZENE    | 99         | 86 - 115 |
| 1,2-DICHLOROETHANE-D4 | 107        | 76 - 114 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 37 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684

Work Order: B3-11-282

SAMPLE ID: A1567

SAMPLE DATE: 11/22/93 16:00:00

SAMPLE MATRIX: SOIL

|                    | Note |                | Reporting |       | Date     | Method    |
|--------------------|------|----------------|-----------|-------|----------|-----------|
| Test Name          | Ref_ | Result         | Limit     | Units | Analyzed | Reference |
| 9071/418.1 for TPH |      | 100            | 10        | MG/KG | 12/07/93 | EPA9071   |
| Chromium VI        |      | 0.5 <b>0</b> U | 0.50      | MG/KG | 12/03/93 | EPA7196   |

409832-003

Page: 38 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1567

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

| 0.1101 00,110            |          | R   | eporting |                           |        |      | Re | porting |
|--------------------------|----------|-----|----------|---------------------------|--------|------|----|---------|
|                          | Result Q | ual | Limit    |                           | Result | Qua] | L  | Limit   |
| Chloromethane            | 10       | u u | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 10       | U   | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 10       | บ   | 10       | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane             | 10       | ט ( | 10       | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride       | 2.1      | . J | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 8.3      | J   | 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         | 5        | i t | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene       | 5        | τ   | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| 1,1-Dichloroethane       | 5        | τ   | 5        | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene | 5        | τ   | 5        | 2-Hexanone                |        | 50   | U  | 50      |
| cis-1,2-Dichloroethene   | 5        | ; t | 5        | 4-Methyl-2-pentanone      |        | 50   | U  | 50      |
| Chloroform               | 5        | 5 T | 5        | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       | 5        | 5 0 | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 100      | ) τ | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    | 5.4      |     | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     | 5        | 5 0 | 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 10       | ) t | 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     | 5        | 5 T | 5        | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 103        | 81 - 117 |
| BROMOFLUOROBENZENE    | 95         | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 102        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 39 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1567
SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/10/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |       | Re         | porting |                            |        | F        | Reporti |
|-----------------------------|-------|------------|---------|----------------------------|--------|----------|---------|
|                             | sult  |            | Limit   |                            | Result |          | Limit   |
|                             |       |            |         |                            |        | _        |         |
| Phenol                      | 0.330 | ט כ        | 0.330   | 2,6-Dinitrotoluene         | 0.330  | <b>U</b> | 0.330   |
| bis(2-Chloroethyl)ether     | 0.330 | ט כ        | 0.330   | 3-Nitroaníline             | 0.825  | ט פ      | 0.825   |
| 2-Chlorophenol              | 0.330 | ט כ        | 0.330   | Acenaphthene               | 0.330  | ט כ      | 0.330   |
| 1,3-Dichlorobenzene         | 0.330 | ט כ        | 0.330   | 2,4-Dinitrophenol          | 0.825  | 5 U      | 0.825   |
| 1,4-Dichlorobenzene         | 0.330 | ט כ        | 0.330   | 4-Nitrophenol              | 0.82   | <b>U</b> | 0.825   |
| Benzyl alcohol              | 0.330 | ט כ        | 0.330   | Dibenzofuran               | 0.330  | <b>U</b> | 0.330   |
| 1,2-Dichlorobenzene         | 0.330 | ט כ        | 0.330   | 2,4-Dinitrotoluene         | 0.330  | ט כ      | 0.330   |
| 2-Methylphenol              | 0.330 | ט כ        | 0.330   | Diethylphthalate           | 0.330  |          | 0.330   |
| bis(2-Chloroisopropyl)ether | 0.330 | ט כ        | 0.330   | 4-Chlorophenyl-phenylether | 0.330  | <b>U</b> | 0.330   |
| 4-Methylphenol              | 0.330 | ט כ        | 0.330   | Fluorene                   | 0.330  |          | 0.330   |
| N-Nitroso-di-n-propylamine  | 0.330 | ט כ        | 0.330   | 4-Nitroaniline             | 0.82   |          | 0.825   |
| Hexachloroethane            | 0.330 | ט כ        | 0.330   | 4,6-Dinitro-2-methylphenol |        |          | 0.825   |
| Nitrobenzene                | 0.33  | ט כ        | 0.330   | N-Nitrosodiphenylamine (1) | 0.330  |          | 0.330   |
| Isophorone                  | 0.330 | ט כ        | 0.330   | 4-Bromophenyl-phenylether  | 0.330  | <b>U</b> | 0.330   |
| 2-Nitrophenol               | 0.33  | ט כ        | 0.330   | Hexachlorobenzene          | 0.330  |          | 0.330   |
| 2,4-Dimethylphenol          | 0.33  | ט כ        | 0.330   | Pentachlorophenol          | 0.82   |          | 0.825   |
| Benzoic Acid                | 0.33  | ט כ        | 0.330   | Phenanthrene               | 0.330  |          | 0.330   |
| bis(2-Chloroethoxy)methane  | 0.33  | υ <b>σ</b> | 0.330   | Anthracene                 | 0.330  | ט כ      | 0.330   |
| 2,4-Dichlorophenol          | 0.33  | ט כ        | 0.330   | Di-n-butylphthalate        | 0.330  | ט כ      | 0.330   |
| 1,2,4-Trichlorobenzene      | 0.33  | υ 0        | 0.330   | Fluoranthene               | 0.330  | ט כ      | 0.330   |
| Naphthalene                 | 0.33  | ט ס        | 0.330   | Pyrene                     | 0.330  | ט כ      | 0.330   |
| 4-Chloroaniline             | 0.33  | ט כ        | 0.330   | Butylbenzylphthalate       | 0.330  | ט כ      | 0.330   |
| Hexachlorobutadiene         | 0.33  | ט ס        | 0.330   | 3,3'-Dichlorobenzidine     | 0.330  | ט כ      | 0.330   |
| 4-Chloro-3-methylphenol     | 0.33  | 0 U        | 0.330   | Benzo(a)anthracene         | 0.330  |          | 0.330   |
| 2-Methylnaphthalene         | 0.33  | U 0        | 0.330   | Chrysene                   | 0.330  |          | 0.330   |
| Hexachlorocyclopentadiene   | 0.33  | 0 U        | 0.330   | bis(2-Ethylhexyl)phthalate | 0.330  | ט כ      | 0.33C   |
| 2,4,6-Trichlorophenol       | 0.33  | o u        | 0.330   | Di-n-octylphthalate        | 0.33   |          | 0.330   |
| 2,4,5-Trichlorophenol       | 0.82  | 5 U        | 0.825   | Benzo(b)fluoranthene       | 0.33   |          | 0.330   |
| 2-Chloronaphthalene         | 0.33  | υ 0        | 0.330   | Benzo(k)fluoranthene       | 0.33   |          | 0.330   |
| 2-Nitroaniline              | 0.82  |            | 0.825   | Benzo(a)pyrene             | 0.33   |          | 0.330   |
| Dimethylphthalate           | 0.33  | υ 0        | 0.330   | Indeno(1,2,3-cd)pyrene     | 0.33   |          | 0.330   |
| Acenaphthylene              | 0.33  | o u        | 0.330   | Dibenzo(a,h)anthracene     | 0.33   |          | 0.330   |
|                             |       |            |         | Benzo(g,h,i)perylene       | 0.33   | ט כ      | 0.330   |

Page: 40 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1567

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|--|
| Nitrobenzene-D5      | 51         | 23 - 120 |  |  |  |  |  |
| 2-Fluorobiphenyl     | 55         | 30 - 115 |  |  |  |  |  |
| Terphenyl-D14        | 53         | 18 - 137 |  |  |  |  |  |
| Phenol-D5            | 60         | 24 - 113 |  |  |  |  |  |
| 2-Fluorophenol       | 48         | 25 - 121 |  |  |  |  |  |
| 2,4,6-Tribromophenol | 45         | 19 - 122 |  |  |  |  |  |

409832-003

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 41 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1567

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 108.695

UNITS: MG/KG

|           |        | Result | Reporting | Method    | Analysis |
|-----------|--------|--------|-----------|-----------|----------|
|           | Result | Qual   | Limit     | Reference | Date     |
| Arsenic   | 1.4    |        | 1.2       | 7060      | 12/10/93 |
| Aluminum  | 11000  | *N     | 22        | 6010      | 12/15/93 |
| Barium    | 410    | *N     | 22        | 6010      | 12/15/93 |
| Beryllium | 1.1    |        | 0.54      | 6010      | 12/15/93 |
| Cadmium   | 0.78   |        | 0.54      | 6010      | 12/15/93 |
| Chromium  | 15     | *      | 1.1       | 6010      | 12/15/93 |
| Copper    | 7.2    | *      | 2.7       | 6010      | 12/15/93 |
| Iron      | 14000  | *N     | 11        | 6010      | 12/15/93 |
| Nickel    | 15     | *      | 4.3       | 6010      | 12/15/93 |
| Lead      | 6.0    | N      | 0.35      | 7421      | 12/10/93 |
| Mercury   | 0.023  | U      | 0.023     | 7471      | 12/08/93 |
| Silver    | 1.1    | U      | 1.1       | 6010      | 12/15/93 |
| Zinc      | 18     | *      | 2.2       | 6010      | 12/15/93 |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL .
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 42 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

(512) 892-6684 Work Order: B3-11-282

SAMPLE ID: A1568

SAMPLE DATE: 11/22/93 16:23:00

SAMPLE MATRIX: SOIL

| Note               |     |        | Reporting    |       | Date     | Method    |   |  |
|--------------------|-----|--------|--------------|-------|----------|-----------|---|--|
| Test Name          | Ref | Result | <u>Limit</u> | Units | Analyzed | Reference | _ |  |
| 9071/418.1 for TPH |     | 100    | 10           | MG/KG | 12/07/93 | EPA9071   |   |  |
| Chromium VI        |     | 0.500  | 0.50         | MG/KG | 12/03/93 | EPA7196   |   |  |

409832-003

Page: 43 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1568
SAMPLE DATE: 11/22/93

SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

| <b></b>                  |           | Re | eporting |                           |        |      | Reportin |
|--------------------------|-----------|----|----------|---------------------------|--------|------|----------|
|                          | Result Qu | al | Limit    |                           | Result | Qual | Limit    |
| Chloromethane            | 10        | U  | 10       | 1,2-Dichloropropane       |        | 5    | U 5      |
| Bromomethane             | 10        | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U 5      |
| Vinyl chloride           | 10        | U  | 10       | Trichloroethene           |        | 5    | υ 5      |
| Chloroethane             | 10        | U  | 10       | Chlorodibromomethane      |        | 5    | T 5      |
| Methylene chloride       | 2.1       | J  | 10       | 1,1,2-Trichloroethane     |        | 5    | T 5      |
| Acetone                  | 7.0       | J  | 100      | Benzene                   |        | 5    | υ 5      |
| Carbon disulfide         | 5         | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | ບ 5      |
| 1,1-Dichloroethene       | 5         | บ  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U 10     |
| 1,1-Dichloroethane       | 5         | U  | 5        | Bromoform                 |        | 5    | ບ 5      |
| trans-1,2-Dichloroethene | 5         | U  | 5        | 2-Hexanone                | !      | 50   | ບ 50     |
| cis-1,2-Dichloroethene   | 5         | U  | 5        | 4-Methyl-2-pentanone      | !      | 50   | บ 50     |
| Chloroform               | 5         | U  | 5        | Tetrachloroethene         |        | 5    | υ 5      |
| 1,2-Dichloroethane       | 5         | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | T 5      |
| 2-Butanone               | 100       | U  | 100      | Toluene                   |        | 5    | T 5      |
| 1,1,1-Trichloroethane    | 2.7       | J  | 5        | Chlorobenzene             |        | 5    | T 5      |
| Carbon tetrachloride     | 5         | U  | 5        | Ethylbenzene              |        | 5    | T 5      |
| Vinyl acetate            | 10        | U  | 10       | Styrene                   |        | 5    | υ 5      |
| Dichlorobromomethane     | 5         | U  | 5        | Xylenes, total            |        | 5    | Ŭ 5      |

| Surrogates            | % Recovery | Limits   |  |  |  |  |
|-----------------------|------------|----------|--|--|--|--|
| TOLUENE-D8            | 101        | 81 - 117 |  |  |  |  |
| BROMOFLUOROBENZENE    | 98         | 74 - 121 |  |  |  |  |
| 1.2-DICHLOROETHANE-D4 | 100        | 70 - 120 |  |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 44 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001 409832-003 Work Order: B3-11-282

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1568

SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/10/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |         | Reporting |                            |        | F        | Reportin |
|-----------------------------|---------|-----------|----------------------------|--------|----------|----------|
| Re                          | sult Qu | al Limit  |                            | Result | Qual     | Limit    |
| Photo 1                     |         |           |                            | 0.22   |          |          |
| Phenol                      | 0.330   | U 0.330   | 2,6-Dinitrotoluene         | 0.330  |          | 0.330    |
| bis(2-Chloroethyl)ether     | 0.330   | U 0.330   | 3-Nitroaniline             | 0.82   | _        | 0.825    |
| 2-Chlorophenol              | 0.330   | บ 0.330   | Acenaphthene               | 0.330  |          | 0.330    |
| 1,3-Dichlorobenzene         | 0.330   | ช 0.330   | 2,4-Dinitrophenol          | 0.82   | -        | 0.825    |
| 1,4-Dichlorobenzene         | 0.330   | บ 0.330   | 4-Nitrophenol              | 0.829  | -        | 0.825    |
| Benzyl alcohol              | 0.330   | บ 0.330   | Dibenzofuran               | 0.330  | -        | 0.330    |
| 1,2-Dichlorobenzene         | 0.330   | บ 0.330   | 2,4-Dinitrotoluene         | 0.330  | -        | 0.330    |
| 2-Methylphenol              | 0.330   | บ 0.330   | Diethylphthalate           | 0.330  |          | 0.330    |
| bis(2-Chloroisopropyl)ether | 0.330   | บ 0.330   | 4-Chlorophenyl-phenylether |        | -        | 0.330    |
| 4-Methylphenol              | 0.330   | บ 0.330   | Fluorene                   | 0.330  | _        | 0.330    |
| N-Nitroso-di-n-propylamine  | 0.330   | U 0.330   | 4-Nitroaniline             | 0.825  | -        | 0.825    |
| Hexachloroethane            | 0.330   | υ 0.330   | 4,6-Dinitro-2-methylphenol |        |          | 0.825    |
| Nitrobenzene                | 0.330   | บ 0.330   | N-Nitrosodiphenylamine (1) |        |          | 0.330    |
| Isophorone                  | 0.330   | บ 0.330   | 4-Bromophenyl-phenylether  | 0.330  | ט כ      | 0.330    |
| 2-Nitrophenol               | 0.330   | U 0.330   | Hexachlorobenzene          | 0.330  | ט כ      | 0.330    |
| 2,4-Dimethylphenol          | 0.330   | บ 0.330   | Pentachlorophenol          | 0.82   | 5 U      | 0.825    |
| Benzoic Acid                | 0.330   | U 0.330   | Phenanthrene               | 0.330  | ט כ      | 0.330    |
| bis(2-Chloroethoxy)methane  | 0.330   | บ 0.330   | Anthracene                 | 0.330  | U C      | 0.330    |
| 2,4-Dichlorophenol          | 0.330   | U 0.330   | Di-n-butylphthalate        | 0.330  | ט כ      | 0.330    |
| 1,2,4-Trichlorobenzene      | 0.330   | U 0.330   | Fluoranthene               | 0.330  | ט כ      | 0.330    |
| Naphthalene                 | 0.330   | บ 0.330   | Pyrene                     | 0.330  | <b>U</b> | 0.330    |
| 4-Chloroaniline             | 0.330   | U 0.330   | Butylbenzylphthalate       | 0.330  | ט כ      | 0.330    |
| Hexachlorobutadiene         | 0.330   | U 0.330   | 3,3'-Dichlorobenzidine     | 0.330  | ט כ      | 0.330    |
| 4-Chloro-3-methylphenol     | 0.330   | U 0.330   | Benzo(a)anthracene         | 0.330  | ט כ      | 0.330    |
| 2-Methylnaphthalene         | 0.330   | บ 0.330   | Chrysene                   | 0.330  | ט כ      | 0.330    |
| Hexachlorocyclopentadiene   | 0.330   | บ 0.330   | bis(2-Ethylhexyl)phthalate | 0.330  | ט כ      | 0.330    |
| 2,4,6-Trichlorophenol       | 0.330   | บ 0.330   | Di-n-octylphthalate        | 0.330  | ט כ      | 0.330    |
| 2,4,5-Trichlorophenol       | 0.825   | บ 0.825   | Benzo(b)fluoranthene       | 0.330  | ט כ      | 0.330    |
| 2-Chloronaphthalene         | 0.330   | ช 0.330   | Benzo(k)fluoranthene       | 0.330  | ט כ      | 0.330    |
| 2-Nitroaniline              | 0.825   | ប 0.825   | Benzo(a)pyrene             | 0.330  | ט כ      | 0.330    |
| Dimethylphthalate           | 0.330   | U 0.330   | Indeno(1,2,3-cd)pyrene     | 0.330  | ט כ      | 0.330    |
| Acenaphthylene              | 0.330   | U 0.330   | Dibenzo(a,h)anthracene     | 0.330  | ט כ      | 0.330    |
|                             |         |           | Benzo(g,h,i)perylene       | 0.330  |          | 0.330    |
|                             |         |           |                            |        |          |          |

Page: 45 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE D: A1568
SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|--|
| Nitrobenzene-D5      | 45         | 23 - 120 |  |  |  |  |  |
| 2-Fluorobiphenyl     | 52         | 30 - 115 |  |  |  |  |  |
| Terphenyl-D14        | 47         | 18 - 137 |  |  |  |  |  |
| Phenol-D5            | 47         | 24 - 113 |  |  |  |  |  |
| 2-Fluorophenol       | 40         | 25 - 121 |  |  |  |  |  |
| 2,4,6-Tribromophenol | 40         | 19 - 122 |  |  |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 46 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1568
SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 102.040

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 4.7    |                | 1.1                | 7060                | 12/10/93         |
| Aluminum  | 12000  | *N             | 20                 | 6010                | 12/15/93         |
| Barium    | 190    | *N             | 20                 | 6010                | 12/15/93         |
| Beryllium | 1.2    |                | 0.51               | 6010                | 12/15/93         |
| Cadmium   | 0.88   |                | 0.51               | 6010                | 12/15/93         |
| Chromium  | 17     | *              | 1.0                | 6010                | 12/15/93         |
| Copper    | 11     | *              | 2.6                | 6010                | 12/15/93         |
| Iron      | 15000  | *N             | 10                 | 6010                | 12/15/93         |
| Nickel    | 26     | *              | 4.1                | 6010                | 12/15/93         |
| Lead      | 6.2    | N              | 0.33               | 7421                | 12/10/93         |
| Mercury   | 0.023  | U              | 0.023              | 7471                | 12/08/93         |
| Silver    | 0.56   | U              | 1.0                | 6010                | 12/15/93         |
| Zinc      | 27     | *              | 2.0                | 6010                | 12/15/93         |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 47 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684

Work Order: B3-11-282

SAMPLE ID: A1569

SAMPLE DATE: 11/22/93 16:23:00

SAMPLE MATRIX: SOIL

|                    | Note |        | Reporting |       | Date     | Method    |
|--------------------|------|--------|-----------|-------|----------|-----------|
| Test Name          | Ref  | Result | Limit     | Units | Analyzed | Reference |
| 9071/418.1 for TPH |      | 100    | 10        | MG/KG | 12/07/93 | EPA9071   |
| Chromium VI        |      | 0.500  | 0.50      | MG/KG | 12/03/93 | EPA7196   |

409832-003

Page: 48 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1569

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                          |            | Re | eporting |                           |        |      | Re | porting |
|--------------------------|------------|----|----------|---------------------------|--------|------|----|---------|
|                          | Result Qua | 1  | Limit    |                           | Result | Qual | •  | Limit   |
| Chloromethane            | 10         | U  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 10         | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 10         | U  | 10       | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane             | 10         | U  | 10       | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride       | 2.1        | J  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 9.4        | J  | 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         | 5          | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene       | 5          | U  | 5        | 2-Chloroethylvinyl ether  | •      | 10   | U  | 10      |
| 1,1-Dichloroethane       | 5          | U  | 5        | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene | 5          | U  | 5        | 2-Hexanone                | !      | 50   | U  | 50      |
| cis-1,2-Dichloroethene   | 5          | U  | 5        | 4-Methyl-2-pentanone      | !      | 50   | U  | 50      |
| Chloroform               | 5          | U  | 5        | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       | 5          | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 100        | U  | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    | 5.8        |    | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     | 5          | U  | 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 10         | U  | 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     | 5          | U  | 5        | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 99         | 81 - 117 |
| BROMOFLUOROBENZENE    | 95         | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 101        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 49 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1569
SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/10/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |      | Re   | eporting |                            |        | I    | Reporti |
|-----------------------------|------|------|----------|----------------------------|--------|------|---------|
| Re                          | sult | Qual | Limit    |                            | Result | Qual | Limit   |
|                             |      |      |          | 0.6.01.1                   | 0.330  |      | 0.330   |
| Phenol                      | 0.33 | -    | 0.330    | 2,6-Dinitrotoluene         | 0.33   |      | 0.825   |
| bis(2-Chloroethyl)ether     | 0.33 |      | 0.330    | 3-Nitroaniline             |        |      | 0.330   |
| 2-Chlorophenol              | 0.33 |      | 0.330    | Acenaphthene               | 0.330  |      |         |
| 1,3-Dichlorobenzene         | 0.33 |      | 0.330    | 2,4-Dinitrophenol          | 0.82   |      | 0.825   |
| 1,4-Dichlorobenzene         | 0.33 |      | 0.330    | 4-Nitrophenol              | 0.82   |      | 0.825   |
| Benzyl alcohol              | 0.33 |      | 0.330    | Dibenzofuran               | 0.330  | -    | 0.330   |
| 1,2-Dichlorobenzene         | 0.33 |      | 0.330    | 2,4-Dinitrotoluene         | 0.330  |      | 0.330   |
| 2-Methylphenol              | 0.33 |      | 0.330    | Diethylphthalate           | 0.330  |      | 0.330   |
| bis(2-Chloroisopropyl)ether | 0.33 |      | 0.330    | 4-Chlorophenyl-phenylether |        |      | 0.330   |
| 4-Methylphenol              | 0.33 | 0 U  | 0.330    | Fluorene                   | 0.330  |      | 0.330   |
| N-Nitroso-di-n-propylamine  | 0.33 | 0 U  | 0.330    | 4-Nitroaniline             | 0.82   | _    | 0.825   |
| Hexachloroethane            | 0.33 | 0 U  | 0.330    | 4,6-Dinitro-2-methylphenol |        |      | 0.825   |
| Nitrobenzene                | 0.33 | 0 U  | 0.330    | N-Nitrosodiphenylamine (1) |        |      | 0.330   |
| Isophorone                  | 0.33 | 0 U  | 0.330    | 4-Bromophenyl-phenylether  | 0.330  |      | 0.330   |
| 2-Nitrophenol               | 0.33 | 0 U  | 0.330    | Hexachlorobenzene          | 0.330  |      | 0.330   |
| 2,4-Dimethylphenol          | 0.33 | 0 υ  | 0.330    | Pentachlorophenol          | 0.82   | 5 U  | 0.825   |
| Benzoic Acid                | 0.33 | 0 υ  | 0.330    | Phenanthrene               | 0.330  |      | 0.330   |
| bis(2-Chloroethoxy)methane  | 0.33 | 0 U  | 0.330    | Anthracene                 | 0.33   | ט כ  | 0.330   |
| 2,4-Dichlorophenol          | 0.33 | 0 υ  | 0.330    | Di-n-butylphthalate        | 0.33   | ט כ  | 0.330   |
| 1,2,4-Trichlorobenzene      | 0.33 | 0 U  | 0.330    | Fluoranthene               | 0.33   |      | 0.330   |
| Naphthalene                 | 0.33 | 0 υ  | 0.330    | Pyrene                     | 0.33   | ט כ  | 0.330   |
| 4-Chloroaniline             | 0.33 | o u  | 0.330    | Butylbenzylphthalate       | 0.33   | ט כ  | 0.330   |
| Hexachlorobutadiene         | 0.33 | 0 υ  | 0.330    | 3,3'-Dichlorobenzidine     | 0.33   | ט כ  | 0.330   |
| 4-Chloro-3-methylphenol     | 0.33 | υ 0  | 0.330    | Benzo(a)anthracene         | 0.33   | ט כ  | 0.330   |
| 2-Methylnaphthalene         | 0.33 | 0 U  | 0.330    | Chrysene                   | 0.33   | ט כ  | 0.330   |
| Hexachlorocyclopentadiene   | 0.33 | 0 υ  | 0.330    | bis(2-Ethylhexyl)phthalate | 0.33   | ט כ  | 0.330   |
| 2,4,6-Trichlorophenol       | 0.33 | 0 υ  | 0.330    | Di-n-octylphthalate        | 0.33   | ט כ  | 0.330   |
| 2,4,5-Trichlorophenol       | 0.82 | 5 U  | 0.825    | Benzo(b)fluoranthene       | 0.33   | ט כ  | 0.330   |
| 2-Chloronaphthalene         | 0.33 | 0 U  | 0.330    | Benzo(k)fluoranthene       | 0.33   | บ (  | 0.330   |
| 2-Nitroaniline              | 0.82 | 5 U  | 0.825    | Benzo(a)pyrene             | 0.33   | ט כ  | 0.330   |
| Dimethylphthalate           | 0.33 |      | 0.330    | Indeno(1,2,3-cd)pyrene     | 0.33   | ט כ  | 0.330   |
| Acenaphthylene              | 0.33 |      | 0.330    | Dibenzo(a,h)anthracene     | 0.33   | ס כ  | 0.330   |
| - <del>-</del>              |      |      |          | Benzo(g,h,i)perylene       | 0.33   | ט כ  | 0.330   |

Page: 50 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1569

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|
| Nitrobenzene-D5      | 45         | 23 - 120 |  |  |  |  |
| 2-Fluorobiphenyl     | 53         | 30 - 115 |  |  |  |  |
| Terphenyl-D14        | 48         | 18 - 137 |  |  |  |  |
| Phenol-D5            | 50         | 24 - 113 |  |  |  |  |
| 2-Fluorophenol       | 41         | 25 - 121 |  |  |  |  |
| 2,4,6-Tribromophenol | 41         | 19 - 122 |  |  |  |  |

409832-003

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 51 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003

(512) 892-6684

Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1569

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 108.695

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 3.7    |                | 0.98               | 7060                | 12/10/93         |
| Aluminum  | 10000  | *N             | 22                 | 6010                | 12/15/93         |
| Barium    | 22     | U*N            | 22                 | 6010                | 12/15/93         |
| Beryllium | 1.0    |                | 0.54               | 6010                | 12/15/93         |
| Cadmium   | 0.59   |                | 0.54               | 6010                | 12/15/93         |
| Chromium  | 13     | *              | 1.1                | 6010                | 12/15/93         |
| Copper    | 11     | *              | 2.7                | 6010                | 12/15/93         |
| Iron      | 12000  | *N             | 11                 | 6010                | 12/15/93         |
| Nickel    | 23     | *              | 4.3                | 6010                | 12/15/93         |
| Lead      | 5.8    | N              | 0.29               | 7421                | 12/10/93         |
| Mercury   | 0.024  | υ              | 0.024              | 7471                | 12/08/93         |
| Silver    | 0.45   |                | 1.1                | 6010                | 12/15/93         |
| Zinc      | 24     | *              | 2.2                | 6010                | 12/15/93         |
|           |        |                |                    |                     |                  |

## Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 52 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

SAMPLE ID: A1570

SAMPLE DATE: 11/22/93 16:30:00

SAMPLE MATRIX: SOIL

|                    | Note |        | Reporting |       | Date     | Method    |
|--------------------|------|--------|-----------|-------|----------|-----------|
| Test Name          | Ref  | Result | Limit     | Units | Analyzed | Reference |
| 9071/418.1 for TPH |      | 100    | 10        | MG/KG | 12/09/93 | EPA9071   |
| Chromium VI        |      | 0.500  | 0.50      | MG/KG | 12/03/93 | EPA7196   |

409832-003

Page: 53 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1570

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

| ,                        |            | Re | eporting |                           |        |      | Re | porting |
|--------------------------|------------|----|----------|---------------------------|--------|------|----|---------|
|                          | Result Qua | 1  | Limit    |                           | Result | Qua] | L  | Limit   |
| Chloromethane            | 10         | U  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 10         | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 10         | U  | 10       | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane             | 10         | U  | 10       | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride       | 2.1        | J  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 7.3        | J  | 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         | 5          | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene       | 5          | U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| 1,1-Dichloroethane       | 5          | U  | 5        | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene | 5          | U  | 5        | 2-Hexanone                |        | 50   | U  | 50      |
| cis-1,2-Dichloroethene   | 5          | U  | 5        | 4-Methyl-2-pentanone      |        | 50   | U  | 50      |
| Chloroform               | 5          | U  | 5        | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       | 5          | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 100        | U  | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    | 5.1        |    | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     | 5          | U  | 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 10         | U  | 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     | 5          | U  | 5        | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 100        | 81 - 117 |
| BROMOFLUOROBENZENE    | 98         | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 100        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 54 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

## IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1570
SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/10/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                | ,.055 | Re       | porting |                            |        | Re    | eporti |
|-----------------------------|-------|----------|---------|----------------------------|--------|-------|--------|
| •                           | esult |          | Limit   |                            | Result | Qual  | Limit  |
|                             |       |          |         |                            |        |       |        |
| Phenol                      | 0.330 | <b>U</b> | 0.330   | 2,6-Dinitrotoluene         | 0.330  | ט כ   | 0.330  |
| bis(2-Chloroethyl)ether     | 0.330 | υ        | 0.330   | 3-Nitroaniline             | 0.825  | 5 U ( | 0.825  |
| 2-Chlorophenol              | 0.330 |          | 0.330   | Acenaphthene               | 0.330  | ט ס ( | 0.330  |
| 1,3-Dichlorobenzene         | 0.330 | <b>U</b> | 0.330   | 2,4-Dinitrophenol          | 0.825  | 5 U ( | 0.825  |
| 1,4-Dichlorobenzene         | 0.330 | ט כ      | 0.330   | 4-Nitrophenol              | 0.829  | 5 U ( | 0.825  |
| Benzyl alcohol              | 0.330 | บ บ      | 0.330   | Dibenzofuran               | 0.330  |       | 0.330  |
| 1,2-Dichlorobenzene         | 0.330 | บ (      | 0.330   | 2,4-Dinitrotoluene         | 0.330  |       | 0.330  |
| 2-Methylphenol              | 0.330 | ט כ      | 0.330   | Diethylphthalate           | 0.330  | ט ס   | 0.330  |
| bis(2-Chloroisopropyl)ether | 0.330 | ט כ      | 0.330   | 4-Chlorophenyl-phenylether | 0.330  |       | 0.330  |
| 4-Methylphenol              | 0.330 | ט כ      | 0.330   | Fluorene                   | 0.330  | ט ס ( | 0.330  |
| N-Nitroso-di-n-propylamine  | 0.330 | ט כ      | 0.330   | 4-Nitroaniline             | 0.825  |       | 0.825  |
| Hexachloroethane            | 0.330 | ט כ      | 0.330   | 4,6-Dinitro-2-methylphenol | 0.825  | _     | 0.825  |
| Nitrobenzene                | 0.330 | ט כ      | 0.330   | N-Nitrosodiphenylamine (1) | 0.330  |       | 0.330  |
| Isophorone                  | 0.330 | ט כ      | 0.330   | 4-Bromophenyl-phenylether  | 0.330  | ט כ   | 0.330  |
| 2-Nitrophenol               | 0.330 | ט כ      | 0.330   | Hexachlorobenzene          | 0.330  |       | 0.330  |
| 2,4-Dimethylphenol          | 0.330 | ט כ      | 0.330   | Pentachlorophenol          | 0.82   | 5 υ   | 0.825  |
| Benzoic Acid                | 0.330 | ט כ      | 0.330   | Phenanthrene               | 0.330  | _     | 0.330  |
| bis(2-Chloroethoxy)methane  | 0.330 | ט כ      | 0.330   | Anthracene                 | 0.330  |       | 0.330  |
| 2,4-Dichlorophenol          | 0.330 | ט כ      | 0.330   | Di-n-butylphthalate        | 0.330  |       | 0.330  |
| 1,2,4-Trichlorobenzene      | 0.330 | υ σ      | 0.330   | Fluoranthene               | 0.330  | ט כ   | 0.330  |
| Naphthalene                 | 0.330 | ט כ      | 0.330   | Pyrene                     | 0.330  | יט כ  | 0.330  |
| 4-Chloroaniline             | 0.330 | ט כ      | 0.330   | Butylbenzylphthalate       | 0.330  | י ט כ | 0.330  |
| Hexachlorobutadiene         | 0.330 | υ σ      | 0.330   | 3,3'-Dichlorobenzidine     | 0.330  | ט כ   | 0.330  |
| 4-Chloro-3-methylphenol     | 0.330 |          | 0.330   | Benzo(a)anthracene         | 0.330  | ט כ   | 0.330  |
| 2-Methylnaphthalene         | 0.330 |          | 0.330   | Chrysene                   | 0.330  | י ט   | 0.330  |
| Hexachlorocyclopentadiene   | 0.330 |          | 0.330   | bis(2-Ethylhexyl)phthalate | 0.330  | ט ס   | 0.330  |
| 2,4,6-Trichlorophenol       | 0.330 |          | 0.330   | Di-n-octylphthalate        | 0.330  | ט כ   | 0.330  |
| 2,4,5-Trichlorophenol       | 0.825 |          | 0.825   | Benzo(b)fluoranthene       | 0.33   | υ 0   | 0.330  |
| 2-Chloronaphthalene         | 0.330 |          | 0.330   | Benzo(k)fluoranthene       | 0.33   | U 0   | 0.330  |
| 2-Nitroaniline              | 0.825 |          | 0.825   | Benzo(a)pyrene             | 0.33   | U 0   | 0.330  |
| Dimethylphthalate           | 0.330 |          | 0.330   | Indeno(1,2,3-cd)pyrene     | 0.33   | ט ס   | 0.330  |
| Acenaphthylene              | 0.330 |          | 0.330   | Dibenzo(a,h)anthracene     | 0.33   | ס ס   | 0.330  |
| •                           |       |          |         | Benzo(g,h,i)perylene       | 0.33   | υ 0   | 0.330  |
|                             |       |          |         | 13                         |        |       | ľ      |

Page: 55 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1570

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 47         | 23 - 120 |
| 2-Fluorobiphenyl     | 52         | 30 - 115 |
| Terphenyl-D14        | 47         | 18 - 137 |
| Phenol-D5            | 68         | 24 - 113 |
| 2-Fluorophenol       | 50         | 25 - 121 |
| 2.4.6-Tribromophenol | 55         | 19 - 122 |

409832-003

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
    - D compound identified at a secondary dilution factor
    - E concentration exceeds calibration range

Page: 56 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003

(512) 892-6684 Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1570

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 85.4700

UNITS: MG/KG

| <br>        |        |                |                    |                     |                  |
|-------------|--------|----------------|--------------------|---------------------|------------------|
|             | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
| <br>Arsenic | 2.8    |                | 0.97               | 7060                | 12/10/93         |
| Aluminum    | 10000  | *N             | 17                 | 6010                | 12/15/93         |
| Barium      | 17     | U*N            | 17                 | 6010                | 12/15/93         |
| Beryllium   | 1.2    |                | 0.43               | 6010                | 12/15/93         |
| Cadmium     | 1.0    |                | 0.43               | 6010                | 12/15/93         |
| Chromium    | 21     | *              | 0.85               | 6010                | 12/15/93         |
| Copper      | 10     | *              | 2.1                | 6010                | 12/15/93         |
| Iron        | 20000  | *N             | 8.5                | 6010                | 12/15/93         |
| Nickel      | 24     | *              | 3.4                | 6010                | 12/15/93         |
| Lead        | 3.8    | N              | 0.29               | 7421                | 12/10/93         |
| Mercury     | 0.022  | U              | 0.022              | 7471                | 12/13/93         |
| Silver      | 0.85   | บ              | 0.85               | 6010                | 12/15/93         |
| Zinc        | 30     | *              | 1.7                | 6010                | 12/15/93         |
|             |        |                |                    |                     |                  |

## Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 57 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

SAMPLE ID: A1571

SAMPLE DATE: 11/22/93 16:48:00

SAMPLE MATRIX: SOIL

|                    | Note |        | Reporting |       | Date            | Method    |  |
|--------------------|------|--------|-----------|-------|-----------------|-----------|--|
| Test Name          | Ref  | Result | Limit     | Units | <u>Analyzed</u> | Reference |  |
| 9071/418.1 for TPH |      | 100    | 10        | MG/KG | 12/07/93        | EPA9071   |  |
| Chromium VI        |      | 0.500  | 0.50      | MG/KG | 12/03/93        | EPA7196   |  |

409832-003

Page: 58 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1571

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

| 23,33                    |          | F          | eporting |                           |        |      | Rep | porting |
|--------------------------|----------|------------|----------|---------------------------|--------|------|-----|---------|
|                          | Result ( | Qual       | Limit    |                           | Result | Qual | LI  | Limit   |
| Chloromethane            | 10       | ט ט        | 10       | 1,2-Dichloropropane       |        | 5    | U   | 5       |
| Bromomethane             | 10       | ס נ        | 10       | trans-1,3-Dichloropropene |        | 5    | U   | 5       |
| Vinyl chloride           | 10       | <b>0</b> 0 | 10       | Trichloroethene           |        | 5    | U   | 5       |
| Chloroethane             | 10       | ט כ        | 10       | Chlorodibromomethane      |        | 5    | U   | 5       |
| Methylene chloride       | 2.:      | 2 J        | 10       | 1,1,2-Trichloroethane     |        | 5    | U   | 5       |
| Acetone                  | 6.3      | 2 J        | 190      | Benzene                   |        | 5    | U   | 5       |
| Carbon disulfide         | !        | 5 t        | 5        | cis-1,3-Dichloropropene   |        | 5    | U   | 5       |
| 1,1-Dichloroethene       | !        | 5 t        | 5        | 2-Chloroethylvinyl ether  |        | 10   | U   | 10      |
| 1,1-Dichloroethane       | !        | 5 t        | 5        | Bromoform                 |        | 5    | U   | 5       |
| trans-1,2-Dichloroethene | !        | 5 t        | 5        | 2-Hexanone                |        | 50   | U   | 50      |
| cis-1,2-Dichloroethene   | !        | 5 t        | 5        | 4-Methyl-2-pentanone      |        | 50   | U   | 50      |
| Chloroform               | !        | 5 t        | 5        | Tetrachloroethene         |        | 5    | U   | 5       |
| 1,2-Dichloroethane       | !        | 5 t        | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U   | 5       |
| 2-Butanone               | 10       | ס נ        | 100      | Toluene                   |        | 5    | U   | 5       |
| 1,1,1-Trichloroethane    | 5.3      | 2          | 5        | Chlorobenzene             |        | 5    | U   | 5       |
| Carbon tetrachloride     |          | 5 t        | r 5      | Ethylbenzene              |        | 5    | U   | 5       |
| Vinyl acetate            | 10       | 0 τ        | 10       | Styrene                   |        | 5    | U   | 5       |
| Dichlorobromomethane     | :        | 5 t        | 7 5      | Xylenes, total            |        | 5    | U   | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 100        | 81 - 117 |
| BROMOFLUOROBENZENE    | 100        | 74 - 121 |
| 1.2-DICHLOROETHANE-D4 | 100        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 59 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1571
SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/11/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |       | Re       | eporting |                            |        | F        | Reporti |
|-----------------------------|-------|----------|----------|----------------------------|--------|----------|---------|
| Re                          | sult  | Qual     | Limit    |                            | Result | Qual     | Limit   |
|                             |       |          | •        |                            |        | _        |         |
| Phenol                      | 0.330 |          | 0.330    | 2,6-Dinitrotoluene         | 0.330  | _        | 0.330   |
| bis(2-Chloroethyl)ether     | 0.330 |          | 0.330    | 3-Nitroaniline             | 0.82   | -        | 0.825   |
| 2-Chlorophenol              | 0.330 | -        | 0.330    | Acenaphthene               | 0.330  | _        | 0.330   |
| 1,3-Dichlorobenzene         | 0.330 |          | 0.330    | 2,4-Dinitrophenol          | 0.82   | -        | 0.825   |
| 1,4-Dichlorobenzene         | 0.330 | <b>U</b> | 0.330    | 4-Nitrophenol              | 0.82   |          | 0.825   |
| Benzyl alcohol              | 0.330 |          | 0.330    | Dibenzofuran               | 0.330  | -        | 0.330   |
| 1,2-Dichlorobenzene         | 0.330 | U (      | 0.330    | 2,4-Dinitrotoluene         | 0.330  |          | 0.330   |
| 2-Methylphenol              | 0.330 | ט כ      | 0.330    | Diethylphthalate           | 0.330  | ט כ      | 0.330   |
| bis(2-Chloroisopropyl)ether | 0.330 | U (      | 0.330    | 4-Chlorophenyl-phenylether | 0.330  | ט כ      | 0.330   |
| 4-Methylphenol              | 0.330 | U (      | 0.330    | Fluorene                   | 0.330  | ט כ      | 0.330   |
| N-Nitroso-di-n-propylamine  | 0.330 | <b>U</b> | 0.330    | 4-Nitroaniline             | 0.82   | 5 U      | 0.825   |
| Hexachloroethane            | 0.330 | <b>U</b> | 0.330    | 4,6-Dinitro-2-methylphenol | 0.82   | 5 U      | 0.825   |
| Nitrobenzene                | 0.330 | υ (      | 0.330    | N-Nitrosodiphenylamine (1) | 0.330  | ט כ      | 0.330   |
| Isophorone                  | 0.330 | ט כ      | 0.330    | 4-Bromophenyl-phenylether  | 0.330  | ט כ      | 0.330   |
| 2-Nitrophenol               | 0.330 | υ (      | 0.330    | Hexachlorobenzene          | 0.330  | ט כ      | 0.330   |
| 2,4-Dimethylphenol          | 0.330 | ט כ      | 0.330    | Pentachlorophenol          | 0.82   | 5 U      | 0.825   |
| Benzoic Acid                | 0.330 | <b>U</b> | 0.330    | Phenanthrene               | 0.330  | ט כ      | 0.330   |
| bis(2-Chloroethoxy)methane  | 0.330 | υ (      | 0.330    | Anthracene                 | 0.330  | ט כ      | 0.330   |
| 2,4-Dichlorophenol          | 0.330 | ט כ      | 0.330    | Di-n-butylphthalate        | 0.330  | ט כ      | 0.330   |
| 1,2,4-Trichlorobenzene      | 0.330 | ט כ      | 0.330    | Fluoranthene               | 0.330  | ט כ      | 0.330   |
| Naphthalene                 | 0.330 | ט כ      | 0.330    | Pyrene                     | 0.330  | ט כ      | 0.330   |
| 4-Chloroaniline             | 0.330 | ט כ      | 0.330    | Butylbenzylphthalate       | 0.330  | ט כ      | 0.330   |
| Hexachlorobutadiene         | 0.330 | ט כ      | 0.330    | 3,3'-Dichlorobenzidine     | 0.330  | ט כ      | 0.330   |
| 4-Chloro-3-methylphenol     | 0.330 | ט כ      | 0.330    | Benzo(a)anthracene         | 0.330  | ט כ      | 0.330   |
| 2-Methylnaphthalene         | 0.330 | ט כ      | 0.330    | Chrysene                   | 0.330  | ט כ      | 0.330   |
| Hexachlorocyclopentadiene   | 0.330 | ט כ      | 0.330    | bis(2-Ethylhexyl)phthalate | 0.330  | ט כ      | 0.330   |
| 2,4,6-Trichlorophenol       | 0.330 | ט כ      | 0.330    | Di-n-octylphthalate        | 0.33   | ט כ      | 0.330   |
| 2,4,5-Trichlorophenol       | 0.825 | <b>U</b> | 0.825    | Benzo(b)fluoranthene       | 0.330  | υ σ      | 0.330   |
| 2-Chloronaphthalene         | 0.330 | ט כ      | 0.330    | Benzo(k)fluoranthene       | 0.330  | ט כ      | 0.330   |
| 2-Nitroaniline              | 0.825 | 5 U      | 0.825    | Benzo(a)pyrene             | 0.330  | ט כ      | 0.330   |
| Dimethylphthalate           | 0.330 | ט כ      | 0.330    | Indeno(1,2,3-cd)pyrene     | 0.330  | ט כ      | 0.330   |
| Acenaphthylene              | 0.330 | ט כ      | 0.330    | Dibenzo(a,h)anthracene     | 0.330  | ט כ      | 0.330   |
|                             |       |          |          | Benzo(g,h,i)perylene       | 0.330  | <b>U</b> | 0.330   |

Page: 60 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1571

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 52         | 23 - 120 |
| 2-Fluorobiphenyl     | 66         | 30 - 115 |
| Terphenyl-D14        | 66         | 18 - 137 |
| Phenol-D5            | 59         | 24 - 113 |
| 2-Fluorophenol       | 52         | 25 - 121 |
| 2.4.6-Tribromophenol | 55         | 19 - 122 |

409832-003

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{\mathtt{B}}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 61 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1571
SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 102.040

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 5.5    |                | 0.89               | 7060                | 12/10/93         |
| Aluminum  | 15000  | *N             | 20                 | 6010                | 12/15/93         |
| Barium    | 18     | *N             | 20                 | 6010                | 12/15/93         |
| Beryllium | 1.5    |                | 0.51               | 6010                | 12/15/93         |
| Cadmium   | 0.95   |                | 0.51               | 6010                | 12/15/93         |
| Chromium  | 17     | *              | 1.0                | 6010                | 12/15/93         |
| Copper    | 16     | *              | 2.6                | 6010                | 12/15/93         |
| Iron      | 13000  | *N             | 10                 | 6010                | 12/15/93         |
| Nickel    | 28     | *              | 4.1                | 6010                | 12/15/93         |
| Lead      | 9.9    | N              | 1.1                | 7421                | 12/10/93         |
| Mercury   | 0.026  | U              | 0.026              | 7471                | 12/08/93         |
| Silver    | 1.0    | U              | 1.0                | 6010                | 12/15/93         |
| Zinc      | 32     | *              | 2.0                | 6010                | 12/15/93         |

## Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 62 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

SAMPLE ID: A1572

SAMPLE DATE: 11/22/93 16:58:00

SAMPLE MATRIX: SOIL

|                    | Note |        | Reporting |       | Date            | Method    |  |
|--------------------|------|--------|-----------|-------|-----------------|-----------|--|
| Test Name          | Ref  | Result | Limit     | Units | <u>Analyzed</u> | Reference |  |
| 9071/418.1 for TPH |      | 100    | 10        | MG/KG | 12/07/93        | EPA9071   |  |
| Chromium VI        |      | 0.500  | 0.50      | MG/KG | 12/03/93        | EPA7196   |  |

409832-003

Page: 63 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1572

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 1.0

UNITS: UG/KG

|                          |        | P    | eporting |                           |        |      | Re | portin |
|--------------------------|--------|------|----------|---------------------------|--------|------|----|--------|
|                          | Result | Qual | Limit    |                           | Result | Qua. | 1  | Limit  |
| Chloromethane            | 1      | o u  | 10       | 1,2-Dichloropropane       |        | 5    | บ  | 5      |
| Bromomethane             | 1      | 0 0  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5      |
| Vinyl chloride           | 1      | 0 υ  | 10       | Trichloroethene           |        | 5    | U  | 5      |
| Chloroethane             | 1      | o u  | 10       | Chlorodibromomethane      |        | 5    | U  | 5      |
| Methylene chloride       | 2.     | 1 J  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5      |
| Acetone                  | 6.     | 1 5  | 100      | Benzene                   |        | 5    | U  | 5      |
| Carbon disulfide         |        | 5 U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5      |
| 1,1-Dichloroethene       |        | 5 U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10     |
| 1,1-Dichloroethane       |        | 5 U  | 5        | Bromoform                 |        | 5    | U  | 5      |
| trans-1,2-Dichloroethene |        | 5 U  | 5        | 2-Hexanone                | !      | 50   | Ū  | 50     |
| cis-1,2-Dichloroethene   |        | 5 U  | 5        | 4-Methyl-2-pentanone      |        | 50   | U  | 50     |
| Chloroform               |        | 5 U  | 5        | Tetrachloroethene         |        | 5    | U  | 5      |
| 1,2-Dichloroethane       |        | 5 U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5      |
| 2-Butanone               | 10     | υ 0  | 100      | Toluene                   |        | 5    | U  | 5      |
| 1,1,1-Trichloroethane    | 5.     | 3    | 5        | Chlorobenzene             |        | 5    | U  | 5      |
| Carbon tetrachloride     |        | 5 U  | 5        | Ethylbenzene              |        | 5    | U  | 5      |
| Vinyl acetate            | 1      | 0 υ  | 10       | Styrene                   |        | 5    | U  | 5      |
| Dichlorobromomethane     |        | 5 U  | 5        | Xylenes, total            |        | 5    | U  | 5      |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 100        | 81 - 117 |
| BROMOFLUOROBENZENE    | 98         | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 102        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 64 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

## IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1572 SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/10/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG               |         | Re         | eporting |                            |        | 1    | Reporti |
|----------------------------|---------|------------|----------|----------------------------|--------|------|---------|
|                            | Result  | Qual       | Limit    |                            | Result | Qual | Limit   |
|                            |         |            |          |                            |        |      |         |
| Phenol                     | 0.33    | -          | 0.330    | 2,6-Dinitrotoluene         | 0.330  | -    | 0.330   |
| bis(2-Chloroethyl)ether    | 0.33    |            | 0.330    | 3-Nitroaniline             | 0.82   | -    | 0.825   |
| 2-Chlorophenol             | 0.33    |            | 0.330    | Acenaphthene               | 0.330  |      | 0.330   |
| 1,3-Dichlorobenzene        | 0.33    |            | 0.330    | 2,4-Dinitrophenol          | 0.82   |      | 0.825   |
| 1,4-Dichlorobenzene        | 0.33    |            | 0.330    | 4-Nitrophenol              | 0.82   |      | 0.825   |
| Benzyl alcohol             | 0.33    |            | 0.330    | Dibenzofuran               | 0.33   |      | 0.330   |
| 1,2-Dichlorobenzene        | 0.33    |            | 0.330    | 2,4-Dinitrotoluene         | 0.33   |      | 0.330   |
| 2-Methylphenol             | 0.33    |            | 0.330    | Diethylphthalate           | 0.330  |      | 0.330   |
| bis(2-Chloroisopropyl)ethe | er 0.33 | ט כ        | 0.330    | 4-Chlorophenyl-phenylether |        |      | 0.330   |
| 4-Methylphenol             | 0.33    |            | 0.330    | Fluorene                   | 0.330  | ט כ  | 0.330   |
| N-Nitroso-di-n-propylamine | e 0.33  | ט כ        | 0.330    | 4-Nitroaniline             | 0.82   | _    | 0.825   |
| Hexachloroethane           | 0.33    | ט כ        | 0.330    | 4,6-Dinitro-2-methylphenol | 0.82   | 5 U  | 0.825   |
| Nitrobenzene               | 0.33    | ט כ        | 0.330    | N-Nitrosodiphenylamine (1) | 0.33   | ט כ  | 0.330   |
| Isophorone                 | 0.33    | ט כ        | 0.330    | 4-Bromophenyl-phenylether  | 0.33   | ט כ  | 0.330   |
| 2-Nitrophenol              | 0.33    | ט כ        | 0.330    | Hexachlorobenzene          | 0.33   | ט כ  | 0.330   |
| 2,4-Dimethylphenol         | 0.33    | ט כ        | 0.330    | Pentachlorophenol          | 0.82   | 5 U  | 0.825   |
| Benzoic Acid               | 0.33    | ט כ        | 0.330    | Phenanthrene               | 0.33   | ט כ  | 0.330   |
| bis(2-Chloroethoxy)methane | e 0.33  | ט כ        | 0.330    | Anthracene                 | 0.33   | ט כ  | 0.330   |
| 2,4-Dichlorophenol         | 0.33    | ט כ        | 0.330    | Di-n-butylphthalate        | 0.33   | ט כ  | 0.330   |
| 1,2,4-Trichlorobenzene     | 0.33    | ט כ        | 0.330    | Fluoranthene               | 0.33   | ט כ  | 0.330   |
| Naphthalene                | 0.33    | ט כ        | 0.330    | Pyrene                     | 0.33   | ט כ  | 0.330   |
| 4-Chloroaniline            | 0.33    | ט כ        | 0.330    | Butylbenzylphthalate       | 0.330  | ט כ  | 0.330   |
| Hexachlorobutadiene        | 0.33    | ט כ        | 0.330    | 3,3'-Dichlorobenzidine     | 0.330  | ט כ  | 0.330   |
| 4-Chloro-3-methylphenol    | 0.33    | ט כ        | 0.330    | Benzo(a)anthracene         | 0.33   | ט כ  | 0.330   |
| 2-Methylnaphthalene        | 0.33    | <b>U</b> C | 0.330    | Chrysene                   | 0.33   | ט כ  | 0.330   |
| Hexachlorocyclopentadiene  | 0.33    | ט כ        | 0.330    | bis(2-Ethylhexyl)phthalate | 0.33   | ט כ  | 0.330   |
| 2,4,6-Trichlorophenol      | 0.33    | ט כ        | 0.330    | Di-n-octylphthalate        | 0.33   | ט כ  | 0.330   |
| 2,4,5-Trichlorophenol      | 0.82    | 5 U        | 0.825    | Benzo(b)fluoranthene       | 0.33   | υ σ  | 0.330   |
| 2-Chloronaphthalene        | 0.33    | ט כ        | 0.330    | Benzo(k)fluoranthene       | 0.33   | ט כ  | 0.330   |
| 2-Nitroaniline             | 0.82    | 5 ซ        | 0.825    | Benzo(a)pyrene             | 0.33   | ט כ  | 0.330   |
| Dimethylphthalate          | 0.33    | ט כ        | 0.330    | Indeno(1,2,3-cd)pyrene     | 0.33   | ט כ  | 0.330   |
| Acenaphthylene             | 0.33    | ט כ        | 0.330    | Dibenzo(a,h)anthracene     | 0.33   | ט כ  | 0.330   |
|                            |         |            |          | Benzo(g,h,i)perylene       | 0.33   | ט כ  | 0.330   |
|                            |         |            |          |                            |        |      |         |

Page: 65 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1572

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 41         | 23 - 120 |
| 2-Fluorobiphenyl     | 47         | 30 - 115 |
| Terphenyl-D14        | 58         | 18 - 137 |
| Phenol-D5            | 68         | 24 - 113 |
| 2-Fluorophenol       | 47         | 25 - 121 |
| 2,4,6-Tribromcphenol | 55         | 19 - 122 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 66 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1572 SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 102.040

UNITS: MG/KG

| <br>      |        |                |                    |                     |                  |
|-----------|--------|----------------|--------------------|---------------------|------------------|
|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
| Arsenic   | 2.6    |                | 1.1                | 7060                | 12/10/93         |
| Aluminum  | 9700   | *N             | 20                 | 6010                | 12/15/93         |
| Barium    | 25     | *N             | 20                 | 6010                | 12/15/93         |
| Beryllium | 1.2    |                | 0.51               | 6010                | 12/15/93         |
| Cadmium   | 0.51   | υ              | 0.51               | 6010                | 12/15/93         |
| Chromium  | 14     | *              | 1.0                | 6010                | 12/15/93         |
| Copper    | 16     | *              | 2.6                | 6010                | 12/15/93         |
| Iron      | 14000  | *N             | 10                 | 6010                | 12/15/93         |
| Nickel    | 21     | *              | 4.1                | 6010                | 12/15/93         |
| Lead      | 5.0    | N              | 0.33               | 7421                | 12/10/93         |
| Mercury   | 0.023  | U              | 0.023              | 7471                | 12/08/93         |
| Silver    | 1.0    | U              | 1.0                | 6010                | 12/15/93         |
| Zinc      | 22     | *              | 2.0                | 6010                | 12/15/93         |
|           |        |                |                    |                     |                  |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA < 0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 67 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684

Work Order: B3-11-282

SAMPLE ID: A1573

SAMPLE DATE: 11/22/93 17:15:00

SAMPLE MATRIX: SOIL

|                    | Note |        | Reporting |       | Date            |           |
|--------------------|------|--------|-----------|-------|-----------------|-----------|
| Test Name          | Ref  | Result | Limit     | Units | <u>Analyzed</u> | Reference |
| 9071/418.1 for TPH |      | 100    | 10        | MG/KG | 12/07/93        | EPA9071   |
| Chromium VI        |      | 0.500  | 0.50      | MG/KG | 12/03/93        | EPA7196   |

409832-003

Page: 68 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1573

SAMPLE DATE: 11/22/93 SAMPLE MATRIX: SOIL ANALYSIS DATE: 12/02/93 DILUTION FACTOR: 1.0

UNITS: UG/KG

|                          |        |      | Reporting  |                           |        |     | R€ | eporting |
|--------------------------|--------|------|------------|---------------------------|--------|-----|----|----------|
|                          | Result | Qual | Limit      |                           | Result | Qua | 1  | Limit    |
| Chloromethane            | :      | 10   | U 10       | 1,2-Dichloropropane       |        | 5   | U  | 5        |
| Bromomethane             |        | 10   | U 10       | trans-1,3-Dichloropropene |        | 5   | U  | 5        |
| Vinyl chloride           | :      | 10   | U 10       | Trichloroethene           |        | 5   | U  | 5        |
| Chloroethane             |        | 10   | U 10       | Chlorodibromomethane      |        | 5   | U  | 5        |
| Methylene chloride       | 2      | . 0  | J 10       | 1,1,2-Trichloroethane     |        | 5   | U  | 5        |
| Acetone                  | 5      | . 7  | J 100      | Benzene                   |        | 5   | U  | 5        |
| Carbon disulfide         |        | 5    | <b>y</b> 5 | cis-1,3-Dichloropropene   |        | 5   | U  | 5        |
| 1,1-Dichloroethene       |        | 5    | <b>U</b> 5 | 2-Chloroethylvinyl ether  |        | 10  | U  | 10       |
| 1,1-Dichloroethane       |        | 5    | U 5        | Bromoform                 |        | 5   | U  | 5        |
| trans-1,2-Dichloroethene |        | 5    | J 5        | 2-Hexanone                |        | 50  | U  | 50       |
| cis-1,2-Dichloroethene   |        | 5    | <b>J</b> 5 | 4-Methyl-2-pentanone      | !      | 50  | U  | 50       |
| Chloroform               |        | 5    | J 5        | Tetrachloroethene         |        | 5   | U  | 5        |
| 1,2-Dichloroethane       |        | 5    | J 5        | 1,1,2,2-Tetrachloroethane |        | 5   | U  | 5        |
| 2-Butanone               | 10     | 00   | J 100      | Toluene                   |        | 5   | U  | 5        |
| 1,1,1-Trichloroethane    | 5.     | . 6  | 5          | Chlorobenzene             |        | 5   | U  | 5        |
| Carbon tetrachloride     |        | 5    | J 5        | Ethylbenzene              |        | 5   | U  | 5        |
| Vinyl acetate            |        | LO 1 | J 10       | Styrene                   |        | 5   | U  | 5        |
| Dichlorobromomethane     |        | 5    | J 5        | Xylenes, total            |        | 5   | U  | 5        |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 98         | 81 - 117 |
| BROMOFLUOROBENZENE    | 99         | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 100        | 70 - 120 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 69 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1573
SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/10/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |      | Re       | eporting |                            |        | I    | Reporti |
|-----------------------------|------|----------|----------|----------------------------|--------|------|---------|
| Re                          | sult | Qual     | Limit    |                            | Result | Qual | Limit   |
|                             |      |          |          |                            |        | _    |         |
| Phenol                      | 0.33 |          | 0.330    | 2,6-Dinitrotoluene         | 0.33   | -    | 0.330   |
| bis(2-Chloroethyl)ether     | 0.33 |          | 0.330    | 3-Nitroaniline             | 0.82   |      | 0.825   |
| 2-Chlorophenol              | 0.33 | _        | 0.330    | Acenaphthene               | 0.33   |      | 0.330   |
| 1,3-Dichlorobenzene         | 0.33 |          | 0.330    | 2,4-Dinitrophenol          | 0.82   | -    | 0.825   |
| 1,4-Dichlorobenzene         | 0.33 | ט כ      | 0.330    | 4-Nitrophenol              | 0.82   | _    | 0.825   |
| Benzyl alcohol              | 0.33 |          | 0.330    | Dibenzofuran               | 0.33   |      | 0.330   |
| 1,2-Dichlorobenzene         | 0.33 | ט כ      | C.330    | 2,4-Dinitrotoluene         | 0.33   | _    | 0.330   |
| 2-Methylphenol              | 0.33 | ט כ      | 0.330    | Diethylphthalate           | 0.33   |      | 0.330   |
| bis(2-Chloroisopropyl)ether | 0.33 | ט כ      | 0.330    | 4-Chlorophenyl-phenylether | 0.33   | -    | 0.330   |
| 4-Methylphenol              | 0.33 | ט כ      | 0.330    | Fluorene                   | 0.33   | 0 U  | 0.330   |
| N-Nitroso-di-n-propylamine  | 0.33 | ט כ      | 0.330    | 4-Nitroaniline             | 0.82   | 5 U  | 0.825   |
| Hexachloroethane            | 0.33 | ט כ      | 0.330    | 4,6-Dinitro-2-methylphenol | 0.82   | 5 U  | 0.825   |
| Nitrobenzene                | 0.33 | ט כ      | 0.330    | N-Nitrosodiphenylamine (1) | 0.33   | υ 0  | 0.330   |
| Isophorone                  | 0.33 | ט כ      | 0.330    | 4-Bromophenyl-phenylether  | 0.33   | υ 0  | 0.330   |
| 2-Nitrophenol               | 0.33 | ט כ      | 0.330    | Hexachlorobenzene          | 0.33   | υ 0  | 0.330   |
| 2,4-Dimethylphenol          | 0.33 | ט כ      | 0.330    | Pentachlorophenol          | 0.82   | 5 U  | 0.825   |
| Benzoic Acid                | 0.33 | ט כ      | 0.330    | Phenanthrene               | 0.33   | υ 0  | 0.330   |
| bis(2-Chloroethoxy)methane  | 0.33 | ט כ      | 0.330    | Anthracene                 | 0.33   | υ 0  | 0.330   |
| 2,4-Dichlorophenol          | 0.33 | ט כ      | 0.330    | Di-n-butylphthalate        | 0.33   | 0 σ  | 0.330   |
| 1,2,4-Trichlorobenzene      | 0.33 | ט כ      | 0.330    | Fluoranthene               | 0.33   | υ 0  | 0.330   |
| Naphthalene                 | 0.33 | ט כ      | 0.330    | Pyrene                     | 0.33   | 0 U  | 0.330   |
| 4-Chloroaniline             | 0.33 | ט כ      | 0.330    | Butylbenzylphthalate       | 0.33   | U 0  | 0.330   |
| Hexachlorobutadiene         | 0.33 | υ c      | 0.330    | 3,3'-Dichlorobenzidine     | 0.33   | U 0  | 0.330   |
| 4-Chloro-3-methylphenol     | 0.33 | υ σ      | 0.330    | Benzo(a)anthracene         | 0.33   | υ 0  | 0.330   |
| 2-Methylnaphthalene         | 0.33 | υ c      | 0.330    | Chrysene                   | 0.33   | υ 0  | 0.330   |
| Hexachlorocyclopentadiene   | 0.33 | ט כ      | 0.330    | bis(2-Ethylhexyl)phthalate | 0.33   | 0 U  | 0.330   |
| 2,4,6-Trichlorophenol       | 0.33 | <b>U</b> | 0.330    | Di-n-octylphthalate        | 0.33   | 0 υ  | 0.330   |
| 2,4,5-Trichlorophenol       | 0.82 | 5 U      | 0.825    | Benzo(b)fluoranthene       | 0.33   | 0 U  | 0.330   |
| 2-Chloronaphthalene         | 0.33 | ט כ      | 0.330    | Benzo(k)fluoranthene       | 0.33   | 0 U  | 0.330   |
| 2-Nitroaniline              | 0.82 | 5 U      | 0.825    | Benzo(a)pyrene             | 0.33   | o u  | 0.330   |
| Dimethylphthalate           | 0.33 | υ σ      | 0.330    | Indeno(1,2,3-cd)pyrene     | 0.33   | o u  | 0.330   |
| Acenaphthylene              | 0.33 | ט כ      | 0.330    | Dibenzo(a,h)anthracene     | 0.33   | 0 υ  | 0.330   |
|                             |      |          |          | Benzo(g,h,i)perylene       | 0.33   | ο σ  | 0.330   |
|                             |      |          |          |                            |        |      |         |

Page: 70 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1573

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 41         | 23 - 120 |
| 2-Fluorobiphenyl     | 46         | 30 - 115 |
| Terphenyl-D14        | 68         | 18 - 137 |
| Phenol-D5            | 54         | 24 - 113 |
| 2-Fluorophenol       | 43         | 25 - 121 |
| 2,4,6-Tribromcphenol | 58         | 19 - 122 |

409832-003

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 71 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1573

SAMPLE DATE: 11/22/93
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 85.4700

UNITS: MG/KG

|           | Result | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----------|--------|----------------|--------------------|---------------------|------------------|
| Arsenic   | 1.1    | ŭ              | 1.1                | 7060                | 12/10/93         |
| Aluminum  | 1500   | *N             | 17                 | 6010                | 12/15/93         |
| Barium    | 17     | U*N            | 17                 | 6010                | 12/15/93         |
| Beryllium | 0.43   | U              | 0.43               | 6010                | 12/15/93         |
| Cadmium   | 0.58   |                | 0.43               | 6010                | 12/15/93         |
| Chromium  | 7.3    | *              | 0.85               | 6010                | 12/15/93         |
| Copper    | 2.1    | <b>U</b> *     | 2.1                | 6010                | 12/15/93         |
| Iron      | 6100   | *N             | 8.5                | 6010                | 12/15/93         |
| Nickel    | 5.1    | *              | 3.4                | 6010                | 12/15/93         |
| Lead      | 1.9    | N              | 0.32               | 7421                | 12/10/93         |
| Mercury   | 0.024  | ט              | 0.024              | 7471                | 12/08/93         |
| Silver    | 0.85   | U              | 0.85               | 6010                | 12/15/93         |
| Zinc      | 5.9    | *              | 1.7                | 6010                | 12/15/93         |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 72 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: SOIL

|                    | Note |        | Reporting |       | Date Method        |  |
|--------------------|------|--------|-----------|-------|--------------------|--|
| Test Name          | Ref  | Result | Limit     | Units | Analyzed Reference |  |
| 9071/418.1 for TPH |      | 100    | 10        | MG/KG | 12/07/93 EPA9071   |  |
| Chromium VI        |      | 0.0100 | 0.010     | MG/KG | 12/03/93 EPA7196   |  |

409832-003

Page: 73 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Or

Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/02/93
DILUTION FACTOR: 1.0
UNITS: UG/KG

| ·                        |        | R    | eporting |                           |        |      | Re | portin |
|--------------------------|--------|------|----------|---------------------------|--------|------|----|--------|
|                          | Result | Qual | Limit    |                           | Result | Qual | L  | Limit  |
| Chloromethane            | 1      | ο υ  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5      |
| Bromomethane             | 1      | ο υ  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5      |
| Vinyl chloride           | 1      | ο υ  | 10       | Trichloroethene           |        | 5    | U  | 5      |
| Chloroethane             | 1      | ο υ  | 10       | Chlorodibromomethane      |        | 5    | U  | 5      |
| Methylene chloride       | 1      | ο υ  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5      |
| Acetone                  | 10     | 0 U  | 100      | Benzene                   |        | 5    | U  | 5      |
| Carbon disulfide         |        | 5 U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5      |
| 1,1-Dichloroethene       |        | 5 U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10     |
| 1,1-Dichloroethane       |        | 5 U  | 5        | Bromoform                 |        | 5    | U  | 5      |
| trans-1,2-Dichloroethene |        | 5 U  | 5        | 2-Hexanone                |        | 50   | U  | 50     |
| cis-1,2-Dichloroethene   |        | 5 U  | 5        | 4-Methyl-2-pentanone      |        | 50   | U  | 50     |
| Chloroform               |        | 5 ช  | 5        | Tetrachloroethene         |        | 5    | U  | 5      |
| 1,2-Dichloroethane       |        | 5 U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5      |
| 2-Butanone               | 10     | o u  | 100      | Toluene                   |        | 5    | U  | 5      |
| 1,1,1-Trichloroethane    |        | 5 U  | 5        | Chlorobenzene             |        | 5    | U  | 5      |
| Carbon tetrachloride     |        | 5 U  | 5        | Ethylbenzene              |        | 5    | U  | 5      |
| Vinyl acetate            | 1      | 0 U  | 10       | Styrene                   |        | 5    | U  | 5      |
| Dichlorobromomethane     |        | 5 U  | 5        | Xylenes, total            |        | 5    | U  | 5      |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 102        | 81 - 117 |
| BROMOFLUOROBENZENE    | 101        | 74 - 121 |
| 1,2-DICHLOROETHANE-D4 | 98         | 70 - 120 |

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 74 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

# IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: SOIL

EXTRACTION DATE: 11/30/93
ANALYSIS DATE: 12/09/93
DILUTION FACTOR: 0.033

| UNITS: MG/KG                |       | Re   | eporting |                            |        | I    | Reporti |
|-----------------------------|-------|------|----------|----------------------------|--------|------|---------|
| Re                          | sult  | Qual | Limit    |                            | Result | Qual | Limit   |
| Phasel                      |       |      |          | O. C. Disibushaluana       | 0.33   |      | 0.330   |
| Phenol                      | 0.330 | -    | 0.330    | 2,6-Dinitrotoluene         | 0.33   |      | 0.825   |
| bis(2-Chloroethyl)ether     | 0.330 |      | 0.330    | 3-Nitroaniline             |        |      |         |
| 2-Chlorophenol              | 0.330 |      | 0.330    | Acenaphthene               | 0.33   |      | 0.330   |
| 1,3-Dichlorobenzene         | 0.330 |      | 0.330    | 2,4-Dinitrophenol          | 0.82   |      | 0.825   |
| 1,4-Dichlorobenzene         | 0.330 |      | 0.330    | 4-Nitrophenol              | 0.82   |      | 0.825   |
| Benzyl alcohol              | 0.330 |      | 0.330    | Dibenzofuran               | 0.33   |      | 0.330   |
| 1,2-Dichlorobenzene         | 0.330 |      | 0.330    | 2,4-Dinitrotoluene         | 0.33   | -    | 0.330   |
| 2-Methylphenol              | 0.330 |      | 0.330    | Diethylphthalate           | 0.33   |      | 0.330   |
| bis(2-Chloroisopropyl)ether | 0.330 |      | 0.330    | 4-Chlorophenyl-phenylether |        |      | 0.330   |
| 4-Methylphenol              | 0.330 |      | 0.330    | Fluorene                   | 0.33   | -    | 0.330   |
| N-Nitroso-di-n-propylamine  | 0.330 |      | 0.330    | 4-Nitroaniline             | 0.82   | -    | 0.825   |
| Hexachloroethane            | 0.330 |      | 0.330    | 4,6-Dinitro-2-methylphenol |        |      | 0.825   |
| Nitrobenzene                | 0.330 |      | 0.330    | N-Nitrosodiphenylamine (1) |        |      | 0.330   |
| Isophorone                  | 0.330 |      | 0.330    | 4-Bromophenyl-phenylether  | 0.33   |      | 0.330   |
| 2-Nitrophenol               | 0.330 | ט כ  | 0.330    | Hexachlorobenzene          | 0.33   | -    | 0.330   |
| 2,4-Dimethylphenol          | 0.330 | ט כ  | 0.330    | Pentachlorophenol          | 0.82   | -    | 0.825   |
| Benzoic Acid                | 0.330 | ט כ  | 0.330    | Phenanthrene               | 0.33   |      | 0.330   |
| bis(2-Chloroethoxy)methane  | 0.330 | ט כ  | 0.330    | Anthracene                 | 0.33   | ט כ  | 0.330   |
| 2,4-Dichlorophenol          | 0.330 | ט כ  | 0.330    | Di-n-butylphthalate        | 0.33   |      | 0.330   |
| 1,2,4-Trichlorobenzene      | 0.330 | ט כ  | 0.330    | Fluoranthene               | 0.33   |      | 0.330   |
| Naphthalene                 | 0.330 | ט כ  | 0.330    | Pyrene                     | 0.33   |      | 0.330   |
| 4-Chloroaniline             | 0.330 | ט כ  | 0.330    | Butylbenzylphthalate       | 0.33   | U C  | 0.330   |
| Hexachlorobutadiene         | 0.330 | ט כ  | 0.330    | 3,3'-Dichlorobenzidine     | 0.33   | U C  | 0.330   |
| 4-Chloro-3-methylphenol     | 0.330 | ט כ  | 0.330    | Benzo(a)anthracene         | 0.33   | U C  | 0.330   |
| 2-Methylnaphthalene         | 0.330 | ט כ  | 0.330    | Chrysene                   | 0.33   | U C  | 0.330   |
| Hexachlorocyclopentadiene   | 0.330 | ט כ  | 0.330    | bis(2-Ethylhexyl)phthalate | 0.33   | U C  | 0.330   |
| 2,4,6-Trichlorophenol       | 0.330 | υ 0  | 0.330    | Di-n-octylphthalate        | 0.33   | ט ס  | 0.330   |
| 2,4,5-Trichlorophenol       | 0.829 | 5 U  | 0.825    | Benzo(b)fluoranthene       | 0.33   | ט ס  | 0.330   |
| 2-Chloronaphthalene         | 0.330 | ט כ  | 0.330    | Benzo(k)fluoranthene       | 0.33   | ט כ  | 0.330   |
| 2-Nitroaniline              | 0.825 | 5 บ  | 0.825    | Benzo(a)pyrene             | 0.33   | ט כ  | 0.330   |
| Dimethylphthalate           | 0.330 | ט כ  | 0.330    | Indeno(1,2,3-cd)pyrene     | 0.33   | ט כ  | 0.330   |
| Acenaphthylene              | 0.330 |      | 0.330    | Dibenzo(a,h)anthracene     | 0.33   | υ σ  | 0.330   |
| -                           |       |      |          | Benzo(g,h,i)perylene       | 0.33   | ט כ  | 0.330   |
|                             |       |      |          |                            |        |      |         |

Page: 75 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: SOIL

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 37         | 23 - 120 |
| 2-Fluorobiphenyl     | 40         | 30 - 115 |
| Terphenyl-D14        | 71         | 18 - 137 |
| Phenol-D5            | 42         | 24 - 113 |
| 2-Fluorophenol       | 34         | 25 - 121 |
| 2,4,6-Tribromophenol | 53         | 19 - 122 |

409832-003

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 76 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003

Work Order: B3-11-282

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: SOIL

DILUTION FACTOR (6010): 1.0

UNITS: MG/KG

|     |        | Result  | Result<br>Qual | Reporting<br>Limit | Method<br>Reference | Analysis<br>Date |
|-----|--------|---------|----------------|--------------------|---------------------|------------------|
| Ars | enic   | 0.010   | บ              | 0.010              | 7060                | 12/10/93         |
| Alu | minum  | 0.20    | U              | 0.20               | 6010                | 12/15/93         |
| Bar | ium    | 0.20    | U              | 0.20               | 6010                | 12/15/93         |
| Ber | yllium | 0.0050  | U              | 0.0050             | 6010                | 12/15/93         |
| Cad | mium   | 0.0050  | U              | 0.0050             | 6010                | 12/15/93         |
| Chr | omium  | 0.010   | U              | 0.010              | 6010                | 12/15/93         |
| Cop | per    | 0.0250  | Ū              | 0.0250             | 6010                | 12/15/93         |
| Iro | n      | 0.10    | U              | 0.10               | 6010                | 12/15/93         |
| Nic | kel    | 0.040   | U              | 0.040              | 6010                | 12/15/93         |
| Lea | d      | 0.0030  | ប              | 0.0030             | 7421                | 12/10/93         |
| Mer | cury   | 0.00020 | Ū              | 0.00020            | 7471                | 12/08/93         |
| Sil | ver    | 0.010   | U              | 0.010              | 6010                | 12/15/93         |
| Zin | c      | 0.020   | U              | 0.020              | 6010                | 12/15/93         |
|     |        |         |                |                    |                     |                  |

#### Data qualifier key:

- E estimated value
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

NOTE: Dilution Factor applies to Method 6010 only.

Page: 77 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: WATER
ANALYSIS DATE: 11/30/93
DILUTION FACTOR: 1.0

UNITS: UG/L

| •                        |        |      | Reportin | ng                        |          |     | Re | eporting |
|--------------------------|--------|------|----------|---------------------------|----------|-----|----|----------|
|                          | Result | Qual | Limit    |                           | Result   | Qua | 1  | Limit    |
| Chloromethane            | 1      | LO   | J 10     | 1,2-Dichloropropane       |          | 5   | U  | 5        |
| Bromomethane             | _      |      | J 10     | trans-1,3-Dichloropropene | <u></u>  | 5   | U  | 5        |
| Vinyl chloride           | _      |      | J 10     | Trichloroethene           |          | 5   | U  | 5        |
| Chloroethane             |        |      | J 10     | Chlorodibromomethane      |          | 5   | U  | 5        |
| Methylene chloride       | _      |      | J 10     | 1,1,2-Trichloroethane     |          | 5   | U  | 5        |
| Acetone                  | -      |      | J 100    | Benzene                   |          | 5   | U  | 5        |
| Carbon disulfide         |        |      | U 5      | cis-1,3-Dichloropropene   |          | 5   | U  | 5        |
| 1,1-Dichloroethene       |        | 5    | U 5      | 2-Chloroethylvinyl ether  |          | 10  | U  | 10       |
| 1,1-Dichloroethane       |        |      | U 5      | Bromoform                 |          | 5   | U  | 5        |
| trans-1,2-Dichloroethene |        | 5    | U 5      | 2-Hexanone                |          | 50  | U  | 50       |
| cis-1,2-Dichloroethene   |        | 5    | U 5      | 4-Methyl-2-pentanone      | ,        | 50  | U  | 50       |
| Chloroform               |        | 5    | U 5      | Tetrachloroethene         |          | 5   | U  | 5        |
| 1,2-Dichloroethane       |        | 5    | U 5      | 1,1,2,2-Tetrachloroethane | <b>;</b> | 5   | U  | 5        |
| 2-Butanone               | 10     | 00   | 100      | Toluene                   |          | 5   | U  | 5        |
| 1,1,1-Trichloroethane    |        | 5    | U 5      | Chlorobenzene             |          | 5   | U  | 5        |
| Carbon tetrachloride     |        | 5    | <b>5</b> | Ethylbenzene              |          | 5   | U  | 5        |
| Vinyl acetate            | :      | 10   | U 10     | Styrene                   |          | 5   | U  | 5        |
| Dichlorobromomethane     |        | 5    | U 5      | Xylenes, total            |          | 5   | U  | 5        |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 99         | 88 - 110 |
| BROMOFLUOROBENZENE    | 101        | 86 - 115 |
| 1,2-DICHLOROETHANE-D4 | 101        | 76 - 114 |

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 78 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

SAMPLE ID: LAB BLANK #2

SAMPLE DATE:

SAMPLE MATRIX: SOIL

|           | Note |          | Reporting    |       | Date     | Method    |
|-----------|------|----------|--------------|-------|----------|-----------|
| Test Name | Ref  | Result   | <u>Limit</u> | Units | Analyzed | Reference |
| Mercury   |      | 0.000200 | 0.00020      | MG/KG | 12/13/93 | EPA7471   |

409832-003

Page: 79 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

Work Order: B3-11-282

#### IV. Methodology

Requested analyses were performed according to the following methods.

#### TEST NAME ICP Metals

#### TEST CODE 6010

Metals by ICP

Inductively coupled emission spectroscopy according to Method 6010, "Test Methods for Evaluating Solid Waste Physical/Chemical Methods", SW-846, Third Edition.

409832-003

#### TEST NAME Hazardous Substance Vols. TEST CODE 8240TK

List Volatiles

Hazardous Substance Method 8240, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. GC/MS Purge and Trap analysis.

#### TEST NAME ABN HSL GC/MS Extractables TEST CODE 8270TK

Hazardous Substance List Extractables

Method 8270, SW-846, Test Methods for Evaluating Solid Waste, Third Edition. Acid/Base-Neutral extraction followed by GC/MS analysis.

#### TEST NAME 9071/418.1 for TPH

#### TEST CODE 9071IR

9071 Prep and IR Analysis Method 9071, SW846, Test Methods for Evaluating Solid Waste, Third Edition. Soxhlet extraction from Method 9071 using freon and infrared analysis of the extract using Method 418.1.

#### TEST NAME Arsenic - Graphite Furnace TEST CODE AS GF

Arsenic

Graphite Furnace

Method 7060, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. EPA 206.2-Technical Additions to Methods for Chemical Analysis of Water and Wastes,

EPA-600/4-82-055, December 1982.

#### TEST NAME Cation Exchange Capacity TEST CODE CEC A

Cation exchange Capacity

Part 2: Chemical and microbiological properties method 57-3. American Society of Agronomy, Methods of soil Analysis 2nd Edition.

Page: 80 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003 Work Order: B3-11-282

TEST NAME Chromium VI

TEST CODE CR VI

Chromium VI

Method 7196, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Colorimetric analysis.

Equivalent to Standard Methods 3500-Cr D.

TEST NAME Grain Size Distriubtion

TEST CODE GRAIN

Method not available.

TEST NAME Mercury

TEST CODE HG AA

Mercury

Method 7471, SW-846, Test Methods for Evaluating Solid

Wastes, Third Edition. Cold vapor atomic absorption.

Method 7470 is used for water.

Method 245.5-"Technical Additions to Methods for

Chemical Analysis of Water and Wastes,"

EPA-600/4-82-055, December 1982.

TEST NAME Metals

TEST CODE ICPTK2

Method not available.

TEST NAME Moisture Content

TEST CODE MOIS G

Method not available.

TEST NAME Lead - Graphite Furnace

TEST CODE PB\_GF

Lead

EPA 7421, SW-846, Test Methods for Evaluating Solid

Graphite Wastes, Third Edition.

Furnace

EPA 239.2-Technical Additions to Methods for Chemical

Analysis of Water and Wastes, " EPA-600/4-82-055,

Page: 81 of 81

Company: IT CORPORATION

Date: 12/23/93

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684

Work Order: B3-11-282

TEST NAME Lead - Graphite Furnace TEST CODE PB\_GF

December 1982.

TEST NAME Vertical Permeability TEST CODE V\_PERM

Method not available.

TEST NAME GFAA Digestion - Soil TEST CODE 23050F

Soil Digestion Method 3050, SW-846, Test Methods for Evaluating Solid

Wastes, Third Edition. Acid digestion technique for

409832-003

Graphite Furnace/Flame AA analysis.

TEST NAME ICPES Digestion - Soil TEST CODE \$3050P

Soil Digestion Method 3050, SW-846, Test Methods for Evaluating Solid

Wastes, Third Edition. Acid digestion technique for

ICPES analysis. Equivalent to Method 3050A, SW-846

Update I, July 1992.

INTERNATIONAL TECHNOLOGY CORPORATION

# CHAIN OF CUSTODY RECORD\* **ANALYSIS REQUEST AND**

Reference Document No.314097 6311282

Page 1 of 2

| CORPORATION                     | ION                                            |                                                                                            |                                  | <br> -<br> -                   |                                 |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | ١       |
|---------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|---------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------|
| Project Name/No. 1              | No. 1 TAFB 409832                              | 32 Samp                                                                                    | Samples Shipment Date 7 11/22193 | ent Date                       | _     <i> </i>   2              | 193 Bill to: <sup>5</sup>                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                    | White:  |
| Sample Team Memb                | Sample Team Members 2 1. Herrington, M. Wilson | M.Wilson                                                                                   | Lab Des                          | stination                      | 8 I TAS                         | Destination 8 TTAS Austin                                 | 100 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | To a    |
| Profit Center No. 3             | No. 3 3527                                     | 4                                                                                          | Lab                              | Lab Contact <sup>9</sup>       | 4 Karr                          | Kermen Deun                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | CCO     |
| Project Manager <sup>4</sup>    | ager 4 Jinny Taylor                            | Proj                                                                                       | Project Contact/Phone 12         | /Phone                         |                                 | 405-736-7260<br>Dem McGreegoon Bennet to: 10              | 10 Tim Jenning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | mpa     |
| Purchase Order No. <sup>6</sup> |                                                |                                                                                            | Carrier/Waybi 8460756183         | aybi 🗗 4                       | 160756                          | (24)                                                      | T. T. Austin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ustin                                | ny sa   |
| Required Report Date 11         | late 11 16 working Days                        | Shoo                                                                                       | ONE                              | CONT                           | MINER                           | E CONTAINER PER LINE                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | amples  |
| Sample <sup>14</sup><br>Number  | Sample <sup>15</sup><br>Description/Type       | Date/Time <sup>16</sup> Container <sup>17</sup> Sample <sup>18</sup> Collected Type Volume | Container <sup>17</sup><br>Type  | Sample <sup>18</sup><br>Volume | Pre- <sup>19</sup><br>servative | Requested Testing <sup>20</sup><br>Program                | Condition on <sup>21</sup><br>Receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Disposal <sup>22</sup><br>Record No. | S       |
| A1561                           | 2-62 13 . Soil                                 | 22.6 \$ 9-22-11                                                                            | 916.55                           | (2)<br>Soon!                   | Cool                            | 8270                                                      | 1.35-11-14-CKJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | Yellow  |
| P1561                           |                                                | 0755<br>1 KW (1804)                                                                        |                                  | 125m1                          | _                               | Вачо                                                      | On a second of the second of t |                                      | : Field |
| A1562                           |                                                | 0804                                                                                       |                                  | Soom                           |                                 | 8270 60101 200                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | і сору  |
| 45428 A1562                     |                                                | ьово                                                                                       | >                                | 125 m 1                        |                                 | BA40                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | /       |
| J 5428                          |                                                | 5180                                                                                       | stainks.                         | (3)                            |                                 | George Land - Vest K, Moisthur CEC. Trainsing             | .ts<br>146<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |         |
| A1563                           |                                                | 0825                                                                                       | 3.5                              | 600 m.l                        |                                 | 8 & 10<br>6010 / 1000                                     | <b>ဒ</b><br>နူးသော (<br>နောက်<br>နောက်<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | *S      |
| A1563                           |                                                | 0825                                                                                       |                                  | 125 ml                         |                                 | 8270                                                      | * ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                    | ee ba   |
| P3818                           | <del>→</del>                                   | 9689 A                                                                                     | <del>-&gt;</del>                 | 500 m l                        | <b>→</b>                        | 8170<br>6610[100                                          | _3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | ck of f |
| Special Instructions: 23 Pt     | ins: 23 A1561 MS                               | # cusm                                                                                     | 566. Tri                         | لمسالااح                       | A15                             | ALSEL MS/MSD ; HISER Trip Blank ; Alseg Digitude of AlseB | 87514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | orm fo  |

\*See back of form for special instructions

(mos.

Archive

Disposal by Lab

Date: 1/-23-13

Fime: ٥الاد

Date: Time:

Date: Time:

Sample Disposal: <sup>25</sup> Return to Client **1** D Possible Hazard Identification: 24 Non-hazard \_

Unknown Z QC Level: 27 Poison B Skin Irritant Turnaround Time Required: <sup>26</sup> Flammable |

Project Specific (specify): 1. Received by (Signature/Affiliation) Date: 11/21/93 Time: Relinquished by <sup>28</sup> Hush. Signature/Affiliation) Normal 12

2. Received by (Signature/Affiliation) 3. Received by (Signature/Affiliation) Date: Date: Time: Time: 3. Relinquished by (Signature/Affiliation) Relinquished by Signature/Affiliation

Comments: <sup>29</sup>



Project Name Tin Ican Sool

# CHAIN OF CUSTODY RECORD (cont.)\* **ANALYSIS REQUEST AND**

Reference Document No.30 314642

Page\_2\_of\_2\_

6311282

Samples Shipment Date 11/22/93

Project No. 409832.03

White: To accompany samples Yellow: Field copy \*See back of form for special instructions Disposal 2 Record No. 11-16-53 1200 Th 3274100C 2 1000, 40c 11. 28 5) Condition on Receipt 418,1 418.1 661º/2000 418.1 6010/2000 8 20 8270 60 10 / 7000 418.1 7000 418.1 822 6010/2000 Requested Testing Program 418.1 418.1 8270 60101 ONE CONTAINER PER LINE 2740 82 4C RAYO 8240 8240 8240 8240 820 8240 8240 B270 8420 8270 ठ५ रक्ष Pre-13 servative 뇌 200 9 K35 K1 K125 M1 6001 Container 1 Sample 18
Type Volume SOOM 125m 125 m 125 m YO M! 500 m 125 m 500 m 500 m 125 m 500 ml (25 m Soom 125 m Soom 500 m 125 ml 11/22/93 0838 Date/Time 16 Collected 11/22/93 0838 623 89 h/22 193 160 849 6.58 1628 715 Trip Blank Description/Type A-62B, Soil 1,50 -6 Sample 14 Number 2151A AISEY A 1567 A156B A1566 A1568 A1513 A 1567 A 565 B1565 A1573 A1572 A1520 A1570 A1571 A1569 A1571 A1569

Work order : B311282

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 01B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 86.2           |
|      | Chromium VI | B311282-17B        | 1203CR_VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311282-17B        | 1208HGAA1   | 12/08/93     | 12/08/93         | 125            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 86.2           |

Work order : B311282

Sample ID : A1561-MS

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 02B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 104            |
|      | Chromium VI | B311282-17B        | 1203CR VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311282-17B        | 1208HGAA1   | 12/08/93     | 12/08/93         | 120            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 417            |

Work order : B311282

Sample ID : A1561-MSD

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 03в  |             |                    |             |              |                  |                |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 103            |
|      | Chromium VI | B311282-17B        | 1203CR VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311282-17B        | 1208HGAA1   | 12/08/93     | 12/08/93         | 123            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 103            |

Work order : B311282

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 04B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 95.2           |
|      | Chromium VI | B311282-17B        | 1203CR VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311282-17B        | 1208HGAA2   | 12/08/93     | 12/08/93         | 112            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 95.2           |

Work order : B311282

| FRAC | Tests           | Blank<br>Reference         | Batch<br>ID             | Prep<br>Date         | Analysis<br>Date | Dil.<br>Factor |
|------|-----------------|----------------------------|-------------------------|----------------------|------------------|----------------|
| 06В  |                 |                            |                         |                      |                  |                |
|      | Arsenic         | B311282-17B                | 12053050F1              | 12/05/93             | 12/10/93         | 105            |
|      | Chromium VI     | B311282-17B                | 1203CR VI1              | 12/02/93             | 12/03/93         | 50.0           |
|      | Mercury<br>Lead | B311282-17B<br>B311282-17B | 1208HGAA1<br>12053050F1 | 12/08/93<br>12/05/93 | •                | 118<br>105     |

Work order : B311282

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 07B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 108            |
|      | Chromium VI | B311282-17B        | 1203CR VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311282-17B        | 1208HGAA1   | 12/08/93     | 12/08/93         | 116            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 108            |

Work order : B311282

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 08B  |             |                    |             |              |                  |                |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 108            |
|      | Chromium VI | B311282-17B        | 1203CR VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311282-17B        | 1208HGAA1   | 12/08/93     | 12/08/93         | 116            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 108            |

Work order : B311282

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 10B  |             |                    |             |              |                  |                |
|      | 9071IR      | B311282-17B        | 1206TPHIR1  | 12/06/93     | 12/07/93         | 1.0            |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 115            |
|      | Chromium VI | B311282-17B        | 1203CR VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311282-17B        | 1208HGAA1   | 12/08/93     | 12/08/93         | 114            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 115            |

Work order : B311282

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 11B  |             |                    |             |              |                  |                |
|      | 9071IR      | B311282-17B        | 1206TPHIR1  | 12/06/93     | 12/07/93         | 1.0            |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 110            |
|      | Chromium VI | B311282-17B        | 1203CR_VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311282-17B        | 1208HGAA1   | 12/08/93     | 12/08/93         | 116            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 110            |

Work order : B311282

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 12B  |             |                    |             |              |                  |                |
|      | 9071IR      | B311282-17B        | 1206TPHIR1  | 12/06/93     | 12/07/93         | 1.0            |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 98             |
|      | Chromium VI | B311282-17B        | 1203CR VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311282-17B        | 1208HGAA1   | 12/08/93     | 12/08/93         | 122            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 98             |

Work order : B311282

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 13B  |             |                    |             |              |                  |                |
|      | 9071IR      | B311282-17B        | 1206TPHIR1  | 12/06/93     | 12/09/93         | 1.0            |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 3 12/10/93       | 97.1           |
|      | Chromium VI | B311282-17B        | 1203CR VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311282-17B        | 1212HGAA1   | 12/13/93     | 3 12/13/93       | 108            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 3 12/10/93       | 97.1           |

Work order : B311282

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 14B  |             |                    |             |              |                  |                |
|      | 9071IR      | B311282-17B        | 1206TPHIR1  | 12/06/93     | 12/07/93         | 1.0            |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 89.3           |
|      | Chromium VI | B311282-17B        | 1203CR_VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311282-17B        | 1208HGAA1   | 12/08/93     | 12/08/93         | 129            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 357            |

Work order : B311282

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 15B  |             |                    |             |              |                  |                |
|      | 9071IR      | B311282-17B        | 1206TPHIR1  | 12/06/93     | 12/07/93         | 1.0            |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 111            |
|      | Chromium VI | B311282-17B        | 1203CR_VI1  | 12/02/93     | 12/03/93         | 50.0           |
|      | Mercury     | B311282-17B        | 1208HGAA1   | 12/08/93     | 12/08/93         | 115            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 111            |

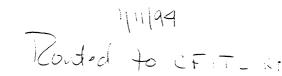
Work order : B311282

| FRAC | Blank<br>Tests Reference |             | Batch Prep<br>ID Date |          | Analysis<br>Date | Dil.<br>Factor |
|------|--------------------------|-------------|-----------------------|----------|------------------|----------------|
| 16B  |                          |             |                       |          |                  |                |
|      | 9071IR                   | B311282-17B | 1206TPHIR1            | 12/06/93 | 12/07/93         | 1.0            |
|      | Arsenic                  | B311282-17B | 12053050F1            | 12/05/93 | 12/10/93         | 106            |
| (    | Chromium VI              | B311282-17B | 1203CR_VI1            | 12/02/93 | 12/03/93         | 50.0           |
| 1    | Mercury                  | B311282-17B | 1208HGAA1             | 12/08/93 | 12/08/93         | 118            |
|      | Lead                     | B311282-17B | 12053050F1            | 12/05/93 | 12/10/93         | 106            |

Work order : B311282

Sample ID : LAB BLANK #1

| FRAC | Tests       | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|-------------|--------------------|-------------|--------------|------------------|----------------|
| 17B  |             |                    |             |              |                  |                |
|      | 9071IR      | B311282-17B        | 1206TPHIR1  | 12/06/93     | 12/07/93         | 1.0            |
|      | Arsenic     | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 1.0            |
|      | Chromium VI | B311282-17B        | 1203CR VI1  | 12/03/93     | 12/03/93         | 1.0            |
|      | Mercury     | B311282-17B        | 1208HGAA1   | 12/08/93     | 12/08/93         | 1.0            |
|      | Lead        | B311282-17B        | 12053050F1  | 12/05/93     | 12/10/93         | 1.0            |


Work order : B311282

Sample ID : LAB BLANK #2

| FRAC  | Tests   | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|-------|---------|--------------------|-------------|--------------|------------------|----------------|
| 19A M | lercury | B311282-19A        | 1213HGAA1   | 12/13/93     | 12/13/93         | 1.0            |



# ANALYTICAL SERVICES



# CERTIFICATE OF ANALYSIS

IT CORPORATION
1250 CAPITAL OF TX HWY
BLDG. 3, SUITE 200
AUSTIN, TX 78746-6443
TIM JENNINGS

Date: 01/11/94

Work Order: B3-12-169

This is the Certificate of Analysis for the following samples:

Client Work ID: D.O. 5001
Date Received: 12/14/93
Number of Samples: 7
Sample Type: WATER

409832-003-01

#### I. Introduction

Samples were labeled as follows:

| SAMPLE IDENTIFICATION | LABORATORY # |
|-----------------------|--------------|
| A1606                 | B3-12-169-01 |
| A1607                 | B3-12-169-02 |
| A1608                 | B3-12-169-03 |
| A1609                 | B3-12-169-04 |
| A1609-MS              | B3-12-169-05 |
| A1609-MSD             | B3-12-169-06 |
| LAB BLANK #1          | B3-12-169-07 |

Reviewed and Approved:

Jon Bartell

Laboratory Director

Page: 2 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

#### II. QA/QC

The results presented in this report meet the statement of work requirements in accordance with Quality Control and Quality Assurance protocol except as noted in Section IV or in an optional sample narrative at the end of Section III.

In the presented analytical data, 'ND' or '<' indicates that the compound is not detected at the specified limit.

# III. Analytical Data

The following page(s) supply results for requested analyses performed on the samples listed above.

The test results relate to tested items only. ITAS-Austin reserves the right to control report production except in whole.

Page: 3 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1606

SAMPLE DATE: 12/02/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/27/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |            | Re | eporting |                           |        |      | Re | porting |
|--------------------------|------------|----|----------|---------------------------|--------|------|----|---------|
|                          | Result Qua | 1  | Limit    |                           | Result | Qual | L  | Limit   |
| Chloromethane            | 10         | U  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 10         | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 10         | U  | 10       | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane             | 10         | U  | 10       | Chlorodibromomethane      | 2      | . 9  | J  | 5       |
| Methylene chloride       | 10         | U  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 100        | U  | 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         | 5          | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene       | 5          | U  | 5        | 2-Chloroethylvinyl ether  |        | LO   | U  | 10      |
| l,1-Dichloroethane       | 5          | U  | 5        | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene | 5          | U  | 5        | 2-Hexanone                | ţ      | 50   | U  | 50      |
| cis-1,2-Dichloroethene   | 5          | U  | 5        | 4-Methyl-2-pentanone      |        | 0    | U  | 50      |
| Chloroform               | 5          | U  | 5        | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       | 5          | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 100        | U  | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    | 5          | U  | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     | 5          | U  | 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 10         | U  | 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     | 5          | U  | 5        | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 99         | 88 - 110 |
| BROMOFLUOROBENZENE    | 100        | 86 - 115 |
| 1,2-DICHLOROETHANE-D4 | 94         | 76 - 114 |

# Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 4 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-169

SAMPLE ID: A1607

SAMPLE DATE: 12/13/93 15:00:00

SAMPLE MATRIX: WATER

|                         | Note  |             | Reporting |               | Date     | Method    |
|-------------------------|-------|-------------|-----------|---------------|----------|-----------|
| Test Name               | Ref _ | Result      | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric |       | 380         |           | MG/L as CaCo3 |          | EPA310 1  |
| TPH - IR                |       | 0.96U       | 0.96      | MG/L          |          | EPA418 1  |
| Phenolics               |       | 0.0100      | 0.010     | MG/L          | 01/06/94 |           |
| Chloride by Ion Chrom.  |       | 17          | 10        | MG/L          |          | EPA300 0  |
| Chemical Oxygen Demand  |       | 25 <b>U</b> | 25        | MG/L          |          | EPA410 4  |
| Chromium VI             |       | 0.0100      | 0.010     | MG/L          | 12/14/93 |           |
| Nitrate and Nitrite     |       | 3.3         | 0.50      | MG/L          |          | EPA353 2  |
| Silica                  |       | 8.8         | 2.0       | MG/L          | 12/29/93 | _         |
| Sulfate by Ion Chrom.   |       | 17N         | 10        | MG/L          |          | EPA300 0  |
| Total Dissolved Solids  |       | 190         | 10        | MG/L          |          | EPA160 1  |
| Total Kjeldahl Nitrogen |       | 0.25UN      | 0.25      | MG/L          |          | EPA351 3  |
| Total Organic Carbon    |       | 1.00        |           | MG/L          |          | EPA415 1  |
| Total Suspended Solids  |       | 1900        |           | MG/L          |          | EPA160 2  |
| Total Phosphorus        |       | 0.19N       | 0.10      | •             |          | EPA365_3  |

Page: 5 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1607 SAMPLE DATE: 12/13/93 SAMPLE MATRIX: WATER ANALYSIS DATE: 12/27/93 DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |        | R    | eporting |                           |        |      | Re | porting |
|--------------------------|--------|------|----------|---------------------------|--------|------|----|---------|
|                          | Result | Qual | Limit    |                           | Result | Qua] | L  | Limit   |
| Chloromethane            | 1      | 0 υ  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 1      | 0 υ  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 1      | 0 U  | 10       | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane             | 1      | 0 υ  | 10       | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride       | 1      | 0 U  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 10     | 0 U  | 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         |        | 5 บ  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene       |        | 5 ປ  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| 1,1-Dichloroethane       |        | 5 U  | 5        | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene |        | 5 U  | 5        | 2-Hexanone                | ļ      | 50   | U  | 50      |
| cis-1,2-Dichloroethene   |        | 5 U  | 5        | 4-Methyl-2-pentanone      |        | 50   | U  | 50      |
| Chloroform               |        | 5 บ  | 5        | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       |        | 5 U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 10     | 0 υ  | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    |        | 5 U  | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     |        | 5 บั | 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 1      | 0 U  | 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     |        | 5 U  | 5        | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |  |  |
|-----------------------|------------|----------|--|--|
| TOLUENE-D8            | 103        | 88 - 110 |  |  |
| BROMOFLUOROBENZENE    | 103        | 86 - 115 |  |  |
| 1,2-DICHLOROETHANE-D4 | 96         | 76 - 114 |  |  |

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 6 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1607 SAMPLE DATE: 12/13/93 SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/16/93 ANALYSIS DATE: 12/30/93 DILUTION FACTOR: 1.0

| UNITS: UG/L                 |       | R          | eporting |                                         |        | F        | eporting |
|-----------------------------|-------|------------|----------|-----------------------------------------|--------|----------|----------|
| R                           | esult | Qual       | Limit    |                                         | Result | Qual     | Limit    |
|                             |       |            |          |                                         |        |          |          |
| Phenol                      | 1     | 0 υ        | 10       | 2,6-Dinitrotoluene                      | 1      | υ 0      | 10       |
| bis(2-Chloroethyl)ether     | 1     | ט 0        | 10       | 3-Nitroaniline                          | 2      | 5 U      | 25       |
| 2-Chlorophenol              | 1     | ט 0        | 10       | Acenaphthene                            | 1      | υ (C     | 10       |
| 1,3-Dichlorobenzene         | 1     | υ 0        | 10       | 2,4-Dinitrophenol                       | 2      | 5 U      | 25       |
| 1,4-Dichlorobenzene         | 1     | U 0        | 10       | 4-Nitrophenol                           | 2      | 5 U      | 25       |
| Benzyl alcohol              | 1     | υ 0        | 10       | Dibenzofuran                            | 1      | ט כ      | 10       |
| 1,2-Dichlorobenzene         | 1     | υ 0        | 10       | 2,4-Dinitrotoluene                      | 1      | U C      | 10       |
| 2-Methylphenol              | 1     | υ 0        | 10       | Diethylphthalate                        | 1      | U C      | 10       |
| bis(2-Chloroisopropyl)ether | 1     | υ 0        | 10       | 4-Chlorophenyl-phenylether              | : 10   | ט כ      | 10       |
| 4-Methylphenol              | 10    | υ 0        | 10       | Fluorene                                | 10     | ט כ      | 10       |
| N-Nitroso-di-n-propylamine  | 10    | 0 U        | 10       | 4-Nitroaniline                          | 10     | ט כ      | 10       |
| Hexachloroethane            | 10    | 0 U        | 10       | 4,6-Dinitro-2-methylphenol              | L 2!   | 5 U      | 25       |
| Nitrobenzene                | 10    | <b>υ</b> 0 | 10       | N-Nitrosodiphenylamine (1)              | 10     | υ σ      | 10       |
| Isophorone                  | 10    | υ 0        | 10       | 4-Bromophenyl-phenylether               | 10     | ט כ      | 10       |
| 2-Nitrophenol               | 10    | υ 0        | 10       | Hexachlorobenzene                       | 10     | ט כ      | 10       |
| 2,4-Dimethylphenol          | 1     | υ 0        | 10       | Pentachlorophenol                       | 2      | 5 U      | 25       |
| Benzoic Acid                | 10    | υ 0        | 10       | Phenanthrene                            | 10     | ט כ      | 10       |
| bis(2-Chloroethoxy)methane  | 10    | υ 0        | 10       | Anthracene                              | 10     | ט כ      | 10       |
| 2,4-Dichlorophenol          | 10    | υ 0        | 10       | Di-n-butylphthalate                     | 10     | <b>U</b> | 10       |
| 1,2,4-Trichlorobenzene      | 10    | υ 0        | 10       | Fluoranthene                            | 10     | υ (      | 10       |
| Naphthalene                 | 10    | υ σ        | 10       | Pyrene                                  | 10     | υ (      | 10       |
| 4-Chloroaniline             | 10    | บ C        | 10       | Butylbenzylphthalate                    | 10     | ט כ      | 10       |
| Hexachlorobutadiene         | 10    | υ C        | 10       | 3,3'-Dichlorobenzidine                  | 10     | υ (      | 10       |
| 4-Chloro-3-methylphenol     | 10    | υ C        | 10       | Benzo(a)anthracene                      | 10     | ט כ      | 10       |
| 2-Methylnaphthalene         | 10    | บ C        | 10       | Chrysene                                | 10     | υ (      | 10       |
| Hexachlorocyclopentadiene   | 10    | υ C        | 10       | bis(2-Ethylhexyl)phthalate              | · 10   | ט כ      | 10       |
| 2,4,6-Trichlorophenol       | 10    | υ 0        | 10       | Di-n-octylphthalate                     | 10     | υ        | 10       |
| 2,4,5-Trichlorophenol       | 10    | υ C        | 10       | Benzo(b) fluoranthene                   | 10     | υ (      | 10       |
| 2-Chloronaphthalene         | 10    | υ σ        | 10       | Benzo(k)fluoranthene                    | 10     | <b>U</b> | 10       |
| 2-Nitroaniline              | 2     | 5 ช        | 25       | Benzo(a)pyrene                          | 10     | ט כ      | 10       |
| Dimethylphthalate           | 10    | υ C        | 10       | Indeno(1,2,3-cd)pyrene                  | 10     | υ (      | 10       |
| Acenaphthylene              | 10    | υ C        | 10       | Dibenzo(a,h)anthracene                  | 10     | ט כ      | 10       |
|                             |       |            |          | Benzo(g,h,i)perylene                    | 10     | ט כ      | 10       |
|                             |       |            |          | · - · · - · - · - · - · - · · - · · · · |        |          |          |

Page: 7 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1607

SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 90         | 35 - 114 |
| 2-Fluorobiphenyl     | 92         | 43 - 116 |
| Terphenyl-D14        | 89         | 33 - 141 |
| Phenol-D5            | 80         | 10 - 94  |
| 2-Fluorophenol       | 80         | 21 - 100 |
| 2,4,6-Tribromophenol | 95         | 10 - 123 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 8 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

5.0

0.020

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1607

SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER
PREP DATE: 12/16/93
ANALYSIS DATE: 01/05/94
DILUTION FACTOR: 1.00000

UNITS: MG/L Reporting Result Qual Limit Aluminum N 32 0.20 Barium 3.7 0.20 Cadmium 0.0066 0.0050 Calcium 100 5.0 Chromium 0.12 N 0.010 Copper 0.10 0.025 Iron 57 0.10 Magnesium 57 5.0 Manganese 1.2 0.015 N Nickel 0.079 N 0.040 Potassium 7.3 5.0 Selenium 0.10 UN 0.10 Silver 0.010 0.010 U

### Data qualifier key:

Zinc

Sodium

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance

25

N

0.10

- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 9 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

SAMPLE ID: A1608

SAMPLE DATE: 12/13/93 15:35:00

SAMPLE MATRIX: WATER

|                         | Note |             | Reporting |               | Date     | Method    |
|-------------------------|------|-------------|-----------|---------------|----------|-----------|
| Test Name               | Ref  | Result      | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric |      | 350         | 10        | MG/L as CaCo3 |          | EPA310 1  |
| TPH - IR                |      | 0.96U       | 0.96      | MG/L          |          | EPA418 1  |
| Phenolics               |      | 0.0100      | 0.010     | MG/L          | 01/06/94 |           |
| Chloride by Ion Chrom.  |      | 26          |           | MG/L          |          | EPA300 0  |
| Chemical Oxygen Demand  |      | 25 <b>U</b> |           | MG/L          |          | EPA410 4  |
| Chromium VI             |      | 0.0100      |           | •             | 12/14/93 |           |
| Nitrate and Nitrite     |      | 1.1         | 0.050     | MG/L          |          | EPA353 2  |
| Silica                  |      | 8.6         | 2.0       | MG/L          | 12/29/93 |           |
| Sulfate by Ion Chrom.   |      | 14N         | 10        | MG/L          |          | EPA300 0  |
| Total Dissolved Solids  |      | 388         |           | MG/L          | •        | EPA160 1  |
| Total Kjeldahl Nitrogen |      | 0.25UN      | 0.25      | MG/L          |          | EPA351 3  |
| Total Organic Carbon    |      | 1.00        |           | MG/L          |          | EPA415 1  |
| Total Suspended Solids  |      | 200         | 10        | MG/L          |          | EPA160 2  |
| Total Phosphorus        |      | 0.10UN      |           | MG/L          |          | EPA365_3  |

Page: 10 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1608

SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/27/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |             | _   | orting |                           |        |      | Re | porting |
|--------------------------|-------------|-----|--------|---------------------------|--------|------|----|---------|
|                          | Result Qual | l L | imit   |                           | Result | Qua. | 1  | Limit   |
| Chloromethane            | 10          | U   | 10     | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 10          | U   | 10     | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 10          | U   | 10     | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane             | 10          | U   | 10     | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride       | 10          | U   | 10     | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 100         | U   | 100    | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         | 5           | U   | 5      | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene       | 5           | U   | 5      | 2-Chloroethylvinyl ether  | 1      | LO   | U  | 10      |
| 1,1-Dichloroethane       | 5           | U   | 5      | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene | 5           | U   | 5      | 2-Hexanone                | 9      | 0    | U  | 50      |
| cis-1,2-Dichloroethene   | 5           | U   | 5      | 4-Methyl-2-pentanone      | 9      | 0    | Ū  | 50      |
| Chloroform               | 5           | U   | 5      | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       | 5           | U   | 5      | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 100         | U   | 100    | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    | 5           | U   | 5      | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     | 5           | U   | 5      | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 10          | U   | 10     | Styrene                   |        | 5    | Ū  | 5       |
| Dichlorobromomethane     | 5           | U   | 5      | Xylenes, total            |        | 5    | Ū  | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 100        | 88 - 110 |
| BROMOFLUOROBENZENE    | 102        | 86 - 115 |
| 1,2-DICHLOROETHANE-D4 | 97         | 76 - 114 |

- U none detected
- ${\tt J}$  estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 11 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1608
SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/16/93 ANALYSIS DATE: 12/30/93 DILUTION FACTOR: 1.0

UNITS: UG/L Reporting Reporting Result Qual Limit Result Qual Limit Phenol 10 IJ 10 2,6-Dinitrotoluene 10 U 10 bis(2-Chloroethyl)ether 10 U 10 3-Nitroaniline 25 U 25 2-Chlorophenol 10 U 10 Acenaphthene 10 U 10 1,3-Dichlorobenzene 10 U 10 2,4-Dinitrophenol 25 U 25 1,4-Dichlorobenzene 10 Ħ 10 4-Nitrophenol 25 U 25 Benzyl alcohol 10 10 11 Dibenzofuran 10 U 10 1,2-Dichlorobenzene 10 TT 10 U 2,4-Dinitrotoluene 10 10 2-Methylphenol 10 Ħ 10 Diethylphthalate 10 U 10 pis(2-Chloroisopropyl)ether 10 U 10 4-Chlorophenyl-phenylether 10 U 10 4-Methylphenol 10 U 10 Fluorene 10 TT 10 N-Nitroso-di-n-propylamine 10 TT 10 4-Nitroaniline 10 U 10 Hexachloroethane 10 U 10 4,6-Dinitro-2-methylphenol 25 Ħ 25 Nitrobenzene 10 U 10 N-Nitrosodiphenylamine (1) 10 U 10 Isophorone 10 U 10 4-Bromophenyl-phenylether 10 TT 10 2-Nitrophenol 10 U 10 Hexachlorobenzene 10 U 10 2,4-Dimethylphenol 10 U 10 Pentachlorophenol 25 П 25 Benzoic Acid 10 U 10 Phenanthrene U 10 10 bis(2-Chloroethoxy)methane 10 U 10 Anthracene 10 TT 10 2,4-Dichlorophenol 10 U 10 Di-n-butylphthalate 10 Ħ 10 1,2,4-Trichlorobenzene 10 U 10 Fluoranthene 10 U 10 Naphthalene 10 U 10 Pvrene 10 U 10 4-Chloroaniline 10 Ħ 10 Butylbenzylphthalate 10 U 10 Hexachlorobutadiene 10 U 10 3,3'-Dichlorobenzidine 10 U 10 4-Chloro-3-methylphenol 10 Ħ 10 Benzo(a)anthracene U 10 10 2-Methylnaphthalene 10 U 10 Chrysene 10 U 10 Hexachlorocyclopentadiene 10 U 10 bis(2-Ethylhexyl)phthalate U 10 10 2,4,6-Trichlorophenol 10 U 10 Di-n-octylphthalate 10 U 10 2,4,5-Trichlorophenol 10 U 10 Benzo(b) fluoranthene 10 U 10 2-Chloronaphthalene 10 Ħ 10 Benzo(k)fluoranthene 10 U 10 2-Nitroaniline 25 U 25 U Benzo(a)pyrene 10 10 Dimethylphthalate 10 U 10 Indeno(1,2,3-cd)pyrene 10 U 10 Acenaphthylene 10 TT 10 U Dibenzo(a,h)anthracene 10 10 Benzo(g,h,i)perylene 10 U 10

Page: 12 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-169

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1608
SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|
| Nitrobenzene-D5      | 88         | 35 - 114 |  |  |  |  |
| 2-Fluorobiphenyl     | 83         | 43 - 116 |  |  |  |  |
| Terphenyl-D14        | 87         | 33 - 141 |  |  |  |  |
| Phenol-D5            | 77         | 10 - 94  |  |  |  |  |
| 2-Fluorophenol       | 74         | 21 - 100 |  |  |  |  |
| 2,4,6-Tribromophenol | 90         | 10 - 123 |  |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\ensuremath{\mathtt{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 13 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1608

UNITS:

SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER
PREP DATE: 12/16/93
ANALYSIS DATE: 01/05/94
DILUTION FACTOR: 1.00000

| MG/L      |        |      | Reporting |
|-----------|--------|------|-----------|
|           | Result | Qual | Limit     |
| Aluminum  | 2.9    | N    | 0.20      |
| Barium    | 0.56   |      | 0.20      |
| Cadmium   | 0.0050 | U    | 0.0050    |
| Calcium   | 61     |      | 5.0       |
| Chromium  | 0.075  | N    | 0.010     |
| Copper    | 0.025  | U    | 0.025     |
| Iron      | 4.8    |      | 0.10      |
| Magnesium | 35     |      | 5.0       |
| Manganese | 0.12   | N    | 0.015     |
| Nickel    | 0.067  | N    | 0.040     |
| Potassium | 5.0    | Ū    | 5.0       |
| Selenium  | 0.10   | UN   | 0.10      |
| Silver    | 0.010  | บ    | 0.010     |
| Sodium    | 23     |      | 5.0       |
| Zinc      | 0.021  | N    | 0.020     |
|           |        |      |           |

# Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 14 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-169

SAMPLE ID: A1609

SAMPLE DATE: 12/13/93 16:00:00

SAMPLE MATRIX: WATER

|                         | Note |        | Reporting |               | Date     | Method    |
|-------------------------|------|--------|-----------|---------------|----------|-----------|
| Test Name               | Ref  | Result | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric |      | 190    | 10        | MG/L as CaCo3 | 12/15/93 | EPA310 1  |
| TPH - IR                |      | 0.96U  | 0.96      | MG/L          | 12/28/93 | EPA418 1  |
| Phenolics               |      | 0.0100 | 0.010     | MG/L          | 01/06/94 | EPA9066   |
| Chloride by Ion Chrom.  |      | 24     | 10        | MG/L          | 01/05/94 | EPA300 0  |
| Chemical Oxygen Demand  |      | 25บ    | 25        | MG/L          | 12/28/93 | EPA410 4  |
| Chromium VI             |      | 0.0100 | 0.010     | MG/L          | 12/14/93 | EPA7196   |
| Nitrate and Nitrite     |      | 0.78   | 0.050     | MG/L          | 01/05/94 | EPA353 2  |
| Silica                  |      | 11     | 5.0       | MG/L          | 12/29/93 | 370 1     |
| Sulfate by Ion Chrom.   |      | 24N    | 10        | MG/L          | 01/05/94 | EPA300 0  |
| Total Dissolved Solids  |      | 258    | 10        | MG/L          | 12/15/93 | EPA160 1  |
| Total Kjeldahl Nitrogen |      | 0.26N  | 0.25      | MG/L          | 01/10/94 | EPA351 3  |
| Total Organic Carbon    |      | 1.00   | 1.0       | MG/L          | 12/20/93 | EPA415 1  |
| Total Suspended Solids  |      | 100    | 10        | MG/L          | • •      | EPA160 2  |
| Total Phosphorus        |      | 3.9N   | 0.10      | MG/L          | 01/10/94 | _         |

Page: 15 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1609

SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/27/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |          | R        | eporting |                           |        |      | Report | ing |
|--------------------------|----------|----------|----------|---------------------------|--------|------|--------|-----|
|                          | Result ( | Qual     | Limit    |                           | Result | Qual | Limi   | .t  |
| Chloromethane            | 10       | ט כ      | 10       | 1,2-Dichloropropane       |        | 5    | U      | 5   |
| Bromomethane             | 10       | <b>U</b> | 10       | trans-1,3-Dichloropropene |        | _    | U      | 5   |
| Vinyl chloride           | 10       | <b>U</b> | 10       | Trichloroethene           |        | _    | U      | 5   |
| Chloroethane             | 10       | <b>U</b> | 10       | Chlorodibromomethane      |        | 5    | U      | 5   |
| Methylene chloride       | 10       | ) U      | 10       | 1,1,2-Trichloroethane     |        | 5    | U      | 5   |
| Acetone                  | 100      | <b>U</b> | 100      | Benzene                   |        | 5    | U      | 5   |
| Carbon disulfide         | į        | 5 U      | 5        | cis-1,3-Dichloropropene   |        | 5    | U      | 5   |
| 1,1-Dichloroethene       | 5        | 5 U      | 5        | 2-Chloroethylvinyl ether  |        | LO   | U 1    | .0  |
| 1,1-Dichloroethane       | 5        | 5 U      | 5        | Bromoform                 |        | 5    | U      | 5   |
| trans-1,2-Dichloroethene | 5        | 5 U      | 5        | 2-Hexanone                |        | 50   | U 5    | 0   |
| cis-1,2-Dichloroethene   | 5        | 5 U      | 5        | 4-Methyl-2-pentanone      |        | 50   | U 5    | 0   |
| Chloroform               | 5        | 5 U      | 5        | Tetrachloroethene         |        | 5    | U      | 5   |
| 1,2-Dichloroethane       | Ę        | 5 U      | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U      | 5   |
| 2-Butanone               | 100      | ) U      | 100      | Toluene                   |        | 5    | U      | 5   |
| 1,1,1-Trichloroethane    | 5        | 5 U      | 5        | Chlorobenzene             |        | 5    | U      | 5   |
| Carbon tetrachloride     | 5        | 5 U      | 5        | Ethylbenzene              |        | 5    | U      | 5   |
| Vinyl acetate            | 10       | ) U      | 10       | Styrene                   |        | 5    | U      | 5   |
| Dichlorobromomethane     | 5        | 5 U      | 5        | Xylenes, total            |        | 5    | บ      | 5   |

| Surrogates            | % Recovery | Limits   |  |  |  |  |
|-----------------------|------------|----------|--|--|--|--|
| TOLUENE-D8            | 103        | 88 - 110 |  |  |  |  |
| BROMOFLUOROBENZENE    | 106        | 86 - 115 |  |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 96         | 76 - 114 |  |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 16 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1609
SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/16/93 ANALYSIS DATE: 12/30/93 DILUTION FACTOR: 1.0

| DILUTION FACTOR:           | 1.0    |      |          |                            |        |      |          |
|----------------------------|--------|------|----------|----------------------------|--------|------|----------|
| UNITS: UG/L                |        |      | eporting |                            |        |      | eporting |
|                            | Result | Qual | Limit    |                            | Result | Qual | Limit    |
| Phenol                     | 1      | .0 σ | 10       | 2,6-Dinitrotoluene         | 10     | U    | 10       |
| bis(2-Chloroethyl)ether    | 1      | .0 σ | 10       | 3-Nitroaniline             | 25     | σ    | 25       |
| 2-Chlorophenol             | 1      | .0 σ | 10       | Acenaphthene               | 10     | U    | 10       |
| 1,3-Dichlorobenzene        | 1      | .0 σ | 10       | 2,4-Dinitrophenol          | 25     | ט    | 25       |
| 1,4-Dichlorobenzene        | 1      | .0 σ | 10       | 4-Nitrophenol              | 25     | υ    | 25       |
| Benzyl alcohol             | 1      | .0 σ | 10       | Dibenzofuran               | 10     | σ    | 10       |
| 1,2-Dichlorobenzene        | 1      | .0 U | 10       | 2,4-Dinitrotoluene         | 10     | U    | 10       |
| 2-Methylphenol             | 1      | .Ο σ | 10       | Diethylphthalate           | 10     |      | 10       |
| bis(2-Chloroisopropyl)ethe | r 1    | .0 σ | 10       | 4-Chlorophenyl-phenylether | . 10   | U    | 10       |
| 4-Methylphenol             |        | .0 σ | 10       | Fluorene                   | 10     | σ    | 10       |
| N-Nitroso-di-n-propylamine | . 1    | υ 0. | 10       | 4-Nitroaniline             | 10     | υ    | 10       |
| Hexachloroethane           | 1      | υ 0. | 10       | 4,6-Dinitro-2-methylphenol | . 25   | υ    | 25       |
| Nitrobenzene               | 1      | .0 ซ | 10       | N-Nitrosodiphenylamine (1) |        | σ    | 10       |
| Isophorone                 | 1      | υ 0. | 10       | 4-Bromophenyl-phenylether  | 10     | υ    | 10       |
| 2-Nitrophenol              | 1      | υ 0. | 10       | Hexachlorobenzene          | 10     | U    | 10       |
| 2,4-Dimethylphenol         | 1      | υ 0. | 10       | Pentachlorophenol          | 25     | บ    | 25       |
| Benzoic Acid               | 1      | .Ο υ | 10       | Phenanthrene               | 10     | U    | 10       |
| bis(2-Chloroethoxy)methane | 1      | .Ο υ | 10       | Anthracene                 | 10     | บ    | 10       |
| 2,4-Dichlorophenol         | 1      | .Ο υ | 10       | Di-n-butylphthalate        | 10     | U    | 10       |
| 1,2,4-Trichlorobenzene     | 1      | .Ο υ | 10       | Fluoranthene               | 10     | υ    | 10       |
| Naphthalene                | 1      | 0 υ  | 10       | Pyrene                     | 10     | บ    | 10       |
| 4-Chloroaniline            | 1      | 0 U  | 10       | Butylbenzylphthalate       | 10     | U    | 10       |
| Hexachlorobutadiene        | 1      | 0 υ  | 10       | 3,3'-Dichlorobenzidine     | 10     | U    | 10       |
| 4-Chloro-3-methylphenol    | 1      | 0 υ  | 10       | Benzo(a)anthracene         | 10     | บ    | 10       |
| 2-Methylnaphthalene        | 1      | 0 υ  | 10       | Chrysene                   | 10     | U    | 10       |
| Hexachlorocyclopentadiene  | 1      | 0 U  | 10       | bis(2-Ethylhexyl)phthalate | 1.4    | JB   | 10       |
| 2,4,6-Trichlorophenol      | 1      | 0 υ  | 10       | Di-n-octylphthalate        | 10     | บ    | 10       |
| 2,4,5-Trichlorophenol      | 1      | 0 υ  | 10       | Benzo(b)fluoranthene       | 10     | บ    | 10       |
| 2-Chloronaphthalene        | 1      | 0 υ  | 10       | Benzo(k)fluoranthene       | 10     | บ    | 10       |
| 2-Nitroaniline             | 2      | 5 U  | 25       | Benzo(a)pyrene             | 10     |      | 10       |
| Dimethylphthalate          | 1      | 0 υ  | 10       | Indeno(1,2,3-cd)pyrene     | 10     | U    | 10       |
| Acenaphthylene             | 1      | 0 υ  | 10       | Dibenzo(a,h)anthracene     | 10     | U    | 10       |
|                            |        |      |          | Benzo(g,h,i)perylene       | 10     | U    | 10       |
|                            |        |      |          |                            |        |      |          |

Page: 17 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1609
SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |  |  |  |
|----------------------|------------|----------|--|--|--|
| Nitrobenzene-D5      | 80         | 35 - 114 |  |  |  |
| 2-Fluorobiphenyl     | 83         | 43 - 116 |  |  |  |
| Terphenyl-D14        | 75         | 33 - 141 |  |  |  |
| Phenol-D5            | 75         | 10 - 94  |  |  |  |
| 2-Fluorophenol       | 72         | 21 - 100 |  |  |  |
| 2,4,6-Tribromophenol | 87         | 10 - 123 |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 18 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1609

SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER
PREP DATE: 12/16/93
ANALYSIS DATE: 01/05/94
DILUTION FACTOR: 1.0

UNITS:

| MG/L      |        |      | Reporting |
|-----------|--------|------|-----------|
|           | Result | Qual | Limit     |
| Aluminum  | 2.8    | N    | 0.20      |
| Barium    | 0.20   | U    | 0.20      |
| Cadmium   | 0.0050 | U    | 0.0050    |
| Calcium   | 36     |      | 5.0       |
| Chromium  | 0.053  | N    | 0.010     |
| Copper    | 0.025  | U    | 0.025     |
| Iron      | 4.3    |      | 0.10      |
| Magnesium | 19     |      | 5.0       |
| Manganese | 0.067  | N    | 0.015     |
| Nickel    | 0.040  | UN   | 0.040     |
| Potassium | 5.0    | U    | 5.0       |
| Selenium  | 0.010  | UN   | 0.010     |
| Silver    | 0.010  | U    | 0.010     |
| Sodium    | 22     |      | 5.0       |
| Zinc      | 0.028  | N    | 0.020     |
|           |        |      |           |

# Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- ${\tt N}$  spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 19 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

SAMPLE ID: A1609-MS

SAMPLE DATE: 12/13/93 16:00:00

SAMPLE MATRIX: WATER

|                         | Note |        | Reporting |               | Date     | Method    |
|-------------------------|------|--------|-----------|---------------|----------|-----------|
| Test Name               | Ref  | Result | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric | 1    | 190    |           | MG/L AS CACO3 |          | EPA310 1  |
| TPH - IR                |      | 95     |           | % REC         | 12/20/93 |           |
| Phenolics               |      | 78     |           | % REC         | 01/06/94 |           |
| Chloride by Ion Chrom.  |      | 90     |           | % REC         | 01/05/94 |           |
| Chemical Oxygen Demand  |      | 106    |           | % REC         |          | EPA410 4  |
| Chromium VI             |      | 102    |           | % REC         | 12/14/93 |           |
| Nitrate and Nitrite     |      | 110    |           | % REC         |          | EPA353 2  |
| Silica                  |      | 94     |           | % REC         | 12/29/93 |           |
| Sulfate by Ion Chrom.   | 2    | 79     |           | % REC         | 01/05/94 | _         |
| Total Dissolved Solids  | 3    | 260    | 10        | MG/L          | 12/15/93 | _         |
| Total Kjeldahl Nitrogen |      | 82     |           | % REC         | 01/10/94 | _         |
| Total Organic Carbon    |      | 114    |           | % REC         | 12/20/93 | _         |
| Total Suspended Solids  | 4    | 140    | 10        | MG/L          | 12/15/93 | _         |
| Total Phosphorus        | 5    | 0      |           | % REC         | 01/10/94 |           |

# Referenced notes for these results:

- 1 Duplicate analysis performed in lieu of a matrix spike.
- Matrix spike recovery outside control limits due to matrix interference of sulfate analysis by IC. LCS / LCSD results and all other method Quality Control within acceptance limits.
- 3 Duplicate analysis performed in lieu of a matrix spike.
- 4 Duplicate analysis performed in lieu of a matrix spike.
- Matrix spike outside control limits due to matrix interference. LCS and method Quality Control were acceptable.

Page: 20 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1609-MS
SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/27/93
DILUTION FACTOR: 1.0

UNITS: % REC

|                    | Result                |            |          | Result |
|--------------------|-----------------------|------------|----------|--------|
| 1,1-Dichloroethene | 109                   | Trichloro  | ethene   | 99     |
|                    |                       | Benzene    |          | 102    |
|                    |                       | Toluene    |          | 100    |
|                    |                       | Chloroben  | zene     | 101    |
|                    | Surrogates            | % Recovery | Limits   |        |
|                    | TOLUENE-D8            | 104        | 88 - 110 |        |
|                    | BROMOFLUOROBENZENE    | 102        | 86 - 115 |        |
|                    | 1,2-DICHLOROETHANE-D4 | 96         | 76 - 114 |        |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 21 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1609-MS SAMPLE DATE: 12/13/93 SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/16/93 ANALYSIS DATE: 12/30/93 DILUTION FACTOR: 1.0 UNITS: % REC

Result

| F                          | Result |                    |     |
|----------------------------|--------|--------------------|-----|
| Phenol                     | 82     | Acenaphthene       | 93  |
| 2-Chlorophenol             | 90     | 4-Nitrophenol      | 89  |
| 1,4-Dichlorobenzene        | 81     | 2,4-Dinitrotoluene | 81  |
| N-Nitroso-di-n-propylamine | 79     | Pentachlorophenol  | 113 |
| 1,2,4-Trichlorobenzene     | 86     | Pyrene             | 92  |
| 4-Chloro-3-methylphenol    | 92     | 1                  |     |

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 92         | 35 - 114 |
| 2-Fluorobiphenyl     | 90         | 43 - 116 |
| Terphenyl-D14        | 85         | 33 - 141 |
| Phenol-D5            | 79         | 10 - 94  |
| 2-Fluorophenol       | 77         | 21 - 100 |
| 2,4,6-Tribromophenol | 98         | 10 - 123 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' - positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 22 of 35

Company: IT CORPORATION

Date: 01/11/94

UNITS:

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1609-MS
SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER
PREP DATE: 12/16/93
ANALYSIS DATE: 01/05/94
DILUTION FACTOR: 1.00000

| % REC     | Result |
|-----------|--------|
| Aluminum  | 120    |
| Barium    | 106    |
| Cadmium   | 81     |
| Calcium   | 97     |
| Chromium  | 81     |
| Copper    | 82     |
| Iron      | 85     |
| Magnesium | 96     |
| Manganese | 77     |
| Nickel    | 81     |
| Potassium | 102    |
| Selenium  | 81     |
| Silver    | 82     |
| Sodium    | 96     |
| Zinc      | 80     |

### Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

### Referenced notes for these results:

Matrix spike recovery outside control limits due to matrix interference of manganese analysis by ICPES. LCS / LCSD results and all method Quality Control within acceptance limits.

Page: 23 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES AUSTIN, TX

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

SAMPLE ID: A1609-MSD

SAMPLE DATE: 12/13/93 16:00:00

SAMPLE MATRIX: WATER

|                         | Note  |        | Reporting |               | Date     | Method    |
|-------------------------|-------|--------|-----------|---------------|----------|-----------|
| Test Name               | Ref _ | Result | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric | 1     | 190    | 10        | MG/L AS CACO3 | 12/15/93 | EPA310 1  |
| TPH - IR                |       | 100    |           | % REC         | 02/20/93 | EPA418 1  |
| Phenolics               |       | 81     |           | % REC         | 01/06/94 | EPA9066   |
| Chloride by Ion Chrom.  |       | 91     |           | % REC         | 01/05/94 | EPA300 0  |
| Chemical Oxygen Demand  |       | 110    |           | % REC         | 12/28/93 | EPA410 4  |
| Chromium VI             |       | 104    |           | % REC         | 12/14/93 | EPA7196   |
| Nitrate and Nitrite     |       | 99     |           | % REC         | 01/05/94 | EPA353 2  |
| Silica                  |       | 108    |           | % REC         | 12/29/93 | _         |
| Sulfate by Ion Chrom.   | 2     | 69     |           | % REC         | 01/05/94 | EPA300 0  |
| Total Dissolved Solids  | 3     | 260    | 10        | MG/L          | 12/15/93 | EPA160 1  |
| Total Kjeldahl Nitrogen | 4     | 68     |           | % REC         |          | EPA351 3  |
| Total Organic Carbon    |       | 0      |           | % REC         |          | EPA415 1  |
| Total Suspended Solids  | 5     | 140    |           | MG/L          |          | EPA160 2  |
| Total Phosphorus        | 6     | 0      |           | % REC         |          | EPA365 3  |

### Referenced notes for these results:

- 1 Duplicate analysis performed in lieu of a matrix spike.
- Matrix spike duplicate recovery outside control limits due to matrix interference of sulfate analysis by IC. LCS / LCSD results and all other method Quality Control within acceptance limits.
- 3 Duplicate analysis performed in lieu of a matrix spike.
- 4 Matrix spike duplicate outside control limits due to matrix interference. LCS and method Quality Control were acceptable.
- 5 Duplicate analysis performed in lieu of a matrix spike.
- 6 Matrix spike duplicate outside control limits due to matrix interference. LCS and method Quality Control were acceptable.

Page: 24 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1609-MSD
SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/27/93
DILUTION FACTOR: 1.0

UNITS: % REC

|                    | Result             |            |          | Result |
|--------------------|--------------------|------------|----------|--------|
| 1,1-Dichloroethene | 103                | Trichloro  | ethene   | 99     |
|                    |                    | Benzene    |          | 103    |
|                    |                    | Toluene    |          | 101    |
|                    |                    | Chloroben  | zene     | 102    |
|                    | Surrogates         | % Recovery | Limits   |        |
|                    | TOLUENE-D8         | 102        | 88 - 110 |        |
|                    | BROMOFLUOROBENZENE | 102        | 86 - 115 |        |

### Data Qualifier Key:

- U none detected
- ${\tt J}$  estimated value (less than the sample quantitation limit)
- $\ensuremath{\mathtt{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result

94

76 - 114

\* - Surrogate recovery is outside QC limit

1,2-DICHLOROETHANE-D4

- D compound identified at a secondary dilution factor
- E concentration exceeds calibration range

Page: 25 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1609-MSD SAMPLE DATE: 12/13/93 SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/16/93
ANALYSIS DATE: 12/30/93
DILUTION FACTOR: 1.0

UNITS: % REC

| F                          | Result |                    |     |
|----------------------------|--------|--------------------|-----|
| Phenol                     | 86     | Acenaphthene       | 87  |
| 2-Chlorophenol             | 94     | 4-Nitrophenol      | 84  |
| 1,4-Dichlorobenzene        | 83     | 2,4-Dinitrotoluene | 77  |
| N-Nitroso-di-n-propylamine | 80     | Pentachlorophenol  | 101 |
| 1,2,4-Trichlorobenzene     | 87     | Pyrene             | 95  |
| 4-Chloro-3-methylphenol    | 85     | -                  |     |

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 85         | 35 - 114 |
| 2-Fluorobiphenyl     | 86         | 43 - 116 |
| Terphenyl-D14        | 83         | 33 - 141 |
| Phenol-D5            | 79         | 10 - 94  |
| 2-Fluorophenol       | 80         | 21 - 100 |
| 2,4,6-Tribromophenol | 89         | 10 - 123 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\ensuremath{\mathtt{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 26 of 35

Company: IT CORPORATION

Date: 01/11/94

UNITS:

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1609-MSD
SAMPLE DATE: 12/13/93
SAMPLE MATRIX: WATER
PREP DATE: 12/16/93
ANALYSIS DATE: 01/05/94
DILUTION FACTOR: 1.00000

| % REC     | Result |
|-----------|--------|
| Aluminum  | 133    |
| Barium    | 105    |
| Cadmium   | 81     |
| Calcium   | 97     |
| Chromium  | 79     |
| Copper    | 80     |
| Iron      | 100    |
| Magnesium | 96     |
| Manganese | 77     |
| Nickel    | 79     |
| Potassium | 102    |
| Selenium  | 78     |
| Silver    | 80     |
| Sodium    | 92     |
| Zinc      | 79     |

### Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

### Referenced notes for these results:

Matrix spike duplicate recovery outside control limits due to matrix interference of manganese, aluminum, chromium, nickle, selenium, and zinc analysis by ICPES. LCS / LCSD results and all method Quality Control within acceptance limits.

Page: 27 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-169

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: WATER

|                         | Note |              | Reporting |               | Date     | Method    |
|-------------------------|------|--------------|-----------|---------------|----------|-----------|
| Test Name               | Ref  | Result       | Limit     | <u>Units</u>  | Analyzed | Reference |
| Alkalinity, Titrimetric |      | 5 <b>0</b> U | 50        | MG/L as CaCO3 |          | EPA310 1  |
| TPH - IR                |      | 1.00         | 1.0       | MG/L          |          | EPA418 1  |
| Phenolics               |      | 0.0100       | 0.010     | MG/L          | 01/06/94 | ****      |
| Chloride by Ion Chrom.  |      | 1.OU         | 1.0       | MG/L          | 01/05/94 | EPA300 0  |
| Chemical Oxygen Demand  |      | 2 <b>5</b> U | 25        | MG/L          |          | EPA410 4  |
| Chromium VI             |      | 0.0100       | 0.010     | MG/L          | 12/14/93 |           |
| Nitrate and Nitrite     |      | 0.0500       | 0.050     | MG/L          |          | EPA353 2  |
| Silica                  |      | 0.20U        | 0.20      | MG/L          | 12/29/93 |           |
| Sulfate by Ion Chrom.   |      | 1.00         |           | MG/L          |          | EPA300 0  |
| Total Dissolved Solids  |      | 100          | 10        | MG/L          |          | EPA160 1  |
| Total Kjeldahl Nitrogen |      | 0.25U        | 0.25      | MG/L          |          | EPA351 3  |
| Total Organic Carbon    |      | 1.00         |           | MG/L          |          | EPA415 1  |
| Total Suspended Solids  |      | 100          | 10        | MG/L          |          | EPA160 2  |
| Total Phosphorus        |      | 0.100        | 0.10      | •             |          | EPA365_3  |

Page: 28 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/27/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |        | F    | eporting |                           |        |      | Reporting  |
|--------------------------|--------|------|----------|---------------------------|--------|------|------------|
|                          | Result | Qual | Limit    |                           | Result | Qual | Limit      |
| Chloromethane            | ]      | .0 t | 10       | 1,2-Dichloropropane       |        | 5    | <b>U</b> 5 |
| Bromomethane             | ]      | .0 t |          | trans-1,3-Dichloropropene |        | 5    | U 5        |
| Vinyl chloride           | 1      | .0 t | 10       | Trichloroethene           |        | 5    | υ 5        |
| Chloroethane             | 1      | .0 t | 10       | Chlorodibromomethane      |        | 5    | U 5        |
| Methylene chloride       | 1      | .Ο τ | 10       | 1,1,2-Trichloroethane     |        | 5    | บ 5        |
| Acetone                  | 10     | 00 t | 100      | Benzene                   |        | -    | U 5        |
| Carbon disulfide         |        | 5 t  | 5        | cis-1,3-Dichloropropene   |        | 5    | υ 5        |
| 1,1-Dichloroethene       |        | 5 t  | 5        | 2-Chloroethylvinyl ether  |        | 10   | บ 10       |
| 1,1-Dichloroethane       |        | 5 t  | 5        | Bromoform                 | •      | 5    | บ 5        |
| trans-1,2-Dichloroethene |        | 5 t  | 5        | 2-Hexanone                |        | 50   | บ 50       |
| cis-1,2-Dichloroethene   |        | 5 t  | 5        | 4-Methyl-2-pentanone      |        | 50   | บ 50       |
| Chloroform               |        | 5 t  | 5        | Tetrachloroethene         |        | 5    | ช 5        |
| 1,2-Dichloroethane       |        | 5 t  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | บ 5        |
| 2-Butanone               | 10     | ο τ  | 100      | Toluene                   |        | 5    | υ 5        |
| 1,1,1-Trichloroethane    |        | 5 t  | 5        | Chlorobenzene             |        | 5    | υ 5        |
| Carbon tetrachloride     |        | 5 U  | 5        | Ethylbenzene              |        | 5    | υ 5        |
| Vinyl acetate            | 1      | .o u | 10       | Styrene                   |        | 5    | U 5        |
| Dichlorobromomethane     |        | 5 U  | 5        | Xylenes, total            |        | 5    | บ 5        |

| Surrogates            | % Recovery | Limits   |  |  |  |
|-----------------------|------------|----------|--|--|--|
| TOLUENE-D8            | 100        | 88 - 110 |  |  |  |
| BROMOFLUOROBENZENE    | 102        | 86 - 115 |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 96         | 76 - 114 |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 29 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

# IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

2-Chloronaphthalene

2-Nitroaniline

Acenaphthylene

Dimethylphthalate

SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/16/93
ANALYSIS DATE: 12/30/93
DILUTION ENCROP: 1.0

DILUTION FACTOR: 1.0 UNITS: UG/L Reporting Reporting Result Qual Limit Result Oual Limit Phenol 10 Ħ 10 2,6-Dinitrotoluene 10 Ħ 10 bis(2-Chloroethyl)ether 10 U 10 3-Nitroaniline 25 U 25 2-Chlorophenol 10 Ħ 10 Acenaphthene 10 TT 10 1,3-Dichlorobenzene 10 IJ 10 2,4-Dinitrophenol 25 TT 25 1,4-Dichlorobenzene 10 U 10 4-Nitrophenol 25 25 Benzyl alcohol 10 TT 10 Dibenzofuran 10 U 10 1,2-Dichlorobenzene 10 IJ 10 2,4-Dinitrotoluene 10 U 10 2-Methylphenol 10 U 10 Diethylphthalate 10 Ħ 10 >is(2-Chloroisopropyl)ether 10 U 10 4-Chlorophenyl-phenylether 10 10 4-Methylphenol 10 IJ 10 Fluorene 10 TT 10 N-Nitroso-di-n-propylamine 10 U 10 4-Nitroaniline 10 10 Hexachloroethane 10 U 10 4,6-Dinitro-2-methylphenol 25 25 Nitrobenzene 10 U 10 N-Nitrosodiphenylamine (1) 10 10 Isophorone 10 U 10 4-Bromophenyl-phenylether 10 U 10 2-Nitrophenol 10 IJ 10 Hexachlorobenzene 10 U 10 2,4-Dimethylphenol 10 U 10 Pentachlorophenol 25 25 Benzoic Acid 10 U 10 10 Phenanthrene 10 bis(2-Chloroethoxy)methane 10 U 10 Anthracene 10 10 2,4-Dichlorophenol 10 U 10 1.2 10 Di-n-butylphthalate J 1,2,4-Trichlorobenzene 10 U 10 Fluoranthene 10 10 Naphthalene 10 TT 10 TT Pyrene 10 10 4-Chloroaniline 10 U 10 Butylbenzylphthalate 10 10 Hexachlorobutadiene 10 TT 10 3,3'-Dichlorobenzidine 10 IJ 10 4-Chloro-3-methylphenol 10 10 Benzo(a)anthracene 10 10 2-Methylnaphthalene 10 Ħ 10 Chrysene 10 10 Hexachlorocyclopentadiene 10 1.4 IJ 10 bis(2-Ethylhexyl)phthalate J 10 2,4,6-Trichlorophenol 10 U 10 Di-n-octylphthalate 10 10 2,4,5-Trichlorophenol 10 U 10 10 10 Benzo(b) fluoranthene

10

25

10

10

U

U

U

10

25

10

10

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenzo(a,h)anthracene

Benzo(g,h,i)perylene

Benzo(a)pyrene

10

10

10

10

10

Ħ

U

U

U

U

10

10

10

10

10

Page: 30 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 Work Order: B3-12-169 409832-003-01

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 85         | 35 - 114 |
| 2-Fluorobiphenyl     | 82         | 43 - 116 |
| Terphenyl-D14        | 86         | 33 - 141 |
| Phenol-D5            | 83         | 10 - 94  |
| 2-Fluorophenol       | 72         | 21 - 100 |
| 2,4,6-Tribromophenol | 84         | 10 - 123 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' - positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 31 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

UNITS:

SAMPLE MATRIX: WATER
PREP DATE: 12/16/93
ANALYSIS DATE: 01/05/94
DILUTION FACTOR: 1.0

|           | 1.0 |        |      |                    |
|-----------|-----|--------|------|--------------------|
| MG/L      |     | Result | Qual | Reporting<br>Limit |
| Aluminum  |     | 0.20   | υ    | 0.20               |
| Barium    |     | 0.20   | Ü    | 0.20               |
| Cadmium   |     | 0.0050 | Ū    | 0.0050             |
| Calcium   |     | 5.0    | U    | 5.0                |
| Chromium  |     | 0.010  | U    | 0.010              |
| Copper    |     | 0.025  | U    | 0.025              |
| Iron      |     | 0.10   | U    | 0.10               |
| Magnesium |     | 5.0    | U    | 5.0                |
| Manganese |     | 0.015  | U    | 0.015              |
| Nickel    |     | 0.040  | U    | 0.040              |
| Potassium |     | 5.0    | U    | 5.0                |
| Selenium  |     | 0.010  | U    | 0.010              |
| Silver    |     | 0.010  | U    | 0.010              |
| Sodium    |     | 5.0    | U    | 5.0                |
| Zinc      |     | 0.020  | U    | 0.020              |
|           |     |        |      |                    |

### Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 32 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

IV. Methodology

Requested analyses were performed according to the following methods.

TEST NAME Alkalinity, Titrimetric TEST CODE 310\_1

Alkalinity EPA 310.1 - Chemical Analysis of Water and Wastewater.

Titrimetric with sulfuric acid.

TEST NAME TPH - IR TEST CODE 418\_1

418\_1 Method 418.1: Total Recoverable Petroleum Hydorcarbons,

infrared spectrophotmetric method. Methods for the

chemical analysis of water and wastes. USEPA.

TEST NAME ICP Metals TEST CODE 6010

Metals by ICP Inductively coupled emission spectroscopy according to

Method 6010, "Test Methods for Evaluating Solid Waste

Physical/Chemical Methods", SW-846, Third Edition.

TEST NAME Hazardous Substance Vols. TEST CODE 8240TK

Hazardous Substance Method 8240, SW-846, Test Methods for Evaluating Solid

List Volatiles Wastes, Third Edition. GC/MS Purge and Trap analysis.

TEST NAME ABN HSL GC/MS Extractables TEST CODE 8270TK

Hazardous Substance Method 8270, SW-846, Test Methods for Evaluating Solid

List Extractables Waste, Third Edition. Acid/Base-Neutral extraction

followed by GC/MS analysis.

TEST NAME Phenolics TEST CODE 9066

Phenolics SW-846 Method 9066. Total Recoverable Phenolics.

Colorimetric, Automated 4-AAP with Distillation.

Equivalent to EPA Method 420.2.

TEST NAME Arsenic - Graphite Furnace TEST CODE AS GF

Page: 33 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME Arsenic - Graphite Furnace TEST CODE AS\_GF

Arsenic

Graphite Furnace Method 7060, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. EPA 206.2-Technical Additions to Methods for Chemical Analysis of Water and Wastes,

EPA-600/4-82-055, December 1982.

TEST NAME Chloride by Ion Chrom.

TEST CODE CL IC

Chloride

USEPA 300.0 - The determination of inorganic anions in water by ion chromatography.

TEST NAME Chemical Oxygen Demand

TEST CODE COD

COD

EPA 410.4 - Chemical Analysis of Water and Wastewater. Colorimetric analysis for Chemical Oxygen Demand.

TEST NAME Chromium VI

TEST CODE CR VI

Chromium VI

Method 7196, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Colorimetric analysis. Equivalent to Standard Methods 3500-Cr D.

TEST NAME Mercury

TEST CODE HG AA

Mercury

Method 7471, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Cold vapor atomic absorption. Method 7470 is used for water.

Method 245.5-"Technical Additions to Methods for Chemical Analysis of Water and Wastes," EPA-600/4-82-055, December 1982.

TEST NAME Metals

TEST CODE ICPTK4

Method not available.

Page: 34 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

TEST NAME Nitrate and Nitrite

TEST CODE NO3NO2

Nitrate + Nitrite

Method 353.2-Chemical Analysis of Water and Wastewater. Colorimetric Automated Cadmium Reduction method using Lachat autoanalyzer for NO3 and NO2 as N.

TEST NAME Lead - Graphite Furnace TEST CODE PB GF

Lead

EPA 7421, SW-846, Test Methods for Evaluating Solid

Graphite

Wastes, Third Edition.

**Furnace** 

EPA 239.2-Technical Additions to Methods for Chemical

Analysis of Water and Wastes, " EPA-600/4-82-055,

December 1982.

TEST NAME Silica

TEST CODE SIO2

Silica

Method 370.1-Chemical Analysis of Water and Wastewater. Colorimetric Analysis. This is equal to ASTM D859B.

TEST NAME Sulfate by Ion Chrom.

TEST CODE SO4 IC

Sulfate

USEPA Method 300.0 - The Determination of Inorganic Anions in Water by Ion Chromatography.

TEST NAME Total Dissolved Solids

TEST CODE TDS

Total Dissolved Solids

Method 160.1-Chemical Analysis of Water and Wastewater.

Gravimetric analysis.

TEST NAME Total Kjeldahl Nitrogen

TEST CODE TEN N

Kjeldahl Nitrogen

Method 351.3-Chemical Analysis of Water and Wastewater.

Digestion and colorimetric analysis.

TEST NAME Total Organic Carbon

TEST CODE TOC

Page: 35 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-169

### TEST NAME Total Organic Carbon

TEST CODE TOC

Total Organic

Carbon

Method 415.1-Chemical Analysis of Water and Wastewater.

Chemical oxidation and nondispersive

infrared analysis. Equivalent to SW-846 Method 9060. Sample prep is instrument manufacturer specific.

### TEST NAME Total Suspended Solids

TEST CODE TSS

Total Suspended

Solids

Method 160.2-Chemical Analysis of Water and Wastewater. Filtration and gravimetric analysis of non-filterable residue.

### TEST NAME Total Phosphorus

TEST CODE T\_P

Total Phosphorus

Method 365.3-Chemical Analysis of Water and Wastewater.

Digestion and colorimetric analysis.

### TEST NAME ICPES Digestion - Water TEST CODE 23005

Water Digestion

Method 3005A, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Digestion procedure for the preparation of surface and ground water samples for analysis by flame atomic absorption spectroscopy and inductively coupled plasma spectroscopy. The procedure determines total recoverable or dissolved metals.

### TEST NAME GFAA Digestion - Water

TEST CODE 23020

Water Digestion

Method 3020, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Acid digestion technique for Graphite Furnace.



# ANALYSIS REG. - ST AND CHAIN OF CUSTODY RECORD\*

Reference Document Nc. 417458 Page 1 of A.

8312169

Bill to:5 409833.03.01

D.0.5001

Lab Destination 8 TTAS Avain

Report to: <sup>10</sup> Tim Jennings IT Austin Carrier/Waybill No. 138460755811 Fed Ex

White: To accompany samples

Lab Contact 9 Kermen Desne Project Contact/Phone 12 Dan Mc 61890 Project Name/No. 1409833 / Tinker 5001 Samples Shipment Date 7 13 / 13 / 93 Sample Team Members 2 M い しょ / たた Purchase Order No. 6 409833.03.01 Project Manager 4 Jimny Tay lor Required Report Date 11 Normal 3527 Profit Center No. <sup>3</sup>

ONE CONTAINED DED LINE

| ple                | s                                                                                          | Yello             | w: Fiel              | d copy         | /         |              | * 5       | See ba                            | ack of                             | form                                | for                 | spi                         | ecial in                                                                      | structi                                                  | ons.                                       |
|--------------------|--------------------------------------------------------------------------------------------|-------------------|----------------------|----------------|-----------|--------------|-----------|-----------------------------------|------------------------------------|-------------------------------------|---------------------|-----------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|
|                    | Disposal <sup>22</sup><br>Record No.                                                       | ઉત્રર કૃષ્ણીએ     | 336 91062 4 1612     | 3237061        |           |              |           |                                   |                                    |                                     |                     | (mos.)                      |                                                                               | Date: / 2- ( 4- າ ງ<br>Time: 0 ຊີ ທ                      |                                            |
|                    | Condition on <sup>21</sup><br>Receipt                                                      | 6003, 42 12 14-53 |                      |                |           | A            |           |                                   | ->                                 |                                     |                     | Disposal by Lab             |                                                                               | Date: 12-19.                                             | Date:<br>Time:                             |
| CONTAINER PER LINE | Requested Testing <sup>20</sup><br>Program                                                 | agi ohe s         | 30/1 OHES            | SATO SVOC      | 418,1 TPH | 9066 Phenols | 410.4 COD | 351,3 TKN<br>353,2 Nitrate/Nitrik | GW Parameters as<br>per Worth Plan |                                     | Sample Disposal: 25 | Return to Client 📘 Dispo    | gvel: <sup>27</sup><br>II. <b>L</b> III. <b>L</b> Project Specific (specify): | 1. Received by 28 (Signature/Affiliation) All            | ved by                                     |
| AIINEK             | pre- 19<br>servative                                                                       | Hcl               | HCI                  | ice            | H2504     |              |           |                                   | ice                                |                                     | 7                   |                             | <b>□</b>                                                                      | 1. Receiv<br>(Signature/A                                | 2. Received by (Signature/Affiliation)     |
|                    | Sample 18<br>Volume                                                                        | 401               | (ક)<br>(સ્વુ         | 2,51           | 11        | 500ml        | 350ml     | 250ml                             | 71                                 |                                     |                     | Unknown L                   | GC Level: 27<br>I. <u>L</u>                                                   | 59/51/21                                                 |                                            |
| O N II             | Container Type                                                                             | Clear             | clear                | Amher<br>Glags | _         |              |           | >                                 | Plastic                            |                                     |                     | Poison B                    | 생길                                                                            | _                                                        | .; ej                                      |
|                    | Date/Time <sup>16</sup> Container <sup>17</sup> Sample <sup>18</sup> Collected Type Volume | 13/08/93<br>1700  | 13/13/93             |                |           |              |           |                                   | ->                                 |                                     |                     |                             |                                                                               | vekin Date:                                              | Date:<br>Time:                             |
|                    | Sample <sup>15</sup><br>Description/Type                                                   | TRIP BLANK 1700   | wate / Fire Training |                |           |              |           |                                   | >                                  | 1S: <sup>23</sup>                   | Jentification: 24   | Flammable _ Skin Irritant _ | Required: <sup>26</sup><br><b>J</b>                                           | M 28 IT ES Austin                                        |                                            |
| -                  | Sample <sup>14</sup><br>Number                                                             | A 1606            | A 1607               |                |           |              |           |                                   | -                                  | Special Instructions: <sup>23</sup> | ب                   | Non-hazard Fla              | Turnaround-Time Required: <sup>26</sup>                                       | 1. Relinquished by <sup>28</sup> (Signature/Alfiliation) | 2. Relinquished by (Signature/Affiliation) |

Comments: 29

3. Relinquished by (Signature/Affiliation)

MS/MSD or Sample # 41609

MCA 3/15/9:

Date: Time:

Date: Time:

3. Received by (Signature/Affiliation)

Date: Time:

# ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD (cont.)\*

Project No. 409832

Project Name # Tinker 5001

IN . .. RNATIONAL
TECHNOLOGY
CORPORATION

Reference Document No.30 417468 Page 2 of 2

Samples Shipment Date 12/13/93

|          | White                                           | : To a             | ccon      | прапу                        | samp       | les       | Ye           | llow: l                | Field o                         | сору          | .,                                | <b></b>   | *See                 | back      | of for   | m for        | spec       | ial ins | tructi        | ons.                              |                       |
|----------|-------------------------------------------------|--------------------|-----------|------------------------------|------------|-----------|--------------|------------------------|---------------------------------|---------------|-----------------------------------|-----------|----------------------|-----------|----------|--------------|------------|---------|---------------|-----------------------------------|-----------------------|
|          | Disposal 22<br>Record No.                       |                    |           | 5324020 A 212                | 3237061    |           |              |                        |                                 |               |                                   |           | B324120A             | 3237062   |          |              |            |         |               |                                   |                       |
|          | Condition on 21<br>Receipt                      | 17-4-13 R Cos)     | -         |                              |            |           | -            |                        |                                 |               |                                   |           |                      |           |          |              |            |         |               |                                   | •                     |
| PER LINE | Requested Testing 20<br>Program                 | 6010/7000 metals   | 7196 Cr64 | Somo Moc                     | 8270 SVOC  | 418,1 TPH | 9066 Phenols | 410,4 COD<br>415,1 TOC | 351,3 TEN 3553,9 N.+rate/Nrtrip | 0/1000        | OW Perameters<br>OS Der Work Dlan | 96 Cr     | Sayo Voc             | 8270 SVOC | 418,1TPH | 9066 Phomots | 410 14 cob | F 2     | 10/7          | 6W parameters as<br>Der wort plan | 7196 Cr 67            |
| TAINER   | Sample 18 pre-19 Volume servative               |                    | ml ice    | אן אכו                       | .t ice     | H2504     | m            | lmi                    | <del></del>                     | m HNO3        | , ice                             | 125ml Ice | 40m/ HC1             | L ICE     |          | (H)          |            | ->      | HN03          | )<br>(ce                          | J)                    |
| ONE CON  | Container <sup>17</sup> Sample 1<br>Type Volume | Plastic 500ml      |           |                              | Amber 2156 | 7 1       | 500ml        | 250m1                  | →<br>→                          | Plastic 500mi |                                   | Se1 \     |                      | 4 less 25 |          | (3.)<br>500m | (4) K      | 1       | Plostic 500ml | 07                                | 1 ( ) ( ) ( ) ( ) ( ) |
|          | Date/Time <sup>16</sup><br>Collected            |                    |           | 15/13/93                     |            |           |              |                        |                                 |               |                                   |           | 12/13/93             |           |          |              |            |         |               |                                   |                       |
|          | Sample 15<br>Description/Type                   | well Fire Training |           | well FireTraining water Area |            |           |              |                        |                                 |               |                                   | <b>→</b>  | Well Fire Training   | -         |          |              |            |         |               |                                   |                       |
|          | Sample 14<br>Number                             | A1607              | <b>~</b>  | A 1608                       | -          |           |              |                        |                                 |               |                                   | <b>→</b>  | A 1609 (ms/msp worth |           |          |              |            |         |               |                                   |                       |

MCA 3 15:91

Sample ID : A1607

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID            | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|------------------------|--------------|------------------|----------------|
| 02B  | 3520MS |                    |                        |              | 12/27/93         |                |
|      | 418_1  | B312169-07A        | 1218TPHIR1             | 12/18/93     |                  | 1.0            |
| 02C  | 310_1  | B312169-07A        | 1215310_11 1           | 2/15/93      | 12/15/93         | 1.0            |
|      | 9066   | B312169-07A        | 122890661              | 12/28/93     |                  | 1.0            |
|      | CL_IC  | B312169-07A        | 0105CL IC1             | 01/05/94     |                  |                |
|      | COD    | B312169-07A        | 1228COD2B              | 12/28/93     | •                | 1.0            |
|      | CR_VI  | B312169-07A        | 1214CR VI3             | 12/14/93     |                  |                |
|      | NO3NO2 | B312169-07A        | 0105NO3NO2             | 01/05/94     | •                |                |
|      | SIO2   | B312169-07A        | 1229SIO22              | 12/29/93     |                  | 10.0           |
|      | SO4_IC | B312169-07A        | 105SO4 IC1             | 01/05/94     | • •              | 10.0           |
|      | TDS    | B312169-07A        | 1215TDS1               | 12/15/93     |                  | 1.0            |
|      | TKN_N  | B312169-07A        | 0107TKN N2             | 01/07/94     |                  | 1.0            |
|      | TOC    | B312169-07A        | 1220TOC3C              | 12/20/93     |                  | 1.0            |
|      | TSS    | B312169-07A        | 1215TSS1               | 12/15/93     | 12/15/93         | 2.0            |
|      | T_P    | B312169-07A        | 0107T_P2               | 01/07/94     | 01/10/94         | 1.0            |
| 02D  |        |                    |                        |              |                  |                |
| - 22 | AS GF  | B312169-07A        | 121830201              | 12/10/02     | 12 (20 (22       | 1.0            |
|      | HG AA  | B312169-07A        | 121830201<br>1228HGAA1 | 12/18/93     | • •              | 1.0            |
|      | PB_GF  | B312169-07A        | 121830201              | 12/28/93     | •                | 1.0            |
|      |        | 2312107 07R        | 121030201              | 12/18/93     | 12/29/93         | 1.0            |

Sample ID : A1608

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID  | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|--------------|--------------|------------------|----------------|
| 03B  |        |                    |              |              |                  |                |
|      | 418_1  | B312169-07A        | 1218TPHIR1   | 12/18/93     | 12/28/93         | 1.0            |
| 03C  | 310_1  | B312169-07A        | 1215310_11 1 | 2/15/93      | 12/15/93         | 1.0            |
|      | 9066   | B312169-07A        | 122890661    | 12/28/93     |                  | 1.0            |
|      | CL_IC  | B312169-07A        | 0105CL_IC1   | 01/05/94     |                  | 10.0           |
|      | COD    | B312169-07A        | 1228COD2B    | 12/28/93     | 12/28/93         | 1.0            |
|      | CR_VI  | B312169-07A        | 1214CR_VI3   | 12/14/93     | 12/14/93         | 1.0            |
|      | NO3NO2 | B312169-07A        | 0105NO3NO2   | 01/05/94     | 01/05/94         | 1.0            |
|      | SIO2   | B312169-07A        | 122981022    | 12/29/93     | 12/29/93         | 10.0           |
|      | SO4_IC | B312169-07A        | 105SO4_IC1   | 01/05/94     | 01/05/94         | 10.0           |
|      | TDS    | B312169-07A        | 1215TDS1     | 12/15/93     | 12/15/93         | 1.0            |
|      | TKN_N  | B312169-07A        | 0107TKN_N2   | 01/07/94     | 01/10/94         | 1.0            |
|      | TOC    | B312169-07A        | 1220TOC3C    | 12/20/93     | 12/20/93         | 1.0            |
|      | TSS    | B312169-07A        | 1215TSS1     | 12/15/93     | 12/15/93         | 1.0            |
|      | T_P    | B312169-07A        | 0107T_P2     | 01/07/94     | 01/10/94         | 1.0            |
| 03D  |        |                    |              |              |                  |                |
|      | AS GF  | B312169-07A        | 121830201    | 12/18/93     | 12/29/93         | 1.0            |
|      | HG AA  | B312169-07A        | 1228HGAA1    | 12/28/93     |                  | 1.0            |
|      | PB_GF  | B312169-07A        | 121830201    | 12/18/93     | •                | 1.0            |

Sample ID : A1609

|      |        | Blank       | Batch                  | Prep       | Analysis | Dil.   |
|------|--------|-------------|------------------------|------------|----------|--------|
| FRAC | Tests  | Reference   | ID                     | Date       | Date     | Factor |
|      |        |             |                        |            |          |        |
| 04B  |        |             |                        |            |          |        |
|      | 418_1  | B312169-07A | 1218TPHIR1             | 12/18/93   | 12/28/93 | 1.0    |
| 04C  | 310_1  | B312169-07A | 1215310 11 1           | 2/15/93    | 12/15/93 | 1.0    |
|      | 9066   | B312169-07A | 122890661              | 12/28/93   |          |        |
|      | CL IC  | B312169-07A | 0105CL IC1             | • •        | • •      |        |
|      | COD    | B312169-07A | 1228COD2B              | 12/28/93   | • •      |        |
|      | CR_VI  | B312169-07A | 1214CR VI3             | 12/14/93   | •        |        |
|      | NO3NO2 | B312169-07A | 0105NO3NO2             | 01/05/94   | • •      |        |
|      | SIO2   | B312169-07A | 1229SI022              | 12/29/93   | •        |        |
|      | SO4_IC | B312169-07A | 105SO4 IC1             | 01/05/94   |          |        |
|      | TDS    | B312169-07A | 1215TDS1               | 12/15/93   | 12/15/93 | 1.0    |
|      | TKN_N  | B312169-07A | 0107TKN N2             | 01/07/94   | 01/10/94 | 1.0    |
|      | TOC    | B312169-07A | 1220TOC3C              | 12/20/93   | 12/20/93 | 1.0    |
|      | TSS    | B312169-07A | 1215TSS1               | 12/15/93   | 12/15/93 | 1.0    |
|      | T_P    | B312169-07A | 0107T_P2               | 01/07/94   | 01/10/94 | 1.0    |
| 04D  |        |             |                        |            |          |        |
|      | AS GF  | B312169-07A | 121830201              | 12/18/93   | 12/29/93 | 1.0    |
|      | HG AA  | B312169-07A | 121830201<br>1228HGAA1 | 12/18/93   |          | 1.0    |
|      | PB GF  | B312169-07A | 121830201              | 12/28/93   | • •      | 1.0    |
|      | _      |             | 1110001                | -2, 20, 30 |          | 1.0    |

# Sample ID : A1609-MS

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID  | Prep A    | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|--------------|-----------|------------------|----------------|
| 05B  |        |                    |              |           |                  |                |
|      | 418_1  | B312169-07A        | 1218TPHIR1   | 12/18/93  | 12/20/93         | 1.0            |
| 05C  | 310_1  | B312169-07A        | 1215310 11 1 | 2/15/93 1 | .2/15/93         | 1.0            |
|      | 9066   | B312169-07A        | 122890661    | 12/28/93  | 01/06/94         | 1.0            |
|      | CL IC  | B312169-07A        | 0105CL IC1   |           | 01/05/94         |                |
|      | COD    | B312169-07A        | 1228COD2B    | 12/28/93  | 12/28/93         |                |
|      | CR_VI  | B312169-07A        | 1214CR VI3   | 12/14/93  | 12/14/93         |                |
|      | NO3NO2 | B312169-07A        | 0105NO3NO2   | 01/05/94  | 01/05/94         |                |
|      | SIO2   | B312169-07A        | 1229SI022    | 12/29/93  | 12/29/93         |                |
|      | SO4_IC | B312169-07A        | 105SO4 IC1   | 01/05/94  | 01/05/94         |                |
|      | TDS    | B312169-07A        | 1215TDS1     | 12/15/93  | 12/15/93         | 1.0            |
|      | TKN_N  | B312169-07A        | 0107TKN N2   | 01/07/94  | 01/10/94         | 1.0            |
|      | TOC    | B312169-07A        | 1220TOC3C    | 12/20/93  | 12/20/93         | 1.0            |
|      | TSS    | B312169-07A        | 1215TSS1     | 12/15/93  | 12/15/93         | 1.0            |
|      | T_P    | B312169-07A        | 0107T_P2     | 01/07/94  | 01/10/94         | 1.0            |
| 05D  |        |                    |              |           |                  |                |
| บรม  | NC CE  | B310160 085        | 10100001     |           |                  |                |
|      | AS_GF  | B312169-07A        | 121830201    | 12/18/93  | 12/29/93         | 1.0            |
|      | HG_AA  | B312169-07A        | 1228HGAA1    | 12/28/93  | 12/28/93         | 1.0            |
|      | PB_GF  | B312169-07A        | 121830201    | 12/18/93  | 12/29/93         | 1.0            |

Work order : B312169

### Sample ID : A1609-MSD

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID            | Prep A     | Analysis<br>Date     | Dil.<br>Factor |
|------|--------|--------------------|------------------------|------------|----------------------|----------------|
| 06B  |        |                    |                        |            |                      |                |
|      | 418_1  | B312169-07A        | 1218TPHIR1             | 12/18/93   | 02/20/93             | 1.0            |
| 06C  | 310_1  | B312169-07A        | 1215310 11 1           | .2/15/93 1 | .2/15/93             | 1.0            |
|      | 9066   | B312169-07A        | 122890661              | 12/28/93   | 01/06/94             | 1.0            |
|      | CL_IC  | B312169-07A        | 0105CL IC1             |            | •                    | 10.0           |
|      | COD    | B312169-07A        | 1228COD2B              | 12/28/93   |                      | 1.0            |
|      | CR_VI  | B312169-07A        | 1214CR VI3             | 12/14/93   | 12/14/93             | 1.0            |
|      | NO3NO2 | B312169-07A        | 0105NO3NO2             | 01/05/94   |                      |                |
|      | SIO2   | B312169-07A        | 1229SIO22              | 12/29/93   | 12/29/93             | 5.0            |
|      | SO4_IC | B312169-07A        | 105SO4 IC1             | 01/05/94   | 01/05/94             | 10.0           |
|      | TDS    | B312169-07A        | 1215TDS1               | 12/15/93   | 12/15/93             | 1.0            |
|      | TKN_N  | B312169-07A        | 0107TKN N2             | 01/07/94   | 01/10/94             | 1.0            |
|      | TOC    | B312169-07A        | 1220TOC3C              | 12/20/93   | 12/20/93             | 1.0            |
|      | TSS    | B312169-07A        | 1215TSS1               | 12/15/93   | 12/15/93             | 1.0            |
|      | T_P    | B312169-07A        | 0107T_P2               | 01/07/94   | 01/10/94             | 1.0            |
| 06D  |        |                    |                        |            |                      |                |
| - 00 | AS GF  | B312169-07A        | 121830201              | 12/18/93   | 12/20/02             | 1.0            |
|      | HG AA  | B312169-07A        | 121830201<br>1228HGAA1 | 12/18/93   | 12/29/93<br>12/28/93 | 1.0            |
|      | PB_GF  | B312169-07A        | 121830201              | 12/28/93   | 12/29/93             | 1.0            |

Work order : B312169

Sample ID : LAB BLANK #1

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|-------------|--------------|------------------|----------------|
| 07A  | 310_1  | B312169-07A        | 1215310_11  | 12/15/93     | 3 12/15/93       | 1.0            |
|      | 418_1  | B312169-07A        | 1218TPHIR1  | 12/18/93     |                  | 1.0            |
|      | 9066   | B312169-07A        | 122890661   | 12/28/93     | 01/06/94         | 1.0            |
|      | AS_GF  | B312169-07A        | 121830201   | 12/18/93     | 12/29/93         | 1.0            |
|      | CL_IC  | B312169-07A        | 0105CL_IC1  | 01/05/94     | 01/05/94         | 10.0           |
|      | COD    | B312169-07A        | 1228COD2B   | 12/28/93     |                  | 1.0            |
|      | CR_VI  | B312169-07A        | 1214CR VI3  | 12/14/93     | 12/14/93         | 1.0            |
|      | HG_AA  | B312169-07A        | 1228HGAA1   | 12/28/93     | • •              | 1.0            |
|      | NO3NO2 | B312169-07A        | 0105N03N02  | 01/05/94     | •                | 1.0            |
|      | PB_GF  | B312169-07A        | 121830201   | 12/18/93     | 12/29/93         | 1.0            |
|      | SIO2   | B312169-07A        | 1229SIO22   | 12/29/93     |                  | 1.0            |
|      | SO4_IC | B312169-07A        | 105SO4 IC1  | 01/05/94     | • •              | 10.0           |
|      | TDS    | B312169-07A        | 1215TDS1    | 12/15/93     | •                | 1.0            |
|      | TKN_N  | B312169-07A        | 0107TKN N2  | 01/07/94     |                  | 1.0            |
|      | TOC    | B312169-07A        | 1220TOC3C   | 12/20/93     |                  | 1.0            |
|      | TSS    | B312169-07A        | 1215TSS1    | 12/15/93     | • •              | 1.0            |
|      | T_P    | B312169-07A        | 0107T_P2    | 01/07/94     | ·                | 1.0            |

|          |                                   | Sign of the State |               |     |
|----------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|
| WORK ORD | ER # 8312                         | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |     |
|          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |     |
|          | 7                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |     |
| # OF WAT | ER SAMPLES                        | <u>1974 - 17</u> 7 - 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |     |
| # OF SOI | L SAMPLES                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |     |
|          |                                   | . ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |     |
| 8240     |                                   | S102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |     |
| 8270     |                                   | TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-\sqrt{\nu}$ | /   |
| IR       |                                   | TKN H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-\sqrt{}$    | /   |
| AS       | <b>/</b> /                        | TOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |     |
| CRIV     | $\overline{\checkmark\checkmark}$ | TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | /   |
| HG       | <b>V</b> \                        | GT P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11            |     |
| ICP      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 300 |
| PB -     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |     |
| SO4_IC   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |     |
| 310_1    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |     |
| 9066     | $\sqrt{}$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |     |
| CL_IC    | 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |     |
| COD      | 1 James                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |     |
| WOOMOO   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 9.4 |

### APPENDIX A

| DE | F | Ι | N | Ι | T | Ι | 0 | N | S |
|----|---|---|---|---|---|---|---|---|---|
|    |   |   |   |   |   |   |   |   |   |

| ND(U) | - | Analyte was analyzed for, but not detected. The value given after the ND or "U" is the detection limit for that compound.                                    |
|-------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A     | - | The compound denoted with an "A" indicates a suspected aldol condensation product.                                                                           |
| В     | - | Indicates the compound was also detected in the blank, but at levels less than 5X the detection limit. Values for this compound may be suspect.              |
| J     | - | Indicates the compound was detected in the sample, but at levels less than the detection limit, but above the MDL. Results should be requarded as estimated. |
| 2     | - | Indicates that the compound was identified in an analysis at a secondary dilution factor.                                                                    |
| Я     | - | Indicates presumptive evidence of a compound. This flag is used for tentatively identified compounds.                                                        |

| MS  | - | Matrix Spike                | UG/L  | - | Micrograms/Liter    |
|-----|---|-----------------------------|-------|---|---------------------|
| MSD | _ | Matrix Spike Duplicate      | UG/KG | - | Micrograms/Kilogram |
|     |   | Relative Percent Difference | MG/KG | - | Milligrams/Kilogram |
|     |   |                             | MG/L  | - | Milligrams/Liter    |
| DL  | _ | Detection limit             | %REC  | _ | Percent Recovery    |

### OC Acceptance Limits

| Method 8240                                                                                        | Water                                          | 3oil_                              | Method 8270                                                                                                                                                                                                   | Water                                                                                                                         | Soil                                    |
|----------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Surrogate & Recovery<br>BFB<br>Dichloroethane<br>Toluene-d8                                        |                                                | -4-121<br>-0-120<br>31-117         | Surrogate & Recoveries Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol                                                                                           | 35 - 114<br>43 - 116<br>33 - 141<br>10 - 94<br>21 - 100<br>10 - 123                                                           | 30 - 11!<br>18 - 13<br>24 - 11:         |
| Matrix Spike Limits<br>1,1-Dichloroethene<br>Trichloroethene<br>Benzne<br>Toluene<br>Chloropenzene | 61-145<br>71-120<br>76-127<br>76-125<br>75-130 | 62 <b>-</b> 137<br>66 <b>-</b> 142 | Matrix Spike Limits(%) Phenoi Chlorophenoi 1,4-Dichloropenzene N-Nitroso-di-propylamine 1,2,4-Trichloropenzene 4-Chloro-3-methylphenoi Acenaphthene 4-Nitrophenoi 2,4-Dinitrotoluene Pentachlorophenoi Pyrene | 14 - 99<br>19 - 107<br>18 - 101<br>32 - 108<br>24 - 109<br>31 - 111<br>33 - 110<br>1 - 141<br>35 - 106<br>1 - 147<br>42 - 119 | 21 - 11<br>34 - 10<br>30 - 11<br>d - 13 |

#### METALS CONTROL LIMITS

ICP: ± 20% for MS/MSD & Duplicate

GF: Control Charts for MS/MSD; ± 20% for Dup

### ICV/CCV

GF ICV ± 20% GF CCV ± 20% ICP ICV/CCV ± 10% HG AA ± 20%

### CONTROL LIMITS GRAPHITE FURNACE/MERCURY

| ANALYTE    | MATRIX | LIMITS    | COMMENTS                 |
|------------|--------|-----------|--------------------------|
| Нд         | water  | 21 - 170  | Control Charts (B inst.) |
| Н <b>g</b> | soil   | 44 - 150  | Control Charts (B)       |
| As         | water  | 59 - 150  | D                        |
| As         | soil   | 75 - 125  | D                        |
| As         | water  | 52 - 140  | С                        |
| As         | soil   | 35 - 142  | С                        |
| ?b         | water  | 48 - 153  | Ð                        |
| 9b         | soil   | 75 - 125  | )                        |
| Pb         | water  | 33 - 163  | С                        |
| Pb         | soil   | 75 - 125  | С                        |
| Se         | water  | 37 - 136  | D                        |
| S <b>e</b> | soil   | 27 - 118  | D                        |
| Se         | water  | 20 - 147  | С                        |
| Se         | soil   | 2.6 - 139 | С                        |

| QC BATCH ID FOR  | R GFAA | /CVAA | - Test C | Code: _ | 1470 |
|------------------|--------|-------|----------|---------|------|
| PREPREP METHOD:  | _      |       |          |         |      |
| PREP METHOD:     | _      |       |          |         |      |
| ANALYSIS METHOD: | 7470   |       |          |         |      |
| BATCH DATE:      | 12/28  | /93   |          |         |      |
| INSTRUMENT ID:   | Á      |       |          |         |      |
| SET (BATCH) #:   | 1      |       |          |         |      |

| Lab | Sample | ID's |
|-----|--------|------|
|     |        |      |

1 B312098 -01A 2 B312071 - 02B 3 -03B

4 - 04B

5 B312202-01H 6 -02H

7 B312203-014

8 ↓ -02H

9 B312169 - 02D

10 -03D 11 -04D

12 B312221 - 01A

13 -02A

14 -03A

15 -04A

16 -05A

17 -06A

18 -07A

19

20 KMB 12/28/93

-08A

### Batch QC ID's

LCS ID: 1cv 12-28-93-1

LCSD ID: CCV 12-28-93-1

MBID: ICB 12-28-93-1

MSID: B312169-05D MS } Spk g -04D

MSDID: B312169-060 MSD } Spk g -04D

REP ID: B312169 -040 DUP

### **Batch QC Results**

MDL: 0.00020 PQL: 0.00020

| Sample ID    | Result   | Units | Analyst | Date/Time     |
|--------------|----------|-------|---------|---------------|
| Method Blk   | 40.00020 | MalL  | KMB     | 12/28/93 1300 |
| LCS % Rec    | lo i     | % Rec |         |               |
| LCSD % Rec   | 106      | % Rec |         |               |
| LCS/LCSD RPD |          | % RPD |         |               |
| MS % Rec     | 116      | % Rec |         |               |
| MSD % Rec    | 118      | % Rec |         |               |
| MS/MSD RPD   | 1.7/     | % RPD |         |               |
| REP RPD      | 0.00     | % RPD | 1       | 1             |

| Comments: |         |
|-----------|---------|
|           |         |
|           |         |
|           | K50B 93 |
|           | 728     |
|           |         |

| QC BATCH ID FO   | R GFAA/CVAA - Test Code: As-GF |
|------------------|--------------------------------|
| PREPREP METHOD:  |                                |
| PREP METHOD:     | Z3020                          |
| ANALYSIS METHOD: | 7000                           |
| BATCH DATE:      | 12/18/93                       |
| INSTRUMENT ID:   | D                              |
| SET (BATCH) #:   |                                |

| Lab | Sample ID's    |
|-----|----------------|
|     | 1 KmB 12/28/93 |
| 1   | B312017-01C    |
| 2   | B312169-020    |
| 3   | -03D           |
| 4   | -04D           |
| 5   |                |
| 6   |                |
| 7   |                |
| 8   |                |
| 9   |                |
| 10  |                |
| 11  | \ \end{above}  |
| 12  | 10/20/93       |
| 13  |                |
| 14  |                |
| 15  |                |
| 16  |                |
| 17  | 7              |
| 18  | 7              |
| 19  |                |
| 20  |                |
|     |                |

| Batch | QC | ID's |  |
|-------|----|------|--|
|       |    |      |  |
|       |    |      |  |
|       |    |      |  |

| LCS ID:  | LCS 2012 1893-1 |
|----------|-----------------|
| LCSD ID: | LCSD20121893-1  |
| MB ID:   | PB20121893-1    |
| MS ID:   | B312169-050 MS  |
| MSD ID:  | B312169-060 mSD |
| REP ID:  | Kma 12/18/93    |
|          |                 |

Batch QC Results

|   | Ana | lyst | Date/T  | ime     |
|---|-----|------|---------|---------|
|   | 34  | ,    | 12-29.9 | 3 10:57 |
| : | 1   |      |         |         |
| ; |     |      |         |         |
| ) |     |      |         |         |
| ; |     |      |         |         |
| ; |     |      |         |         |
| ) |     | J    |         | U       |

MDL: 0.65 PQL: 0.010

| Sample ID    | Result              | Units | Analyst | Date/Time      |
|--------------|---------------------|-------|---------|----------------|
| Method Blk   | (0.010              |       | 36      | 12-29-93 10:57 |
| LCS % Rec    | <del>++++</del> 101 | % Rec |         |                |
| LCSD % Rec   | 105                 | % Rec |         |                |
| LCS/LCSD RPD | 3.28                | % RPD |         |                |
| MS % Rec     | 94                  | % Rec |         |                |
| MSD % Rec    | 107                 | % Rec |         |                |
| MS/MSD RPD   | 12.9                | % RPD |         | U              |
| REP RPD      | _                   | % RPD |         |                |
|              |                     |       |         |                |

| Comments: | No Duplicate | preped | _        |
|-----------|--------------|--------|----------|
|           |              |        | _        |
|           |              |        | <u> </u> |

| QC BATCH ID FOR  | R GFAA/CVAA - Test Code: Pb-66 |
|------------------|--------------------------------|
| PREPREP METHOD:  |                                |
| PREP METHOD:     | Z3020                          |
| ANALYSIS METHOD: | 7421                           |
| BATCH DATE:      | 12/18/93                       |
| INSTRUMENT ID:   | C                              |
| SET (BATCH) #:   |                                |

| Lab | Sample ID's |
|-----|-------------|
| 1   | B312017-01C |
| 2   | B312169-020 |
| 3   | -03D        |
| 4   | · -04D      |
| 5   |             |
| 6   |             |
| 7   |             |
| 8   |             |
| 9   |             |
| 10  |             |
| 11  | \R. R. A.   |
| 12  | /0/20/93    |
| 13  |             |
| 14  |             |
| 15  |             |
| 16  |             |
| 17  |             |
| 18  | 7           |
| 19  |             |
| 20  |             |

| Batch QC | ID's            |          |
|----------|-----------------|----------|
|          |                 |          |
| LCS ID:  | LCS 2012 1893-1 |          |
| LCSD ID: | LCSD20124893-1  |          |
| MB ID:   | PB20121893-1    |          |
| MS ID:   | B312169-050 MS  |          |
| MSD ID:  | B312169-060 MSD | , ,      |
| REP ID:  | KNB             | 12/18/93 |
|          |                 |          |

Batch QC Results MDL: 2.96 PQL: 0.0030

| Sample ID    | Result  | Units | Analyst | Date/Time      |
|--------------|---------|-------|---------|----------------|
| Method Blk   | 60.0030 |       | 36      | 12-19-93 12:03 |
| LCS % Rec    | 111     | % Rec |         |                |
| LCSD % Rec   | 120     | % Rec |         |                |
| LCS/LCSD RPD | 7.8     | % RPD |         |                |
| MS % Rec     | 106     | % Rec |         |                |
| MSD % Rec    | 124     | % Rec |         |                |
| MS/MSD RPD   | 15.7    | % RPD |         |                |
| REP RPD      | -       | % RPD | JU      | <u> </u>       |

| Comments: | NO DUP SIMPLE PREPAGO |
|-----------|-----------------------|
|           |                       |
|           |                       |

| te/Time: |                  |                                           | y LOT7:/_                               |
|----------|------------------|-------------------------------------------|-----------------------------------------|
|          | 12/27/93         | Intrument:                                |                                         |
| erator:  | 5013             | _ Test/Hatri                              | x: 8240 /WATE                           |
| Column:  | CAP              | Operator:_                                |                                         |
| •        |                  |                                           | Performed                               |
| ype      | Lab Sample ID    | lab file 10                               | (Y or N)                                |
| Sample   | B 3469/04<br>105 |                                           |                                         |
| us n     | 106              |                                           |                                         |
| CS       |                  |                                           |                                         |
| Client * | 11               | to the following ab Sample                | Lab File                                |
| Sample I |                  | U<br> =================================== | ======================================= |
| 1        | 18               | 312169/01                                 | •                                       |
|          |                  | 02                                        |                                         |
|          |                  | 09                                        |                                         |
|          |                  | 312 175/01                                |                                         |
|          | 8.               | 312210/02                                 |                                         |
|          |                  | /0 /                                      |                                         |
|          |                  |                                           |                                         |
|          |                  |                                           |                                         |
|          |                  |                                           |                                         |
|          |                  |                                           |                                         |
|          |                  |                                           |                                         |
|          |                  |                                           |                                         |
|          |                  |                                           |                                         |
|          |                  |                                           |                                         |
|          |                  |                                           |                                         |
|          |                  |                                           |                                         |

QC Batch ID

Prep Code/Date:\_\_\_\_/\_

Test Code/Date:\_\_\_\_/\_

Set #:\_\_\_\_\_ Inst. ID:\_\_\_\_

### SOILS VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY AND BLANK SPIKE RECOVERY

Lab Name: ITAS - Austin Date Ran: 12/27/93

QC BATCH ID

 
 Sample Names:
 >C1695
 >C1696
 >CBS27
 Prep Code/Date:

 CLIENT ID:
 1422
 1448
 1209
 Test Code/Date:
 8240
 Test Code/Date: 8240 | 12/27/93

Matrix Spike - SAM Sample No. B312169/05 Matrix: SDILS Set #: 0 Inst.ID: 01 ( 5.000 6M TO 5 ML) 1.0 X DIL

| COMPOUND NAME                     | : SPIKE<br>: ADDED<br>:(ug/Kg) |                | : CONC<br>: (ug/Kg) | : MS<br>: %<br>: REC # | PC :                                         |     | : CONC<br>:(ug/Kg) | BS                                                                |
|-----------------------------------|--------------------------------|----------------|---------------------|------------------------|----------------------------------------------|-----|--------------------|-------------------------------------------------------------------|
| ::::::::::::::::::::::::::::::::: | ; 50.00<br>; 50.00<br>; 50.00  | : .00<br>: .00 | 54.29<br>49.36      | ; 109<br>; 99<br>; 102 | 1 59 - 172 1<br>1 62 - 137 1<br>1 66 - 142 1 | ; ( | 53.34<br>)         | 107   59 - 172  <br>  9   98   62 - 137  <br>  1   102   66 - 142 |
| Toluene<br>  Chlorobenzene        | 50.00                          | .00            | 1 49.97<br>1 50.34  | 100<br>101<br>         | 59 - 139  <br>  60 - 133  <br>               |     |                    | )                                                                 |

| :<br>Compound       |       | SPIKE<br>ADDED | ;     | MSD<br>CONC. | ;     | MSD    | ;    | Z    | ;     | 90 |   | LIM | ITS | ;   | ;  |
|---------------------|-------|----------------|-------|--------------|-------|--------|------|------|-------|----|---|-----|-----|-----|----|
| I NAME              |       | (ug/Kg)        |       | (ug/Kg)      |       |        |      | RPD  |       |    | ; |     |     | EC. | ;  |
|                     | ==  : | ======         | = ; : | ======       | : ; = | ====== | == ; | ==== | == {: |    |   |     |     |     |    |
| 11,1-Dichloroethene | ;     | 50.00          | ,     | 51.43        | ,     | 103    | ;    | 5    | ;     | 22 | ; | 59  | -   | 172 | į  |
| :Trichloroethene    | ;     | 50.00          | ;     | 49.63        | ;     | 99     | ;    | 1    | ;     | 24 | 1 | 62  | -   | 137 | ;  |
| Benzene             |       |                | 1     | 51.66        | 1     | 103    | 1    | 1    | ;     | 21 | į | 66  | -   | 142 | ;  |
| !Toluene            |       | 50.00          | ;     | 50.33        | !     | 101    | ;    | 1    | ;     | 21 | : | 59  | -   | 135 | i  |
| Chlorobenzene       | _;    | 50.00          | ;     | 50.79        | 1     | 102    | ;    | 1    | 1     | 21 | ; | 60  | -   | 133 | ;  |
| 1                   |       |                | į     |              | ;     |        | _;   |      | _;    |    | 1 |     |     |     | _; |

- # Column to be used to flag recovery and RPD values with an asterisk.
- # Values outside of QC limits.

| RPD: 0 out o<br>Spike Recovery: | f 5<br>0 out o | limits.<br>outside | limit | 5.    |        |            | 1116<br>> CBK2? |     |
|---------------------------------|----------------|--------------------|-------|-------|--------|------------|-----------------|-----|
| SURROGATE RECOVERIES            |                | >C169              | 5 >   | C1696 | >CBS27 | LIMITS     | LAB<br>BLANK    | ALL |
| :Toluene - d8                   |                | <br>: 1:           | 04 :  | 102   | 102    | : 81 - 117 | 97              | ,   |
| :Bromofluorobenzene             |                | ; 10               | 02    |       | 1 104  | 1 74 - 121 | 100             |     |
| 11,2-Dichloroethane - d         | 14             | :                  | 96 :  | 94    | ; 98   | : 70 - 120 | ¦ 94            |     |
| :                               |                | ;                  | ;     |       | .;     | !          | ;               |     |

|                  | QC BATCH ID FOR ICPES |
|------------------|-----------------------|
| PREPREP METHOD:  | NA                    |
| PREP METHOD:     | 23005                 |
| ANALYSIS METHOD: | 60PO                  |
| BATCH DATE:      | 12-16-93              |
| INSTRUMENT ID:   | B                     |
| SET (BATCH) #:   | 3                     |

| Lab Sample ID's  | , |
|------------------|---|
| 1) 8312169-020   |   |
|                  |   |
| 2) -030          |   |
| 3) $\sqrt{-040}$ |   |
| 4)               |   |
| 5)               | , |
| 6)               | • |
| 7)               | • |
| 8)               |   |
| 9)               |   |
| 10)              |   |
| 11)              |   |
| 12)              |   |
| 13)              |   |
| 14)              |   |
| 15)              |   |
| 16)              |   |
| 17)              |   |
| 18)              |   |
| 19)              |   |
| 20)              |   |

| LCS ID: LC505 121693-1  |   |
|-------------------------|---|
| LCSD ID: LCS005/2/693-/ |   |
| MB ID: PBN05121693-1    |   |
| MS ID: B312/69-050 MS   | • |
| MSD ID: B312169-060 ms0 | ı |
| REP ID:                 |   |
|                         |   |
|                         |   |
|                         |   |

Batch QC Samples

ANALYTES REQUIRED FOR BATCH:

Ag Al As B Ba Be Ca Cd Co Cr Cu Fe K Mg Mn Mo Na

| QC Batch ID      |          |
|------------------|----------|
| prep Method:     |          |
| Prep Method:     | 3005     |
| Analysis Method: | 6010     |
| Batch Date:      | 12/16/93 |
| Instrument ID:   | В        |
| Batch (Set) #:   | 3        |

| Matrix: WATER  | Data Repo      | rted to PQL |
|----------------|----------------|-------------|
| Units: MG/L    | _}             |             |
|                |                | Corr. Fact. |
| Method Blk ID: | PB05121693-1   | 1           |
| LCS ID:        | LCS05121693-1  | 1           |
| LCSD ID:       | LCSD05121693-1 | 1           |
| MS Sample ID:  | B312169-05D    | 1           |
| MSD Sample ID: | B312169-06D    | 1           |
| Rep Sample ID: |                | 0           |

Page 1 of 2

|         | Replicate : | Sample Dat | a     |        | В | Blank / LC | S Batch QC  |        |        |   |       |        |   |              |
|---------|-------------|------------|-------|--------|---|------------|-------------|--------|--------|---|-------|--------|---|--------------|
|         | Original    |            |       | П      |   | Method     |             | LCS    | T      | П | LCSD  |        | Τ | % RPD for    |
|         | Result for  | Replicate  |       | П      |   | Blank      | LCS true    | Conc.  | LCS    |   | Conc. | LCSD   |   | LCS/LCSD     |
| Analyte | Replicate   | Result     | % RPD | a      |   | Result     | Value (mg/L | Found  | % Rec. | a | Found | % Rec. | Q | Recoveries Q |
| Ag      |             |            |       | П      | < | 0.010      | 1           | 0.9617 | 96     |   | 0.97  | 97     |   | 0.95         |
| Al      |             |            |       | П      | < | 0.20       | 10          | 10.2   | 102    |   | 10.22 | 102    | Γ | 0.20         |
| As      |             |            |       | П      | < | 0.10       | 1           | 1.046  | 105    |   | 1.06  | 106    |   | 1.61         |
| В       |             |            |       |        | < | 0.20       | 1           | 0.9738 | 97     |   | 0.99  | 99     |   | 1.77         |
| Ba      |             |            |       | П      | < | 0.20       | 1           | 0.9872 | 99     |   | 0.99  | 99     |   | 0.14         |
| Be      |             |            |       | П      | < | 0.0050     | 1           | 0.9767 | 98     |   | 0.99  | 99     |   | 0.89         |
| Ca      |             |            |       | П      | < | 5.0        | 20          | 20.79  | 104    |   | 21.00 | 105    |   | 1.01         |
| Cd      |             |            |       |        | < | 0.0050     | 1           | 0.9664 | 97     |   | 0.98  | 98     |   | 1.13         |
| Co      |             |            |       |        | < | 0.050      | 1           | 0.9388 | 94     |   | 0.95  | 95     |   | 1.25         |
| Cr      |             |            |       |        | < | 0.010      | 1           | 0.9905 | 99     |   | 1.00  | 100    |   | 0.52         |
| Cu      |             |            |       |        | < | 0.025      | 1           | 0.9395 | 94     |   | 0.94  | 94     |   | 0.37         |
| řе      |             |            |       |        | < | 0.10       | 10          | 10.62  | 106    |   | 10.51 | 105    |   | 1.04         |
| K       |             |            |       |        | < | 5.0        | 20          | 19.47  | 97     |   | 20.03 | 100    |   | 2.84         |
| Mg      |             |            |       | $\Box$ | < | 5.0        | 20          | 20.23  | 101    |   | 20.32 | 102    |   | 0.44         |
| Mn      |             |            |       |        | < | 0.015      | 1           | 0.9468 | 95     |   | 0.95  | 95     |   | 0.60         |
| Мо      |             |            |       |        | < | 0.10       | 1           | 0.9549 | 95     |   | 0.97  | 97     |   | 1.20         |
| Na      |             |            |       |        | < | 5.0        | 20          | 20.14  | 101    |   | 20.15 | 101    |   | 0.05         |
| Ni      |             |            |       |        | < | 0.040      | 1           | 0.946  | 95     |   | 0.95  | 95     |   | 0.87         |
| Рь      |             |            |       |        | < | 0.050      | 1           | 0.9492 | 95     |   | 0.96  | 96     |   | 0.90         |
| Sb      |             |            |       |        | < | 0.060      | 1           | 1.015  | 101    |   | 1.00  | 100    |   | 1.39         |
| Se      |             |            |       |        | < | 0.10       | 1           | 1.001  | 100    |   | 1.03  | 103    |   | 2.86         |
| Si      |             |            |       |        | < | 1.0        | 10          | 11.26  | 113    |   | 11.12 | 111    |   | 1.25         |
| Sn      |             |            |       |        | < | 0.10       | 1           | 0.9343 | 93     |   | 1.00  | 100    |   | 7.09         |
| Ti      |             |            |       |        | < | 0.10       | 1           | 0.9903 | 99     |   | 0.99  | 99     |   | 0.33         |
| Π       |             |            |       |        | < | 0.20       | 1           | 1.055  | 106    |   | 1.03  | 103    |   | 2.20         |
| V       |             |            |       |        | < | 0.050      | 1           | 0.9608 | 96     |   | 0.97  | 97     |   | 0.76         |
| Zn      |             |            |       |        | < | 0.020      | 1           | 0.9605 | 96     |   | 0.96  | 96     |   | 0.12         |

| QC Data Reviewed By: | Date/Time: 1/5/94/6;30 |  |
|----------------------|------------------------|--|
| Comments:            |                        |  |
|                      |                        |  |
|                      |                        |  |
|                      |                        |  |
|                      |                        |  |

alifiers:

N - LCS % Recovery was outside method limits of 80-120 %.

R - % RPD for LCS/LCSD was outside control limit of 20 %.

<sup>\*</sup> Replicate RPD was outside method control limit of 20 %

| QC Batch ID      |          |  |  |  |  |  |  |
|------------------|----------|--|--|--|--|--|--|
| reprep Method:   |          |  |  |  |  |  |  |
| Prep Method:     | 3005     |  |  |  |  |  |  |
| Analysis Method: | 6010     |  |  |  |  |  |  |
| Batch Date:      | 12/16/93 |  |  |  |  |  |  |
| Instrument ID:   | В        |  |  |  |  |  |  |
| Batch (Set) #:   | 3        |  |  |  |  |  |  |

| Batch QC Information |                |               |
|----------------------|----------------|---------------|
| Matrix: WATER        | Data Re        | ported to PQL |
| Units: MG/L          |                |               |
|                      | _              | Corr. Factor  |
| Method Blk ID:       | PB05121693-1   | 11_           |
| LCS ID:              | LCS05121693-1  | 1             |
| LCSD ID:             | LCSD05121693-1 | 1             |
| MS Sample ID:        | B312169-05D    | 1             |
| MSD Sample ID:       | B312169-06D    | 1             |
| Rep Sample ID:       |                |               |

Page 2 of 2

|         | Spike Sam  | ple Data |          |        |   |        |           |        |          |            |          |               |                    |
|---------|------------|----------|----------|--------|---|--------|-----------|--------|----------|------------|----------|---------------|--------------------|
|         | Original   |          | I I      |        | П |        |           |        |          | % RPD for  | П        | % RPD for     | Π                  |
|         | Result for | MS       | MS Spike | MS     |   | MSD    | MSD Spike | MSD    |          | MS/MSD     |          | MS/MSD Result |                    |
| Analyte | MS/MSD     | Result   | Added    | % Rec. | Q | Result | Added     | % Rec. | Q        | Recoveries | Q        | As Replicates | Q                  |
| Ag      | ND         | 0.8174   | 1.00     | 82     |   | 0.8028 | 1.00      | 80     | L        | 1.80       | Ш        |               | $oldsymbol{\perp}$ |
| Al      | 2.76       | 14.72    | 10.00    | 120    |   | 16.06  | 10.00     | 133    | N        | 10.61      | Ц        |               | $\perp$            |
| As      |            |          |          |        | Ш |        |           |        | L        |            | Ш        |               | ╀                  |
| В       |            |          |          |        | Ц |        |           |        | L        |            |          |               | ╀                  |
| Ва      | ND         | 1.058    | 1.00     | 106    | Ц | 1.054  | 1.00      | 105    | L        | 0.38       | Ш        |               | $\perp$            |
| Ве      | ND         | 0.8283   | 1.00     | 83     | Ц | 0.8153 | 1.00      | 82     | L        | 1.58       | $\sqcup$ |               | ┦                  |
| Ca      | 35.69      | 55.03    | 20.00    | 97     | Ц | 55.13  | 20.00     | 97     | L        | 0.52       |          |               | ┦                  |
| Cd      | ND         | 0.8135   | 1.00     | 81     | Ц | 0.8103 | 1.00      | 81     | L        | 0.39       | Ц        |               | $\perp$            |
| Со      |            |          |          |        | Ц |        |           |        | L        |            |          |               | ┯                  |
| Cr      | 0.053      | 0.8592   | 1.00     | 81     | Ш | 0.8479 | 1.00      | 79     | N        |            | Ц        |               | ↓.                 |
| Cu      | ND         | 0.815    | 1.00     | 82     | Ц | 0.799  | 1.00      | 80     | L        | 1.98       | L        |               | ╄                  |
| Fe      | 4.338      | 12.81    | 10.00    | 85     | Ц | 14.37  | 10.00     | 100    | L        | 16.86      |          |               | $\bot$             |
| K       | ND         | 20.48    | 20.00    | 102    | Ц | 20.35  | 20.00     | 102    | L        | 0.64       |          |               | $oldsymbol{\perp}$ |
| Mg      | 19.43      | 38.7     | 20.00    | 96     | Ц | 38.56  | 20.00     | 96     | L        | 0.73       | Ц        |               | ┯                  |
| Mn      | 0.067      | 0.8398   | 1.00     | 77     | N | 0.837  | 1.00      | 77     | N        | 0.36       |          |               | ┯                  |
| Мо      |            |          |          |        | Ц |        |           |        | L        |            | Ц        |               | ↓_                 |
| Na      | 21.96      | 41.1     | 20.00    | 96     | Ц | 40.34  | 20.00     | 92     | L        | 4.05       | Ц        |               | ╀-                 |
| Ni      | ND         | 0.8079   | 1.00     | 81     | Ц | 0.789  | 1.00      | 79     | N        | 2.37       | L        |               | $\bot$             |
| Pb      |            |          |          |        | Ц |        |           |        | L        |            | L        |               | ┯                  |
| Sb      |            |          |          |        | Ц |        |           |        | L        |            | Ц        |               | $\bot$             |
| Se      | ND         | 0.8065   | 1.00     | 81     | Ц | 0.7792 | 1.00      | 78     | N        | 3.44       | L        |               | ╀-                 |
| Si      | 1          |          |          |        | Ц |        |           |        | L        |            | Ц        |               | ╄                  |
| Sn      |            |          |          |        | Ц |        |           |        | L        |            |          |               | ╄                  |
| Ti      |            |          | <b></b>  |        | Ц |        |           |        | $\vdash$ |            | Н        |               | +                  |
| TI      |            |          |          |        | Ц |        |           |        | L        |            | L        |               | ╀                  |
| V       |            |          |          |        | Н |        |           |        | L        |            |          |               | ┼-                 |
| Zn      | 0.0276     | 0.8247   | 1.00     | 80     |   | 0.8159 | 1.00      | 79     | N        | 1.11       |          |               |                    |

| nments: |   |
|---------|---|
|         | _ |
|         |   |
|         |   |
|         |   |

Qualifiers (Q):

- H Sample concentration was greater than five times the spike level.
- N Spike recovery was outside method control limits of 80-120 %.
- R Percent RPD for MS/MSD recoveries was outside method control limit of 20 %.
- D Sample concentration was greater than five times the spike level.

  The RPD was calculated between the MS and MSD results as replicates.

| Test | <br>de/Date | کد، | 27 | Ö  | 114-16-13 |
|------|-------------|-----|----|----|-----------|
| Set  |             | Ins | t. | Di |           |

| Туре            | Lab Sample ID   Lab File ID  | Performed<br>  (Y or N) |
|-----------------|------------------------------|-------------------------|
| Blank<br>Sample | 13312169-BLK B312169LCS      |                         |
| HSD             | 13312169-5B 4MSD<br>-6B 4MSD |                         |

This QA Spike Lot applies to the following Samples:

| Client<br>  Sample ID | Lab Sample<br>  ID | Lab File<br>  ID |
|-----------------------|--------------------|------------------|
|                       | 18312169-ZB        | 112-16 501       |
|                       | -3B                | _                |
| 2 1                   | - 413              | _                |
| 3                     | -018               | _                |
|                       |                    | _                |
| 5                     |                    | _                |
|                       |                    |                  |
|                       |                    | _                |
|                       |                    | _]               |
|                       |                    | _                |
|                       |                    |                  |
| 2                     |                    | _                |
|                       |                    | _                |
|                       |                    | _                |
|                       |                    | _                |
|                       |                    |                  |
| 7                     |                    | _                |
| 3                     |                    |                  |
|                       |                    |                  |
| 9                     |                    |                  |

| Comments: |  |
|-----------|--|
|           |  |

#### WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY AND BLANK SPIKE RECOVERY

Lab Name: ITAS - Austin QC BATCH ID

 Sample Names:
 D1695
 D1696
 Prep Code/Date:
 3520
 12/16/93

 Date Ran:
 12/30/93
 12/30/93
 Test Code/Date:
 8270
 12/16/93

Time Ran: 23.09 23.37 Set 0: \* Inst.ID: D
Matrix Spike - SAN Sample No. B31216904 Matrix: WATER

( 1000 ML TO 1 ML ) 1.0 X DIL

|                           | SPIKE      | SAMPLE | MS     | MS    | QC       |
|---------------------------|------------|--------|--------|-------|----------|
| COMPOUND                  | ADDED      | CONC   | CONC   | 1     | LIMITS   |
| NAME                      | (ug/L)     | (ug/L) | (ug/L) | REC . | REC.     |
| ************************* | :   ====== | -      |        | ===== |          |
| PHENOL                    | _ 100.00   | .11    | 82.34  | 82    | 26 - 9€  |
| 2-CHLOROPHENOL            | 100.00     | .41    | 90.24  | 9 0   | 25 - 102 |
| L,4-DICHLOROBENZENE       | 50.00      | .11    | 44.27  | 81    | 28 - 104 |
| -MITROSODI-N-PROPYLANINE  | 50.00      |        | 39.36  | 79    | 41 - 126 |
| 1,2,4-TRICHLOROBENZENE    | 51.00      |        | 42.99  | 86    | 38 - 107 |
| A-CHLORO-3-METHYLPHENOL   | 100.00     | .00    | 91.58  | 92    | 26 - 103 |
| ACENAPHTHENE              | 51.41      | .11    | 46.63  | 93    | 31 - 137 |
| -NITROPHENOL              | 100.00     |        | 89.24  | 89    | 11 - 114 |
| 2,4-DINITROTOLUENE        | 51.11      | .11    | 48.68  | 81    | 28 - 89  |
| PENTACHLOROPHENOL         | 100.00     | .11    | 113.43 | 113 * | 17 - 109 |
| PYRENE                    | 51.44      |        | 46.01  | 1 92  | 35 - 142 |

|                            | SPIKE             | MSD     | MSD     |          |         |          |
|----------------------------|-------------------|---------|---------|----------|---------|----------|
| COMPOUND                   | ADDED             | COMC.   | 1       | <b>;</b> | Q C     | LIMITS   |
| NAME                       | (ug/L)            | (ug/L)  | REC #   | RPD #    | RPD     | REC.     |
|                            | :   = = = = = = = | ======= | ======= | =======  | ======= |          |
| PHENOL                     | 100.00            | 86.01   | 86      | 4        | 35      | 26 - 90  |
| 2-CHLOROPHENOL             | 100.00            | 94.26   | 94      | 4        | 5.€     | 25 - 102 |
| 1.4-DICHLOROBENZENE        | 50.00             | 41.55   | 83      | 3        | 27      | 28 - 104 |
| N-NITROSODI-N-PROPYLANINE_ | 51.11             | 39.82   | 8       | 1        | 38      | 41 - 120 |
| 1.2.4-TRICHLOROBENZENE     | 50.00             | 43.47   | 87      | 1        | 23      | 38 - 107 |
| 4-CHLORO-3-NETHYLPHENOL    | 100.00            | 85.48   | 85      | 7        | 33      | 26 - 163 |
| ACENAPHTHENE               | 50.00             | 43.50   | 87      | 7        | 19      | 31 - 137 |
| 4-NITROPHENOL              | 100.00            | 84.19   | 84      | 6        | 5 0     | 11 - 11  |
| 2.4-DINITROTOLUENE         | 50.00             | 38.71   | 77      | 5        | 47      | 28 - 89  |
| PENTACHLOROPHENOL          | 100.00            | 101.35  | 101     | 11       | 47      | 17 - 109 |
| PYRENE                     | 50.00             | 47.53   | i 95 i  | 3        | 36      | 35 - 142 |

Column to be used to flag recovery and RPD values with an asterisk.

RPD: • out of 11 outside limits.

Spike Recovery: 1 out of 22 outside limits.

| D1695 | 01696                | LIMITS                                                      |                                                                                                |
|-------|----------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 92    | 85                   | 35 -                                                        | 114                                                                                            |
| 91    | 86                   | 43 -                                                        | 116                                                                                            |
| 85    | 83                   | 33 -                                                        | 141                                                                                            |
| 79    | 79                   | 10 -                                                        | 94                                                                                             |
| 17    | 8 ●                  | 21 -                                                        | 100                                                                                            |
| 98    | 89                   | 18 -                                                        | 123                                                                                            |
|       | 92<br>98<br>85<br>79 | 92   85<br>  90   86<br>  85   83<br>  79   79<br>  77   80 | 92   85   35 -<br>  90   86   43 -<br>  85   83   33 -<br>  79   79   10 -<br>  77   80   21 - |

FORM III SV-1

<sup>\*</sup> Values outside of QC limits.



SENIVOLATILE BLANK SPIKE RECOVERY WATER

Lab Mame: ITAS - Austin

CLIENT ID:

QC BATCH ID

Test Code/Date:

D8569 D8169

Prep Code/Date: 3520

8271

12/16/93

Date Ran: Time Ran:

Sample Mames:

12/30/93 12/30/93 9.33

9.85

TO 1.00 ML)

Set 1:1

Inst.ID: 0

12/16/93

Matrix Spike - SAM Sample No.

( 1888.88 ML

B312169/BS Natrix: WATER

1.0 X DIL

|                          | SPIKE  | BLANK  | BS     | 85    | QC<br>LIMITS |
|--------------------------|--------|--------|--------|-------|--------------|
| COMPOUND                 | ADDED  | CONC   | CONC   | •     |              |
| NAME                     | (ug/L) | (ug/L) | (ug/l) | REC # | REC.         |
| PHENOL                   | 160.66 | . 66   | 76.18  | 76    | 14 - 99      |
| 2-CHLOROPHENOL           | 100.00 | .41    | 92.01  | 92    | 19 - 107     |
| 1,4-DICHLOROBENZENE      | 51.11  | .41    | 38.57  | 77    | 18 - 141     |
| N-NITROSODI-N-PROPYLANIN | 54.44  | . 01   | 39.73  | 79    | 32 - 148     |
| 1,2,4-TRICHLOROBENZENE_  | 58.88  | . 44   | 46.12  | 92    | 24 - 109     |
| 4-CHLORO-3-WETHYLPHENOL_ | 100.00 | .00    | 96.64  | 97    | 31 - 111     |
| ACENAPHTHENE             | 54.44  | . 00   | 49.34  | 99    | 33 - 110     |
| 4-NITROPHENOL            | 100.00 | .00    | 75.98  | 76    | 1 - 141      |
| 2,4-DINITROTOLUENE       | 50.00  | .00    | 40.70  | 81    | 35 - 146     |
| PENTACHLOROPHENOL        | 100.00 | .11    | 102.49 | 102   | 1 - 147      |
| PYRENE                   | 51.11  | .44    | 52.15  | 104   | 42 - 119     |

| CL      | •      |
|---------|--------|
| SPIKE   |        |
| 12 - 11 | 42     |
| 27 - 12 | 3 40   |
| 36 - 9  | 7 28   |
| 41 - 11 | 6 38   |
| 39 - 9  | 8 28   |
| 23 - 9  | 7   42 |
| 46 - 11 | 8 31   |
| 10 - 8  | 1 51   |
| 24 - 9  | 6 38   |
| 9 - 10  | 3 50   |
| 26 - 12 | 7 51   |
|         |        |

Spike Recovery:

# out of 11

outside limits.

| SURROGATE RECOVERIES | DBS69 | OBL69 | LIMITS   |
|----------------------|-------|-------|----------|
| D5-NITROBENZENE      | 88    | 85    | 35 - 114 |
| 2-FLUOROBIPHENYL     | 91    | 83    | 43 - 116 |
| D14-P-TERPHENYL      | 88    | 86    | 33 - 141 |
| D5-PHENOL            | 75    | 83    | 10 - 94  |
| 2-FLUOROPHENOL       | 73    | 72    | 21 - 100 |
| 2,4,6-TRIBRONOPHEMOL | 86    | 84    | 10 - 123 |
|                      |       | 1     | 1        |

12/38/47

<sup>#</sup> Column to be used to flag recovery and RPD values with an asterisk.

<sup>\*</sup> Values outside of QC limits.

### ITAS - AUSTIN EXTRACTABLES QA LOT SUNHARY.

QC Batch ID

| Prep Code/Dat | 10. T-W-+3 | 12/14/8 |
|---------------|------------|---------|
| Test Code/Dat | A1/_       |         |
| Gat &         | Inst. ID:  |         |

| r                     |               |        | Percent  |
|-----------------------|---------------|--------|----------|
| Туре                  | Lab Sample ID | Result | Recovery |
|                       | 1 B312,54-B11 | ND     |          |
| Blank_<br>Blank spike | 135           | 5.7    | 100      |
| HS                    | 016           | 11     |          |
| HSD                   | 080           | 12     | 100      |
|                       |               |        |          |

QC fimits
< Reporting fimit
70 to 130%
70 to 130%
70 to 130%

This QA Spike Lot applies to the following Samples:

| Client  | Sam # + Fraction                                | Date of Prep                                                |
|---------|-------------------------------------------------|-------------------------------------------------------------|
| T, Ncen | B312154-C6B B312154-C6B 63B 03B 03B 00B 00B 00B | 12/16/93                                                    |
|         |                                                 | Tincer  B312154-068 B312154-068 B312154-068 038 048 058 058 |

| Comments: |  |
|-----------|--|
|           |  |

| PREPRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PREPREP METHOD:                                                           |                                               |                                                         |          |        |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|----------|--------|------------|
| PREP METHOD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                               |                                                         |          |        |            |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S METHOD: C                                                               | R_V+                                          |                                                         |          |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATCH DATE:                                                                | 2/14/53                                       | 12:00                                                   |          |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RUMENT ID:                                                                | A                                             | 7.5.0                                                   |          |        |            |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (BATCH) #: -                                                              | >                                             |                                                         |          |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ()                                                                        |                                               |                                                         |          |        |            |
| Work Orders/Fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Associated Wi                                                             | th Batch                                      |                                                         |          |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                                               |                                                         |          |        |            |
| Lab Sample ID's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Batch QC ID's                                                             |                                               |                                                         |          |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           | · · · · · · · · · · · ·                       | <del>-</del>                                            |          |        |            |
| : B312169-00C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LCS ID: LCS                                                               |                                               |                                                         |          |        |            |
| 2 <u>63</u> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LCSD ID: LCS                                                              |                                               |                                                         |          |        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MBID: MB                                                                  |                                               |                                                         |          |        |            |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MS ID: 33                                                                 | 1.)/69-0                                      | <u>5</u> (_                                             |          |        |            |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSD ID: 12.3/                                                             | 3169 - a                                      | <mark>9</mark> ر                                        |          |        |            |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | REP ID: 区3                                                                | 12169-0                                       |                                                         |          |        |            |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Batch QC Res                                                              | uite                                          |                                                         | MDL:     | 1      | Pal: 0.0/0 |
| 9 / 13/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Datch GC nes                                                              | uits                                          |                                                         | WDL      |        | <u> </u>   |
| 9 / 12/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                        | Doggida                                       | Lloito                                                  | Analyst  | !Date/ | Time       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample III                                                                | HACILIT                                       |                                                         | MILATON  |        | 1 (111)    |
| 10 / 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample ID  Method Blk                                                     | Result                                        | Units                                                   |          |        |            |
| 11 / 12/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methoa Blk                                                                | IU                                            | 1 Mg/C                                                  | Allalyst |        | 1/531-201  |
| 12 / 12/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method Blk                                                                | 1 96,0                                        | 1 /ms/L<br>1% Rec                                       |          |        |            |
| 11 / 12 / H<br>12   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Method Blk LCS % Rec LCSD % Rec                                           | 196,0                                         | 1% Rec                                                  |          |        |            |
| 11 / 12 / 13<br>12   13<br>13   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP                               | 1 96,0<br>102<br>DI 6.04                      | 1 /n.s/<br>1% Rec<br>1% Rec<br>1% RPD                   |          |        |            |
| 11 / 12/14<br>12   13<br>13   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP MS % Rec                      | 196,0<br>102<br>DI 6.04                       | 1 /kg/L<br>1% Rec<br>1% Rec<br>% RPD<br>% Rec           |          |        |            |
| 11 / 12/14<br>12   13<br>14   15   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP                               | 102<br>103<br>103<br>104                      | % Rec<br>% RPD<br>% Rec<br>% RPD<br>% Rec               |          |        |            |
| 11 / 12 / 13<br>13 / 15<br>15 / 16<br>17 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP MS % Rec MSD % Rec            | 102<br>103<br>103<br>104                      | 1 /kg/L<br>1% Rec<br>1% Rec<br>% RPD<br>% Rec           |          |        |            |
| 11 /   2     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP MS % Rec MSD % Rec MS/MSD RPD | 1 96,5<br>102<br>DI 6.N<br>103<br>104<br>1.94 | 1% Rec<br>1% Rec<br>1% RPD<br>% Rec<br>1% Rec<br>1% RPD |          |        |            |
| 11 / 12 / 13<br>13 / 15<br>15 / 16<br>17 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP MS % Rec MSD % Rec MS/MSD RPD | 1 96,5<br>102<br>DI 6.N<br>103<br>104<br>1.94 | 1% Rec<br>1% Rec<br>1% RPD<br>% Rec<br>1% Rec<br>1% RPD |          |        | 45312:00   |
| 11 /   2     12     13     15     16     17     18     19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP MS % Rec MSD % Rec MS/MSD RPD | 1 96,5<br>102<br>DI 6.N<br>103<br>104<br>1.94 | 1% Rec<br>1% Rec<br>1% RPD<br>% Rec<br>1% Rec<br>1% RPD |          |        | 45312:00   |
| 11 /   2     12     13     15     16     17     18     19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP MS % Rec MSD % Rec MS/MSD RPD | 1 96,5<br>102<br>DI 6.N<br>103<br>104<br>1.94 | 1% Rec<br>1% Rec<br>1% RPD<br>% Rec<br>1% Rec<br>1% RPD |          |        | 45312:00   |
| 11 /   2     12     13     15     16     17     18     19   20   20     20     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP MS % Rec MSD % Rec MS/MSD RPD | 1 96,5<br>102<br>DI 6.N<br>103<br>104<br>1.94 | 1% Rec<br>1% Rec<br>1% RPD<br>% Rec<br>1% Rec<br>1% RPD |          |        | 45312:00   |
| 11 /   2     12     13     15     16     17     18     19   20   20     20     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP MS % Rec MSD % Rec MS/MSD RPD | 1 96,5<br>102<br>DI 6.N<br>103<br>104<br>1.94 | 1% Rec<br>1% Rec<br>1% RPD<br>% Rec<br>1% Rec<br>1% RPD |          |        | 45312:00   |
| 11 /   2     12     13     15     16     17     18     19   20   20     20     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP MS % Rec MSD % Rec MS/MSD RPD | 1 96,5<br>102<br>DI 6.N<br>103<br>104<br>1.94 | 1% Rec<br>1% Rec<br>1% RPD<br>% Rec<br>1% Rec<br>1% RPD |          |        | 45312:00   |
| 11 /   2     12     13     15     16     17     18     19   20   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP MS % Rec MSD % Rec MS/MSD RPD | 1 96,5<br>102<br>DI 6.N<br>103<br>104<br>1.94 | 1% Rec<br>1% Rec<br>1% RPD<br>% Rec<br>1% Rec<br>1% RPD |          |        | 45312:00   |
| 11 /   2     12     13     15     16     17     18     19   20   20     20     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP MS % Rec MSD % Rec MS/MSD RPD | 1 96,5<br>102<br>DI 6.N<br>103<br>104<br>1.94 | 1% Rec<br>1% Rec<br>1% RPD<br>% Rec<br>1% Rec<br>1% RPD |          |        | 45312:00   |

QC BATCH ID FOR WET CHEM - Test Code: \_CR\_

| QC BATCH ID FOR  | WET CHEM - Test Code: NO3 NO, | TNO3-PR. |
|------------------|-------------------------------|----------|
| PREPREP METHOD:  |                               |          |
| PREP METHOD:     |                               |          |
| ANALYSIS METHOD: | 353.2                         |          |
| BATCH DATE:      | 1-3-94                        |          |
| INSTRUMENT ID:   | А                             |          |
| SET (BATCH) #:   |                               |          |

| Lab | Sample ID's    |
|-----|----------------|
|     |                |
| 1   | B312263-01     |
| 2   | 026            |
| 3   | B3 12 169-02C  |
| 4   | 036            |
| 5   | 046            |
| 6   | A312176-02C    |
| 7   | 236            |
| 8   | <del>o4€</del> |
| 9   | B312198-01C    |
| 10  | 020            |
| 11  | B312247-01B    |
| 12  | B312202-01M    |
| 13  | 02m            |
| 14  | B312203-01M    |
| 15  | 02 M           |
| 16  | B312269-01M    |
| 17  | 02             |
| 18  | B312270_01m    |
| 19  | B312327-05H    |
| 20  |                |

| Batch QC | ID's          |   |
|----------|---------------|---|
| LCS ID:  | LCS 010\$94-1 | , |
| LCSD ID: | LCSD 010894-  | / |
| MB ID:   | mB 010594-    | / |

MS ID: B312 169-054

MSD ID: 83/2/69-064 REP ID: 83/2/69-034

Batch QC Results

| MDL: | PQL: | 0.050 |
|------|------|-------|
|------|------|-------|

| Sample ID    | Result | Units | Analyst | Date/Time    |
|--------------|--------|-------|---------|--------------|
| Method Blk   | NO     | mg/L  | USB     | 1/5/94 10:39 |
| LCS % Rec    | 100    | % Rec |         |              |
| LCSD % Rec   | 98     | % Rec |         | ·            |
| LCS/LCSD RPD | 2.0    | % RPD |         |              |
| MS % Rec     | 110    | % Rec |         |              |
| MSD % Rec    | 99     | % Rec |         |              |
| MS/MSD RPD   | 11     | % RPD |         |              |
| REP RPD      | 3.6    | % RPD |         |              |

| Comments: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |

| QC BATCH ID FOR WET CHEM - Test Code: SOU-IC |
|----------------------------------------------|
| PREPREP METHOD:                              |
| PREP METHOD:                                 |
| ANALYSIS METHOD: Soy_1C                      |
| BATCH DATE: 1/44                             |
| INSTRUMENT ID: A                             |
| SET (BATCH) #: パ                             |

| WORK Orders/1 ruodor                       |                                                                                          |                                      |             |                                                  |              |     |
|--------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------|-------------|--------------------------------------------------|--------------|-----|
| Lab Sample ID's                            | Batch QC ID's                                                                            |                                      | -           |                                                  |              |     |
| 1 B312169-QC<br>2 -03C<br>3 -04C<br>4<br>5 | LCS ID: の105<br>LCSD ID: 0105<br>MB ID: 6105<br>MS ID: 631<br>MSD ID: 631<br>REP ID: 631 | 794-2<br>794-1<br>2169-05<br>2169-06 | ي           |                                                  | 1.0          |     |
| 8                                          | Batch QC Resul                                                                           | ts                                   |             | MDL:                                             | PQL:         | SIL |
| 9                                          |                                                                                          | Result                               | Units       | Analyst                                          | Date/Time    | Ì   |
| 10                                         | Sample ID                                                                                |                                      | mole        | 185                                              | 1/5/947:39   |     |
| 11                                         | Method Blk                                                                               | 0.0                                  | % Rec       | 1 /185                                           | 118 (44 1.3) |     |
| 12                                         | LCS % Rec                                                                                | 107                                  | % Rec       | +                                                |              |     |
| 13                                         | LCSD % Rec                                                                               | 104                                  |             | <del></del>                                      |              |     |
| 14                                         | LCS/LCSD RPD                                                                             |                                      | % RPD       | <del>                                     </del> |              |     |
| 15                                         | MS % Rec                                                                                 | 78.5                                 |             | <del></del>                                      |              |     |
| 16                                         | MSD % Rec                                                                                | 68.5                                 | % Rec       |                                                  |              |     |
| 17                                         | MS/MSD RPD                                                                               | 13.6                                 | % RPD       | 1                                                |              |     |
| 18                                         | REP RPD                                                                                  | 12.                                  | % RPD       |                                                  |              |     |
| 19                                         |                                                                                          |                                      |             |                                                  |              |     |
| 20                                         |                                                                                          |                                      |             |                                                  |              |     |
| Comments:                                  |                                                                                          |                                      |             |                                                  |              |     |
|                                            |                                                                                          |                                      |             |                                                  |              |     |
|                                            |                                                                                          |                                      | <del></del> |                                                  |              |     |
|                                            |                                                                                          |                                      |             |                                                  |              |     |

| QC BATCH ID FOR  | R WET CHEM - Test Code: COLC |
|------------------|------------------------------|
| PREPREP METHOD:  |                              |
| PREP METHOD:     |                              |
| ANALYSIS METHOD: | CL-1C                        |
| BATCH DATE:      | 115194                       |
| INSTRUMENT ID:   | A                            |
| SET (BATCH) #:   | Ιβ                           |

| WOIR GIGGIO                             |                                                                       |                                    |          |                                                  |                     |
|-----------------------------------------|-----------------------------------------------------------------------|------------------------------------|----------|--------------------------------------------------|---------------------|
| Lab Sample ID's                         | Batch QC ID's                                                         |                                    | •        |                                                  |                     |
| 1 13312169-036<br>2 -036<br>3 -046<br>4 | LCS ID: 01059  LCSD ID: 01059  MS ID: 0312  MSD ID: 6312  REP ID: 632 | 74-2<br>4-1<br>2169-05C<br>169-06C | <u>.</u> |                                                  |                     |
| 7                                       |                                                                       |                                    | •        |                                                  | 1.0<br>1.0          |
| 8                                       | Batch QC Resul                                                        | ts                                 |          | MDL:                                             | PQL: ms/L           |
| 9                                       |                                                                       | n4                                 | Units    | Analyst                                          | Date/Time           |
| 10                                      | Sample ID                                                             | Result                             | male     | 1482                                             | 01/05/947:39        |
| 11                                      | Method Blk                                                            | 0.0                                | % Rec    | 1                                                | J. C. LOST C. S. T. |
| 12                                      | LCS % Rec                                                             | 109                                | % Rec    | ++-                                              |                     |
| 13                                      | LCSD % Rec                                                            | 104                                | % RPD    | <del>                                     </del> |                     |
| 14                                      | LCS/LCSD RPD                                                          | 4.69<br>+08 900                    |          | 1-1-                                             |                     |
| 15                                      | MS % Rec MSD % Rec MSD % Rec                                          | 90.095                             | % Rec    | 1-1-                                             |                     |
| 16                                      | MSD % REC IN                                                          | 90.5.55                            | % RPD    | 1-1-                                             |                     |
| 17                                      |                                                                       | 5.64                               | % RPD    | 11                                               |                     |
| 18                                      | REP RPD                                                               | 3.67                               |          |                                                  |                     |
| 19                                      |                                                                       |                                    |          |                                                  |                     |
| 20                                      |                                                                       |                                    |          |                                                  |                     |
| Comments:                               |                                                                       |                                    |          |                                                  |                     |
|                                         |                                                                       |                                    |          |                                                  |                     |
|                                         |                                                                       |                                    |          | _                                                |                     |

| QC BATCH ID FOR  | WET CHEM - Test Code: 9066 |
|------------------|----------------------------|
| PREPREP METHOD:  |                            |
| PREP METHOD:     |                            |
| ANALYSIS METHOD: | 9066                       |
| BATCH DATE:      | 12-28-94                   |
| INSTRUMENT ID:   | A                          |
| SET (BATCH) #:   |                            |

| ab Sample ID's                            | Batch QC ID's                                                                             |                               | •            |                                                  |                                                  |
|-------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|
| 1 B3/2/69-D2C<br>2 03C<br>3 04C<br>4<br>5 | LCS ID: LCS<br>LCSD ID: LCS/A<br>MB ID: MB<br>MS ID: B3/2<br>MSD ID: B3/2<br>REP ID: B3/2 | 122893-<br>122893-<br>169-050 | -/<br>-/<br> |                                                  |                                                  |
| 7 8                                       | Batch QC Resul                                                                            | ts                            | -            | MDL:                                             | PQL: <u>0.0</u>                                  |
| 9                                         |                                                                                           |                               | II Inite     | Analyst                                          | Date/Time                                        |
| 10                                        | Sample ID                                                                                 | Result                        | Units        | aron                                             | 1-6-94 17:02                                     |
| 11                                        | Method Blk                                                                                | ND                            | mg/L         | anon                                             | 1-6-17 17.02                                     |
| 12                                        | LCS % Rec                                                                                 | 86                            | % Rec        |                                                  | <del>                                     </del> |
| 13                                        | LCSD % Rec                                                                                | 84                            | % Rec        | <del>                                     </del> |                                                  |
| 14                                        | LCS/LCSD RPD                                                                              |                               | % RPD        |                                                  |                                                  |
| 15                                        | MS % Rec                                                                                  | 78                            | % Rec        |                                                  |                                                  |
| 16                                        | MSD % Rec                                                                                 | 81                            | % Rec        |                                                  |                                                  |
| 17                                        | MS/MSD RPD                                                                                | 3,8                           | % RPD        |                                                  |                                                  |
| 18                                        | REP RPD                                                                                   | $\mathcal{O}_{-}$             | % RPD        |                                                  |                                                  |
| 19                                        |                                                                                           |                               |              |                                                  |                                                  |
| 20                                        |                                                                                           |                               |              |                                                  |                                                  |
| Comments:                                 |                                                                                           |                               |              |                                                  |                                                  |
|                                           |                                                                                           |                               |              |                                                  |                                                  |
|                                           |                                                                                           |                               |              |                                                  |                                                  |

| QC BATCH ID FO   | OR WET CHEM - Test Code: T-P |
|------------------|------------------------------|
| PREPREP METHOD:  |                              |
| PREP METHOD:     |                              |
| ANALYSIS METHOD: | 365.4                        |
| BATCH DATE:      | 1-7-94                       |
| INSTRUMENT ID:   | A                            |
| SET (BATCH) #:   | 2                            |

| Lab Sample ID's                                 | Batch QC ID's                                                                             | _                          | -        |                                                  |               |
|-------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------|----------|--------------------------------------------------|---------------|
| 1 831219-020<br>2 -030<br>3 -040<br>4<br>5<br>6 | LCS ID: LCS (ID: LCS ID: LCS ID: LCS ID: PBW)  MB ID: PBW  MS ID: PBW  MSD ID: REP ID: —— | 20-231<br>1320-231<br>230- | <u> </u> | MDL                                              | par. 245      |
| 8                                               | Batch QC Resul                                                                            | ts                         |          | MDL:                                             | PQL:          |
| 9                                               | Occupio ID                                                                                | Result                     | Units    | Analyst                                          | Date/Time     |
| 10                                              | Sample ID                                                                                 |                            | ~31L     | DSB                                              | 1/7/4/10:40   |
| 11                                              | Method Blk                                                                                | <0.10                      | % Rec    | 1 1                                              | 1 1 1 1 1 1 1 |
| 12                                              | LCS % Rec                                                                                 | 104                        | % Rec    |                                                  |               |
| 13                                              | LCSD % Rec                                                                                |                            |          | <del> </del>                                     |               |
| 14                                              | LCS/LCSD RPD                                                                              | ~                          | % RPD    | <del>                                     </del> |               |
| 15                                              | MS % Rec                                                                                  | Ø                          | % Rec    | <del> </del>                                     |               |
| 16                                              | MSD % Rec                                                                                 | 8                          | % Rec    | <del>                                     </del> |               |
| 17                                              | MS/MSD RPD                                                                                | Ø                          | % RPD    | <del>                                     </del> |               |
| 18                                              | REP RPD                                                                                   |                            | % RPD    |                                                  |               |
| 19                                              |                                                                                           |                            |          |                                                  |               |
| 20                                              |                                                                                           |                            |          |                                                  |               |
|                                                 |                                                                                           |                            |          |                                                  |               |

| Comments: ms/msp come at CF A SEPARATE BOTTLE: REDAN SOMPLES AT |
|-----------------------------------------------------------------|
| SUD DE PUN W/ SOME RESULTS. NON FILED.                          |
|                                                                 |
|                                                                 |

| QC BATCH ID FOR WE | T CHEM - Test Code: TEN-N |
|--------------------|---------------------------|
| PREPREP METHOD:    |                           |
| PREP METHOD:       |                           |
| ANALYSIS METHOD:   | 351.2                     |
| BATCH DATE:        | 01-07-94                  |
| INSTRUMENT ID:     | A                         |
| SET (BATCH) #:     | 2                         |

| Lab Sample ID's        | Batch QC ID's  |                              | •           |         |                             |
|------------------------|----------------|------------------------------|-------------|---------|-----------------------------|
| 1 B312169-02C<br>2 O3C |                | V 01079<br>010799<br>3 01079 | <u>/</u> -/ |         |                             |
| 3 04C                  | MS ID: 13.3    |                              |             |         |                             |
| 4                      | MSD ID: 83     |                              |             |         |                             |
| 5                      | REP ID:        |                              | =           |         |                             |
| 7                      |                |                              | -           |         |                             |
| 8                      | Batch QC Resul | ts                           |             | MDL:    | P <b>QL:</b> _ <i>D,</i> 25 |
| 9                      |                |                              |             |         |                             |
| 10                     | Sample ID      | Result                       | Units       | Analyst | Date/Time                   |
| 11                     | Method Blk     | ND                           | mg/L        | DSB     | 1/10/84 08:44               |
| 12                     | LCS % Rec      | 85.0                         | % Rec       |         |                             |
| 13                     | LCSD % Rec     | 93.2                         | % Rec       |         | ·                           |
| 14                     | LCS/LCSD RPD   |                              | % RPD       |         |                             |
| 15                     | MS % Rec       | 81.7                         | % Rec       |         |                             |
| 16                     | MSD % Rec      | 679                          | % Rec       |         |                             |
| 17                     | MS/MSD RPD     | 18.4                         | % RPD       |         |                             |
| 18                     | REP RPD        |                              | % RPD       |         |                             |
| 19                     |                |                              |             |         |                             |
| 20                     |                |                              |             |         |                             |
|                        | ,              |                              |             |         | •                           |
| Comments: NC w         | ritten for n   | nso %                        | PCVRY       |         |                             |
|                        |                |                              |             |         |                             |
|                        |                |                              |             |         |                             |

| PREPREP METHOD: NA  PREP METHOD: NA  ANALYSIS METHOD: ALK TO  BATCH DATE: 12-15-93 | QC BATCH ID FOR  | R WET CHEM - Test Code: ALK-T |
|------------------------------------------------------------------------------------|------------------|-------------------------------|
| ANALYSIS METHOD: ALK TO BATCH DATE: 12-15-93                                       | PREPREP METHOD:  | NA                            |
| BATCH DATE: 12-15-93                                                               | PREP METHOD:     | NA                            |
|                                                                                    | ANALYSIS METHOD: | ALK TO                        |
|                                                                                    | BATCH DATE:      | 12-15-93                      |
| INSTRUMENT ID: A                                                                   | INSTRUMENT ID:   | A                             |
| SET (BATCH) #: /                                                                   | SET (BATCH) #:   | /                             |

| Lab Sample ID's  | Batch QC ID's              |        | <b>-</b>    |                        |                     |
|------------------|----------------------------|--------|-------------|------------------------|---------------------|
| 6 B312147-09C,20 | LCSD ID: 7/A<br>MB ID: 1/A | 93-2   | -<br>-<br>- | 1154, <del>831</del> 5 | <del>2 147</del> JM |
| 7 8              | Batch QC Resul             |        |             | MDL:                   |                     |
| 9                |                            |        |             |                        |                     |
| 10               | Sample ID                  | Result | Units       | Analyst                | Date/Time           |
| 11               | Method Blk                 | 0      |             | JAM                    | 12-15-93            |
| 12               | LCS % Rec                  | 100    | % Rec       | 1                      | !                   |
| 13               | LCSD % Rec                 | 100    | % Rec       |                        |                     |
| :4               | LCS/LCSD RPD               |        | % RPD       |                        |                     |
| 15               | MS % Rec                   |        | % Rec       |                        |                     |
| 16               | MSD % Rec                  | 1 1    | % Rec       |                        |                     |
| 17               | MS/MSD RPD                 | V      | % RPD       |                        |                     |
| 18               | REP RPD                    | 1,24   | 1% RPD      | 0                      |                     |
| 19               |                            |        |             |                        |                     |
| 20               |                            |        |             |                        |                     |
|                  |                            |        |             |                        |                     |
| Comments:        |                            |        |             |                        |                     |
|                  |                            |        |             |                        |                     |
|                  |                            |        |             |                        |                     |
|                  |                            |        |             |                        |                     |
|                  |                            |        |             |                        |                     |

| QC BATCH ID FO   | R WET CHEM - Test Code: SiDy |
|------------------|------------------------------|
| PREPREP METHOD:  |                              |
| PREP METHOD:     |                              |
| ANALYSIS METHOD: | SiO2.                        |
| BATCH DATE:      | 12/04/53                     |
| INSTRUMENT ID:   | #                            |
| SET (BATCH) #:   | 16                           |

| Lab Sample ID's |          |
|-----------------|----------|
| 1 B3/2/169-02   | C        |
| **              |          |
|                 | C        |
| 4 B312063 -     | 01       |
| 5               | <u>W</u> |
| 6               |          |
| 7               | 4        |
| 8               |          |
| 9               | _        |
| 10              |          |
| 11              |          |
| 12              |          |
| 13              |          |
| 14 / 🛇          |          |
| 15/             | <u> </u> |
| 16              | \<br>    |
| 1/7             |          |
| 18              |          |
| 19              |          |
| 20              |          |
|                 |          |

|          | LCS/20993-1  |
|----------|--------------|
| LCSD ID: | LCS/22993-/  |
| MB ID:   | MB/22993-1   |
| MS ID:   | 3312169-056  |
| MODID    | -217116 -NIC |

Batch QC ID's

Batch QC Results MDL: PQL: Did MDL:

| Sample ID    | Result | Units, | Analyst | Date/Time |
|--------------|--------|--------|---------|-----------|
| Method Blk   | 0      | molL   | SAT     | 12/25     |
| LCS % Rec    | 1010   | % Rec  |         | Ì         |
| LCSD % Rec   | 96.D   | % Rec  |         |           |
| LCS/LCSD RPD | 6.45   | % RPD  |         |           |
| MS % Rec     | 94,4   | % Rec  |         |           |
| MSD % Rec    | 108    | % Rec  |         |           |
| MS/MSD RPD   |        | % RPD  |         |           |
| REP RPD      | 6,45   | % RPD  | P       | γ         |

| Comments: |  | <br> |
|-----------|--|------|
|           |  |      |
|           |  |      |
|           |  | ,    |
|           |  | <br> |

|                                                    | QC BA           | ATCH ID FOR                                                                   | WET CHEN                   | A - Test C                                             | OOE. TO |             |    |
|----------------------------------------------------|-----------------|-------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------|---------|-------------|----|
| •                                                  | PREPREP METHOD: |                                                                               |                            |                                                        |         |             |    |
|                                                    | PREP METHOD:    |                                                                               |                            |                                                        |         |             |    |
| Δ                                                  |                 | METHOD:                                                                       | 06                         |                                                        |         |             |    |
|                                                    |                 | TCH DATE.                                                                     | -                          |                                                        |         |             |    |
|                                                    |                 | UMENT ID:                                                                     | A                          |                                                        |         |             |    |
|                                                    |                 |                                                                               | 3 (                        |                                                        |         |             |    |
|                                                    |                 |                                                                               | // Datab                   |                                                        |         |             |    |
| Work Orders/F                                      | ractions        | Associated W                                                                  | ith Batch                  |                                                        |         |             |    |
| Lab Samble 10                                      | S               | Batch QC ID                                                                   | 's                         | _                                                      |         |             |    |
| 1 B3 12/169-                                       | 220             | LCS ID                                                                        | 5 122093-                  | 2                                                      |         |             |    |
|                                                    | 53C             |                                                                               | CSD 1220                   | <del></del>                                            |         |             |    |
|                                                    | 04C             | MB ID: M                                                                      | B 12209                    | <del>2</del> -2                                        |         |             |    |
| 4                                                  |                 | MS ID: BE                                                                     | 3/2/16-05                  |                                                        |         |             |    |
| 5                                                  | $\sum$          |                                                                               | 312169-00                  | <u>-</u>                                               | _       |             |    |
| 6                                                  |                 |                                                                               | SD HATEG                   | 122053-                                                | 3       |             |    |
| 7                                                  |                 |                                                                               |                            |                                                        |         | 1 /         | ٠, |
| 8                                                  |                 | Batch QC Re                                                                   | suits                      |                                                        | MDL:    | PQL: / (    | ز  |
| 9                                                  |                 |                                                                               |                            | 1.1-:4-                                                | 1 4 1 4 | IDeas &     | _  |
| 10                                                 |                 | [C10 ID                                                                       | 1 🗀 14                     |                                                        |         |             |    |
| 10                                                 |                 | Sample ID                                                                     | Result                     | Units                                                  |         | !Date/Time  |    |
| :1 // 27                                           |                 | Method Blk                                                                    | 1 0                        | n8/1                                                   | Analyst | 17(90 /P:00 | _  |
| 11 / 12                                            |                 | Method Blk<br>LCS % Rec                                                       | 108                        | 1% Rec                                                 |         |             | _  |
| :1 // 27                                           |                 | Method Blk<br>LCS % Rec<br>LCSD % Rec                                         | 108                        | 1% Rec<br>1% Rec                                       |         |             |    |
| 11 / 12                                            |                 | Method Blk<br>LCS % Rec<br>LCSD % Rec<br>LCS/LCSD RI                          | 108                        | 1% Rec<br>1% Rec<br>1% Rec<br>% RPD                    |         |             |    |
| 11 / 12                                            |                 | Method Blk<br>LCS % Rec<br>LCSD % Rec<br>LCS/LCSD RI<br>MS % Rec              | 108                        | 1% Rec<br>1% Rec<br>% RPD<br>% Rec                     |         |             |    |
| 11 / 12                                            |                 | Method Blk<br>LCS % Rec<br>LCSD % Rec<br>LCS/LCSD RI<br>MS % Rec<br>MSD % Rec | 108<br>108<br>108<br>20: 0 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec           |         |             |    |
| 11<br>12<br>13<br>15<br>15                         |                 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RI MS % Rec MSD % Rec MS/MSD RPD     | 108<br>108<br>108<br>20: 0 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD |         |             |    |
| 11 / 12                                            |                 | Method Blk<br>LCS % Rec<br>LCSD % Rec<br>LCS/LCSD RI<br>MS % Rec<br>MSD % Rec | 108<br>108<br>108<br>20: 0 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec           |         |             |    |
| 11<br>12<br>13<br>15<br>15<br>16                   |                 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RI MS % Rec MSD % Rec MS/MSD RPD     | 108<br>108<br>108<br>20: 0 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD |         |             |    |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18       |                 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RI MS % Rec MSD % Rec MS/MSD RPD     | 108<br>108<br>108<br>20: 0 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD |         |             |    |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18       |                 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RI MS % Rec MSD % Rec MS/MSD RPD     | 108<br>108<br>108<br>20: 0 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD |         |             |    |
| 11<br>12<br>13<br>15<br>15<br>16<br>17<br>18<br>19 |                 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RI MS % Rec MSD % Rec MS/MSD RPD     | 108<br>108<br>108<br>20: 0 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD |         |             |    |
| 11<br>12<br>13<br>15<br>15<br>16<br>17<br>18<br>19 |                 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RI MS % Rec MSD % Rec MS/MSD RPD     | 108<br>108<br>108<br>20: 0 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD |         |             |    |
| 11<br>12<br>13<br>15<br>15<br>16<br>17<br>18<br>19 |                 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RI MS % Rec MSD % Rec MS/MSD RPD     | 108<br>108<br>108<br>20: 0 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD |         |             |    |
| 11<br>12<br>13<br>15<br>15<br>16<br>17<br>18<br>19 |                 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RI MS % Rec MSD % Rec MS/MSD RPD     | 108<br>108<br>108<br>20: 0 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD |         |             |    |

| BATCH DATE. 15 53 INSTRUMENT ID: A |                |               |                 |         |            |  |
|------------------------------------|----------------|---------------|-----------------|---------|------------|--|
|                                    | T (BATCH) #:   | <u> </u>      |                 |         |            |  |
| Work Orders/Fraction               | s Associated W | /ith Batch    |                 |         |            |  |
| Lab Samble 10's                    | Batch QC ID    | 's            |                 |         |            |  |
| 1B3/2169-020                       | I CS ID: 1     | 1716          | <u> </u>        |         |            |  |
| 2 630                              | LCS ID: LC     |               |                 |         |            |  |
| 3 84C                              | MB ID: NA      |               | 13-1            |         |            |  |
| 4 (DUP DE 040) 05C                 | MS ID:         |               |                 |         |            |  |
| 5 DUPOFOROXOC                      | MSD ID:        |               |                 |         |            |  |
| 6                                  | REP ID: BS     | 212119-       | <del>(2</del> ) |         |            |  |
| 7                                  |                |               | ObC             |         |            |  |
| 8                                  | Batch QC Res   | sults         | <b>~</b> С      | MDL:    | PQL:       |  |
| 9                                  |                |               |                 |         |            |  |
| 10                                 | Sample ID      | <b>Result</b> | Units           | Analyst | !Date/Time |  |
| 11                                 | Method Blk     | IVA           | 1 mste          | JAM     | 121511     |  |
| 12                                 | LCS % Rec      | 1 95.3        | 1% Rec          |         |            |  |
| 13                                 | LCSD % Rec     | 90.6          | 1% Rec          |         |            |  |
| :4                                 | LCS/LCSD RF    |               | % RPD           |         |            |  |
| 15                                 | MS % Rec       | INA           | ∃% Rec          |         |            |  |
| 16                                 | MSD % Rec      |               | 1% Rec          |         | ·          |  |
| 17                                 | MS/MSD RPD     |               | 1% RPD          |         |            |  |
| 18                                 | REP RPD        | 1,92/D        | 1% RPD          | /       |            |  |
| 19                                 |                | ,             |                 | ,       |            |  |
| 20                                 |                |               |                 |         |            |  |
| 0                                  |                |               |                 |         |            |  |
| Comments:                          |                |               |                 |         |            |  |

| QC BATCH ID FO   | R WET CHEM - Test Code: COD |
|------------------|-----------------------------|
| PREPREP METHOD:  |                             |
| PREP METHOD:     |                             |
| ANALYSIS METHOD: | 901                         |
| BATCH DATE:      | 12/28/93                    |
| INSTRUMENT ID:   | A                           |
| SET (BATCH) #:   | 26                          |

### Lab Sample ID's 1 B312169-62C - D3C - 044 3 5 6 8 9 10 11 12 13 14 15 16 17 18 19

| Batch QC ID's |  |
|---------------|--|
|               |  |

LCS 10: LCS 122893-2 LCSD ID: LCSD 12893-2 MS ID: 83/2/69-05C MSD ID: 183/2169-06C REP ID: L(SD 127893-2

Batch QC Results

Sample ID

Method Blk

LCS % Rec

MS % Rec

REP RPD

MSD % Rec

MS/MSD RPD

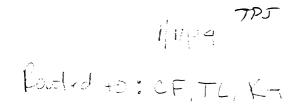
LCSD % Rec

LCS/LCSD RPD

| <u> </u>     | J -                     |             |             |     |     | 0          | m./   |
|--------------|-------------------------|-------------|-------------|-----|-----|------------|-------|
|              |                         | MDL:        |             |     | . P | QL:        | 1,3/( |
|              |                         | <del></del> |             | 1=  |     |            | 1     |
| ult          | Units                   | Analy       | /st         | Dat |     |            | ]     |
| )            | ms/L                    | SAT         | -           | 19  | 28  | 3/6:00     |       |
| 26           | % Rec                   | 1           |             |     |     | <u> </u>   |       |
| 16.4         | % Rec<br>% RPD<br>% Rec |             |             |     |     |            |       |
| 9,49         | % RPD                   |             |             |     |     |            |       |
| 06           | % Rec                   |             |             |     |     | ļ <u>.</u> |       |
| 10           | % Rec                   |             |             |     |     |            |       |
| 3.76         | % RPD                   |             | <del></del> |     |     | ļ,         | 1     |
| 3.76<br>9.40 | % RPD                   |             |             |     |     | <u>Y</u>   | J     |
|              |                         |             |             |     |     |            |       |

| 19        |  |
|-----------|--|
| 20        |  |
| Comments: |  |
|           |  |
|           |  |
|           |  |

Result


106

106

|                                       | BATCH ID FOR   |           |             |         | _          |
|---------------------------------------|----------------|-----------|-------------|---------|------------|
|                                       | EP METHOD:     |           |             |         |            |
| · · · · · · · · · · · · · · · · · · · | EP METHOD:     |           |             |         |            |
|                                       | IS METHOD: 7   |           |             |         |            |
|                                       | BATCH DATE. 10 |           |             |         |            |
|                                       | TRUMENT ID:    | 1         |             |         | 4,         |
| SE                                    | T (BATCH) #:   |           |             |         |            |
| Work Orders/Fraction                  | s Associated W | ith Batch |             |         |            |
| Cab Samble TU's                       | Batch QC ID'   | s         |             |         |            |
| · B3/2/69-WC                          | LCS ID: L      | 512139    | 3-1         |         |            |
| 2 🕸                                   | LCSD ID: LC    | 21982     | 931         |         |            |
| 3 DYC                                 | MB ID: W       | 1         | <u> </u>    |         |            |
| 4/ 9/10) DST                          | MS ID:         |           | <del></del> |         |            |
| IN COUNTS                             | MSD ID:        |           |             |         |            |
| 6                                     | REP ID: 13     | 312169-0  | 552         |         |            |
| 7                                     |                | •         | COL         |         |            |
| 8                                     | Batch QC Res   | sults     |             | MDL:    | PQL: _     |
| 9                                     |                |           |             |         |            |
| 10                                    | Sample ID      | Result    | Units       | Analyst | !Date/Time |
| :1                                    | Method Blk     | ! DA      | 1201        | MAC     | 12/5/10:0  |
| 12                                    | LCS % Rec      | 95        | !% Rec      |         | •          |
| 13                                    | LCSD % Rec     | 140       | !% Rec      |         |            |
| · <del>· ·</del>                      | LCS/LCSD RF    | D: 5.1    | % RPD       |         |            |
| 15                                    | MS % Rec       | NA        | % Rec       |         |            |
| 16                                    | MSD % Rec      |           | 1% Rec      |         |            |
| 17                                    | MS/MSD RPD     |           | 1% RPD      |         | \/         |
| 18                                    | REP RPD        | 6.4/21    | 1% RPD      | /       |            |
| 19                                    |                | 7         |             |         |            |
| 20                                    |                |           |             |         |            |
|                                       |                |           |             |         |            |
| Comments:                             |                |           |             |         |            |
|                                       |                |           |             |         |            |
|                                       |                |           |             |         |            |
|                                       |                |           |             |         |            |
|                                       |                |           |             |         |            |



# ANALYTICAL SERVICES



Date: 01/10/94

### CERTIFICATE OF ANALYSIS

IT CORPORATION
1250 CAPITAL OF TX HWY
BLDG. 3, SUITE 200
AUSTIN, TX 78746-6443
TIM JENNINGS

Work Order: B3-12-151

This is the Certificate of Analysis for the following samples:

Client Work ID: D.O. 5001 Date Received: 12/11/93 Number of Samples: 11 Sample Type: WATER 409832-003-01

681-1-89

I. Introduction

Samples were labeled as follows:

| LABORATORY # |
|--------------|
| B3-12-151-01 |
| B3-12-151-02 |
| B3-12-151-03 |
| B3-12-151-04 |
| B3-12-151-05 |
| B3-12-151-06 |
| B3-12-151-07 |
| B3-12-151-08 |
| B3-12-151-09 |
| B3-12-151-10 |
| B3-12-151-11 |
|              |

Reviewed and Approved:

Jon Bartell

baboratory Director

Page: 2 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684 Work Order: B3-12-151 409832-003-01

#### II. QA/QC

The results presented in this report meet the statement of work requirements in accordance with Quality Control and Quality Assurance protocol except as noted in Section IV or in an optional sample narrative at the end of Section III.

In the presented analytical data, 'ND' or '<' indicates that the compound is not detected at the specified limit.

#### III. Analytical Data

The following page(s) supply results for requested analyses performed on the samples listed above.

The test results relate to tested items only. ITAS-Austin reserves the right to control report production except in whole.

Page: 3 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1599
SAMPLE DATE: 12/02/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/18/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          | Reporting |       |       |                           | Re     |      |   | eporting |
|--------------------------|-----------|-------|-------|---------------------------|--------|------|---|----------|
|                          | Result    | Qual  | Limit |                           | Result | Qua. | L | Limit    |
| Chloromethane            | 1         | 10 t  | 10    | 1,2-Dichloropropane       |        | 5    | U | 5        |
| Bromomethane             | 1         | 10 U  | 10    | trans-1,3-Dichloropropene |        | 5    | U | 5        |
| Vinyl chloride           | 1         | 10 ti | 10    | Trichloroethene           |        | 5    | U | 5        |
| Chloroethane             | ]         | ιο τ  | 10    | Chlorodibromomethane      |        | 5    | U | 5        |
| Methylene chloride       | 1         | ιο τ  | 10    | 1,1,2-Trichloroethane     |        | 5    | U | 5        |
| Acetone                  | 7.        | .4 J  | 100   | Benzene                   |        | 5    | U | 5        |
| Carbon disulfide         |           | 5 Ü   | 5     | cis-1,3-Dichloropropene   |        | 5    | U | 5        |
| 1,1-Dichloroethene       |           | 5 t   | 5     | 2-Chloroethylvinyl ether  |        | 10   | U | 10       |
| ,1-Dichloroethane        |           | 5 t   | 5     | Bromoform                 |        | 5    | U | 5        |
| crans-1,2-Dichloroethene |           | 5 t   | 5     | 2-Hexanone                |        | 50   | U | 50       |
| cis-1,2-Dichloroethene   |           | 5 Ü   | 5     | 4-Methyl-2-pentanone      |        | 50   | U | 50       |
| Chloroform               |           | 5 t   | 5     | Tetrachloroethene         |        | 5    | U | 5        |
| 1,2-Dichloroethane       |           | 5 t   | 5     | 1,1,2,2-Tetrachloroethane |        | 5    | U | 5        |
| 2-Butanone               | 10        | ο τ   | 100   | Toluene                   |        | 5    | U | 5        |
| 1,1,1-Trichloroethane    |           | 5 t   | 5     | Chlorobenzene             |        | 5    | U | 5        |
| Carbon tetrachloride     |           | 5 t   | 5     | Ethylbenzene              |        | 5    | U | 5        |
| Vinyl acetate            |           | 10 t  | 10    | Styrene                   |        | 5    | U | 5        |
| Dichlorobromomethane     |           | 5 t   | 5     | Xylenes, total            |        | 5    | U | 5        |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 95         | 88 - 110 |
| BROMOFLUOROBENZENE    | 98         | 86 - 114 |
| 1,2-DICHLOROETHANE-D4 | 102        | 76 - 114 |

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - $\ensuremath{\mathsf{D}}$  compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 4 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

SAMPLE ID: A1600

SAMPLE DATE: 12/10/93 13:00:00

SAMPLE MATRIX: WATER

|                         | Note |        | Reporting |               | Date     | Method    |
|-------------------------|------|--------|-----------|---------------|----------|-----------|
| Test Name               | Ref  | Result | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric |      | 470    | 10        | MG/L as CaCO3 | 12/17/93 | EPA310_1  |
| TPH - IR                |      | 1.00   | 1.0       | MG/L          | 12/27/93 | EPA418_1  |
| Phenolics               |      | 0.0100 | 0.010     | MG/L          | 01/06/94 | EPA9066   |
| Chloride by Ion Chrom.  |      | 39     | 5.0       | MG/L          | 12/16/93 | EPA300_0  |
| Chemical Oxygen Demand  |      | 25U    | 25        | MG/L          | 12/28/93 | EPA410_4  |
| Chromium VI             |      | 0.0100 | 0.010     | MG/L          | 12/11/93 | EPA7196   |
| Nitrate and Nitrite     |      | 3.8    | 0.50      | MG/L          | 12/14/93 | EPA353_2  |
| Silica                  |      | 8.9    | 2.0       | MG/L          | 12/29/93 | 370_1     |
| Sulfate by Ion Chrom.   |      | 36     | 5.0       | MG/L          | 12/16/93 | EPA300_0  |
| Total Dissolved Solids  |      | 510    | 10        | MG/L          | 12/14/93 | EPA160_1  |
| Total Kjeldahl Nitrogen |      | 0.250  | 0.25      | MG/L          | 01/07/94 | EPA351_3  |
| Total Organic Carbon    |      | 2.2    | 1.0       | MG/L          | 12/20/93 | EPA415_1  |
| Total Suspended Solids  |      | 750    | 10        | MG/L          | 12/14/93 | EPA160_2  |
| Total Phosphorus        |      | 0.100  | 0.10      | MG/L          | 01/07/94 | EPA365_3  |

Page: 5 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01

(512) 892-6684 Work Order: B3-12-151

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1600 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER ANALYSIS DATE: 12/18/93 DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |           | R  | eporting |                           |        |      | Re | porting |
|--------------------------|-----------|----|----------|---------------------------|--------|------|----|---------|
|                          | Result Qu | al | Limit    |                           | Result | Qual | L  | Limit   |
| Chloromethane            | 10        | U  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 10        | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 10        | U  | 10       | Trichloroethene           |        | 33   |    | 5       |
| Chloroethane             | 10        | U  | 10       | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride       | 10        | U  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 100       | U  | 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         | 5         | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene       | 5         | U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| ,1-Dichloroethane        | 5         | U  | 5        | Bromoform                 |        | 5    | U  | 5       |
| _rans-1,2-Dichloroethene | 5         | U  | 5        | 2-Hexanone                |        | 50   | U  | 50      |
| cis-1,2-Dichloroethene   | 45        |    | 5        | 4-Methyl-2-pentanone      |        | 50   | U  | 50      |
| Chloroform               | 5         | U  | 5        | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       | 1.2       | J  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 100       | U  | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    | 5         | U  | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     | 5         | บ  | 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 10        | U  | 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     | 5         | U  | 5        | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | <pre>% Recovery</pre> | Limits   |  |  |  |  |
|-----------------------|-----------------------|----------|--|--|--|--|
| TOLUENE-D8            | 95                    | 88 - 110 |  |  |  |  |
| BROMOFLUOROBENZENE    | 97                    | 86 - 114 |  |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 101                   | 76 - 114 |  |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 6 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 Work Order: B3-12-151 409832-003-01

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1600 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/15/93 ANALYSIS DATE: 12/22/93 DILUTION FACTOR: 1.0

| UNITS: UG/L                | .0   | R          | eporting |                            |          | ]    | Reporting |
|----------------------------|------|------------|----------|----------------------------|----------|------|-----------|
| •                          | sult |            | Limit    |                            | Result   | Qual |           |
|                            |      |            |          |                            |          | -    |           |
| Phenol                     | 10   | ט כ        | 10       | 2,6-Dinitrotoluene         | 10       | ט כ  | 10        |
| bis(2-Chloroethyl)ether    | 10   | ט כ        | 10       | 3-Nitroaniline             | 2        | 5 U  | 25        |
| 2-Chlorophenol             | 10   | ט כ        | 10       | Acenaphthene               | 10       | ט כ  | 10        |
| 1,3-Dichlorobenzene        | 10   | ט כ        | 10       | 2,4-Dinitrophenol          | 2        | 5 U  | 25        |
| 1,4-Dichlorobenzene        | 10   | ט כ        | 10       | 4-Nitrophenol              | 2        | 5 U  | 25        |
| Benzyl alcohol             | 10   | ט כ        | 10       | Dibenzofuran               | 10       | ט כ  | 10        |
| 1,2-Dichlorobenzene        | 10   | ט כ        | 10       | 2,4-Dinitrotoluene         | 10       | ט כ  | 10        |
| 2-Methylphenol             | 10   | υ σ        | 10       | Diethylphthalate           | 16       | U C  | 10        |
| is(2-Chloroisopropyl)ether | 10   | ט כ        | 10       | 4-Chlorophenyl-phenylether | . 10     | ט כ  | 10        |
| 4-Methylphenol             | 10   | ט כ        | 10       | Fluorene                   | 10       | ט כ  | 10        |
| N-Nitroso-di-n-propylamine | 10   | ט כ        | 10       | 4-Nitroaniline             | 10       | ט כ  | 10        |
| Hexachloroethane           | 10   | ט כ        | 10       | 4,6-Dinitro-2-methylphenol | . 2      | 5 U  | 25        |
| Nitrobenzene               | 10   | ט כ        | 10       | N-Nitrosodiphenylamine (1) | 10       | ט כ  | 10        |
| Isophorone                 | 10   | ט כ        | 10       | 4-Bromophenyl-phenylether  | 10       | ט כ  | 10        |
| 2-Nitrophenol              | 10   | ט כ        | 10       | Hexachlorobenzene          | 10       | ט כ  | 10        |
| 2,4-Dimethylphenol         | 10   | ט כ        | 10       | Pentachlorophenol          | 2        | 5 U  | 25        |
| Benzoic Acid               | 10   | ט כ        | 10       | Phenanthrene               | 10       | ט כ  | 10        |
| bis(2-Chloroethoxy)methane | 10   | υ c        | 10       | Anthracene                 | 10       | ט כ  | 10        |
| 2,4-Dichlorophenol         | 10   | ט כ        | 10       | Di-n-butylphthalate        | 10       | ט כ  | 10        |
| 1,2,4-Trichlorobenzene     | 10   | ט כ        | 10       | Fluoranthene               | 10       | ט כ  | 10        |
| Naphthalene                | 10   | ט כ        | 10       | Pyrene                     | 10       | ט כ  | 10        |
| 4-Chloroaniline            | 10   | ט כ        | 10       | Butylbenzylphthalate       | 10       | ט כ  | 10        |
| Hexachlorobutadiene        | 10   | ט כ        | 10       | 3,3'-Dichlorobenzidine     | 10       | ט כ  | 10        |
| 4-Chloro-3-methylphenol    | 10   | ט כ        | 10       | Benzo(a)anthracene         | 10       | ט כ  | 10        |
| 2-Methylnaphthalene        | 1    | ט כ        | 10       | Chrysene                   | 10       | ט כ  | 10        |
| Hexachlorocyclopentadiene  | 10   | υ σ        | 10       | bis(2-Ethylhexyl)phthalate | <b>1</b> | ว ซ  | 10        |
| 2,4,6-Trichlorophenol      | 1    | ט כ        | 10       | Di-n-octylphthalate        | 10       | ט כ  | 10        |
| 2,4,5-Trichlorophenol      | 10   | ט כ        | 10       | Benzo(b)fluoranthene       | 1        | ט כ  | 10        |
| 2-Chloronaphthalene        | 1    | υ σ        | 10       | Benzo(k)fluoranthene       | 1        | ט כ  | 10        |
| 2-Nitroaniline             | 2    | 5 U        | 25       | Benzo(a)pyrene             | 1        | ט כ  | 10        |
| Dimethylphthalate          | 1    | υ <b>σ</b> | 10       | Indeno(1,2,3-cd)pyrene     | 1        | ט כ  | 10        |
| Acenaphthylene             | 10   | υ α        | 10       | Dibenzo(a,h)anthracene     | 1        | υ σ  | 10        |
|                            |      |            |          | Benzo(g,h,i)perylene       | 1        | ט כ  | 10        |

Page: 7 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1600 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |  |  |  |
|----------------------|------------|----------|--|--|--|
| Nitrobenzene-D5      | 94         | 35 - 114 |  |  |  |
| 2-Fluorobiphenyl     | 78         | 43 - 116 |  |  |  |
| Terphenyl-D14        | 76         | 33 - 141 |  |  |  |
| Phenol-D5            | 93         | 10 - 94  |  |  |  |
| 2-Fluorophenol       | 80         | 21 - 100 |  |  |  |
| 2,4,6-Tribromophenol | 74         | 10 - 123 |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 8 of 51

Company: IT CORPORATION

Date: 01/10/94

UNITS:

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 Work Order: B3-12-151 409832-003-01

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1600

SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER PREP DATE: 12/16/93 ANALYSIS DATE: 01/05/94 DILUTION FACTOR: 1.00000

| MG/L      |        |      | Reporting |
|-----------|--------|------|-----------|
|           | Result | Qual | Limit     |
| Aluminum  | 5.9    |      | 0.20      |
| Barium    | 0.35   |      | 0.20      |
| Cadmium   | 0.0050 | UN   | 0.0050    |
| Calcium   | 61     | N    | 5.0       |
| Chromium  | 0.014  | N    | 0.010     |
| Copper    | 0.025  | UN   | 0.025     |
| Iron      | 13     |      | 0.10      |
| Magnesium | 45     |      | 5.0       |
| Manganese | 0.23   | N    | 0.015     |
| Nickel    | 0.040  | UN   | 0.040     |
| Potassium | 5.0    | U    | 5.0       |
| Selenium  | 0.10   | N    | 0.10      |
| Silver    | 0.010  | UN   | 0.010     |
| Sodium    | 59     |      | 5.0       |
| Zinc      | 0.022  | N    | 0.020     |
|           |        |      |           |

#### Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 9 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

SAMPLE ID: A1601

SAMPLE DATE: 12/10/93 13:55:00

SAMPLE MATRIX: WATER

|                         | Note       |        | Reporting |               | Date     | Method           |
|-------------------------|------------|--------|-----------|---------------|----------|------------------|
| Test Name               | <u>Ref</u> | Result | Limit     | Units         | Analyzed | Reference        |
| Alkalinity, Titrimetric |            | 520    | 10        | MG/L as CaCO3 | 12/15/93 | EPA310_1         |
| TPH - IR                |            | 1.00   | 1.0       | MG/L          | 12/27/93 | EPA418_1         |
| Phenolics               |            | 0.0100 | 0.010     | MG/L          | 01/06/94 | EPA9066          |
| Chloride by Ion Chrom.  |            | 87     | 10        | MG/L          | 12/18/93 | EPA300_0         |
| Chemical Oxygen Demand  |            | 35     | 25        | MG/L          | 12/28/93 | EPA410_4         |
| Chromium VI             |            | 0.0100 | 0.010     | MG/L          | 12/11/93 | EPA7196          |
| Nitrate and Nitrite     |            | 2.9    | 0.50      | MG/L          | 12/14/93 | EPA353_2         |
| Silica                  |            | 7.3    | 2.0       | MG/L          | 12/29/93 | 370_1            |
| Sulfate by Ion Chrom.   |            | 110    | 5.0       | MG/L          | 12/16/93 | EPA300_0         |
| Total Dissolved Solids  |            | 630    | 10        | MG/L          | 12/14/93 | EPA160_1         |
| Total Kjeldahl Nitrogen |            | 0.38   | 0.25      | MG/L          | 01/07/94 | EPA351_3         |
| Total Organic Carbon    |            | 3.0    | 1.0       | MG/L          | 12/20/93 | EPA415_1         |
| Total Suspended Solids  |            | 190    | 10        | MG/L          | 12/14/93 | EPA160_2         |
| Total Phosphorus        |            | 0.15   | 0.10      | MG/L          | 01/07/94 | <b>EPA365</b> _3 |

Page: 10 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1601
SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/18/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          | Reporting |      |       |                           |        | Reporting   |       |
|--------------------------|-----------|------|-------|---------------------------|--------|-------------|-------|
|                          | Result    | Qual | Limit |                           | Result | Qual        | Limit |
| Chloromethane            | 1         | o u  | 10    | 1,2-Dichloropropane       | 7      | .0          | 5     |
| Bromomethane             | 1         | o u  | 10    | trans-1,3-Dichloropropene |        | 5 1         | υ 5   |
| Vinyl chloride           | 1         | 0 U  | 10    | Trichloroethene           | 830    | <b>30</b> 1 | D 500 |
| Chloroethane             | 1         | 0 U  | 10    | Chlorodibromomethane      |        | 5 1         | υ 5   |
| Methylene chloride       | 1         | 0 U  | 10    | 1,1,2-Trichloroethane     | 9      | .0          | 5     |
| Acetone                  | 10        | 0 υ  | 100   | Benzene                   | 5      | . 4         | 5     |
| Carbon disulfide         |           | 5 บ  | 5     | cis-1,3-Dichloropropene   |        | 5 1         | υ 5   |
| 1,1-Dichloroethene       | 5.        | 7    | 5     | 2-Chloroethylvinyl ether  | :      | 10 1        | U 10  |
| ,1-Dichloroethane        |           | 5 ປ  | 5     | Bromoform                 |        | 5 1         | U 5   |
| crans-1,2-Dichloroethene | 13        | 0    | 5     | 2-Hexanone                | !      | 50 I        | υ 50  |
| cis-1,2-Dichloroethene   | 160       | 0 D  | 500   | 4-Methyl-2-pentanone      | !      | 50 1        | U 50  |
| Chloroform               | 4.        | 8 J  | 5     | Tetrachloroethene         | 4      | .4          | J 5   |
| 1,2-Dichloroethane       | 50        | 0    | 25    | 1,1,2,2-Tetrachloroethane |        | 5 1         | U 5   |
| 2-Butanone               | 10        | 0 U  | 100   | Toluene                   | 1      | .3 .        | J 5   |
| 1,1,1-Trichloroethane    |           | 5 บ  | 5     | Chlorobenzene             | 2:     | 20          | 25    |
| Carbon tetrachloride     |           | 5 บ  | 5     | Ethylbenzene              |        | 5 1         | U 5   |
| Vinyl acetate            | 1         | υ 0  | 10    | Styrene                   |        | 5 1         | v 5   |
| Dichlorobromomethane     |           | 5 บ  | 7 5   | Xvlenes, total            |        | 5 1         | U 5   |

| Surrogates            | % Recovery | Limits   |  |  |  |
|-----------------------|------------|----------|--|--|--|
| TOLUENE-D8            | 97         | 88 - 110 |  |  |  |
| BROMOFLUOROBENZENE    | 97         | 86 - 114 |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 95         | 76 - 114 |  |  |  |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 11 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 Work Order: B3-12-151 409832-003-01

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1601 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/15/93 ANALYSIS DATE: 12/22/93 DILUTION FACTOR: 1.0

| DILUTION FACTOR:           | 1.0    | _        |          |                            |             | ,    | Poport inc         |
|----------------------------|--------|----------|----------|----------------------------|-------------|------|--------------------|
| UNITS: UG/L                | ~14    |          | eporting |                            | Result      | Qual | Reporting<br>Limit |
|                            | Result | Quai     | Limit    |                            | Result      | Quai | Limit              |
| Phenol                     | 10     | υ (      | 10       | 2,6-Dinitrotoluene         | 10          | ט כ  | 10                 |
| bis(2-Chloroethyl)ether    | 10     | <b>U</b> | 10       | 3-Nitroaniline             | 25          | 5 U  | 25                 |
| 2-Chlorophenol             | 10     | <b>U</b> | 10       | Acenaphthene               | 10          | ט כ  | 10                 |
| 1,3-Dichlorobenzene        | 53     | }        | 10       | 2,4-Dinitrophenol          | 2!          | 5 U  | 25                 |
| 1,4-Dichlorobenzene        | 290    | <b>D</b> | 200      | 4-Nitrophenol              | 2           | 5 U  | 25                 |
| Benzyl alcohol             | 10     | U (      | 10       | Dibenzofuran               | 10          | ט כ  | 10                 |
| 1,2-Dichlorobenzene        | 1900   | ) D      | 200      | 2,4-Dinitrotoluene         | 10          | ט כ  | 10                 |
| 2-Methylphenol             | 10     | <b>U</b> | 10       | Diethylphthalate           | 10          | ט כ  | 10                 |
| is(2-Chloroisopropyl)ethe  | r 10   | <b>U</b> | 10       | 4-Chlorophenyl-phenylether | : 10        | ט כ  | 10                 |
| 4-Methylphenol             | 10     | <b>U</b> | 10       | Fluorene                   | 10          | ט כ  | 10                 |
| N-Nitroso-di-n-propylamine | 10     | ) U      | 10       | 4-Nitroaniline             | 10          | ט כ  | 10                 |
| Hexachloroethane           | 10     | ) U      | 10       | 4,6-Dinitro-2-methylphenol | 2!          | 5 U  | 25                 |
| Nitrobenzene               | 10     | U (      | 10       | N-Nitrosodiphenylamine (1) | 10          | ט כ  | 10                 |
| Isophorone                 | 10     | <b>U</b> | 10       | 4-Bromophenyl-phenylether  | 10          | ט כ  | 10                 |
| 2-Nitrophenol              | 10     | <b>U</b> | 10       | Hexachlorobenzene          | 10          | ט כ  | 10                 |
| 2,4-Dimethylphenol         | 10     | <b>U</b> | 10       | Pentachlorophenol          | 2           | 5 U  | 25                 |
| Benzoic Acid               | 10     | ) U      | 10       | Phenanthrene               | 10          | ט כ  | 10                 |
| bis(2-Chloroethoxy)methane | 10     | ) U      | 10       | Anthracene                 | 10          | ט כ  | 10                 |
| 2,4-Dichlorophenol         | 10     | <b>U</b> | 10       | Di-n-butylphthalate        | 10          | ט כ  | 10                 |
| 1,2,4-Trichlorobenzene     | 10     | ) U      | 10       | Fluoranthene               | 10          | ט כ  | 10                 |
| Naphthalene                | 10     | ) U      | 10       | Pyrene                     | 10          | ט כ  | 10                 |
| 4-Chloroaniline            | 10     | ) U      | 10       | Butylbenzylphthalate       | 10          | ט כ  | 10                 |
| Hexachlorobutadiene        | 10     | ) U      | 10       | 3,3'-Dichlorobenzidine     | 10          | ט כ  | 10                 |
| 4-Chloro-3-methylphenol    | 10     | ) U      | 10       | Benzo(a)anthracene         | 10          | ט כ  | 10                 |
| 2-Methylnaphthalene        | 10     | ) U      | 10       | Chrysene                   | 10          | ט כ  | 10                 |
| Hexachlorocyclopentadiene  | 10     | ) U      | 10       | bis(2-Ethylhexyl)phthalate | <b>=</b> 10 | υ c  | 10                 |
| 2,4,6-Trichlorophenol      | 10     | ) U      | 10       | Di-n-octylphthalate        | 10          | U C  | 10                 |
| 2,4,5-Trichlorophenol      | 10     | ) ซ      | 10       | Benzo(b)fluoranthene       | 10          | υ c  | 10                 |
| 2-Chloronaphthalene        | 10     | ) บ      | 10       | Benzo(k)fluoranthene       | 10          | o u  | 10                 |
| 2-Nitroaniline             | 25     | <b>υ</b> | 25       | Benzo(a)pyrene             | 10          | o u  | 10                 |
| Dimethylphthalate          | 10     | ) U      | 10       | Indeno(1,2,3-cd)pyrene     | 10          | υ σ  | 10                 |
| Acenaphthylene             | 10     | ) U      | 10       | Dibenzo(a,h)anthracene     | 10          | o u  | 10                 |
|                            |        |          |          | Benzo(g,h,i)perylene       | 10          | u c  | 10                 |

Page: 12 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1601 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |  |  |  |
|----------------------|------------|----------|--|--|--|
| Nitrobenzene-D5      | 103        | 35 - 114 |  |  |  |
| 2-Fluorobiphenyl     | 82         | 43 - 116 |  |  |  |
| Terphenyl-D14        | 82         | 33 - 141 |  |  |  |
| Phenol-D5            | 97*        | 10 - 94  |  |  |  |
| 2-Fluorophenol       | 39         | 21 - 100 |  |  |  |
| 2,4,6-Tribromophenol | 38         | 10 - 123 |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

## Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}\mbox{\ensuremath{-}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

## Referenced notes for these results:

High recovery of phenol-d5 may have been due to internal standard suppression. Analysis at dilution gave recoveries of 85% and 75%.

Page: 13 of 51

Company: IT CORPORATION

Date: 01/10/94

UNITS:

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1601
SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER
PREP DATE: 12/16/93
ANALYSIS DATE: 01/05/94
DILUTION FACTOR: 1.00000

| MG/L      |        |      | Reporting |
|-----------|--------|------|-----------|
|           | Result | Qual | Limit     |
| Aluminum  | 8.2    |      | 0.20      |
| Barium    | 0.21   |      | 0.20      |
| Cadmium   | 0.0050 | UN   | 0.0050    |
| Calcium   | 48     | N    | 5.0       |
| Chromium  | 0.040  | N    | 0.010     |
| Copper    | 0.043  | N    | 0.025     |
| Iron      | 11     |      | 0.10      |
| Magnesium | 43     |      | 5.0       |
| Manganese | 0.14   | N    | 0.015     |
| Nickel    | 0.040  | UN   | 0.040     |
| Potassium | 5.0    | U    | 5.0       |
| Selenium  | 0.10   | UN   | 0.10      |
| Silver    | 0.010  | UN   | 0.010     |
| Sodium    | 110    |      | 5.0       |
| Zinc      | 0.024  | N    | 0.020     |
|           |        |      |           |

## Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 14 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

SAMPLE ID: A1602

SAMPLE DATE: 12/10/93 13:55:00

SAMPLE MATRIX: WATER

|                         | Note                     | Reporting |               | Date     | Method    |
|-------------------------|--------------------------|-----------|---------------|----------|-----------|
| Test Name               | <u>Ref</u> <u>Result</u> | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric | 330                      | 10        | MG/L as CaCO3 | 12/15/93 | EPA310_1  |
| TPH - IR                | 1.00                     | 1.0       | MG/L          | 12/27/93 | EPA418_1  |
| Phenolics               | 0.0100                   | 0.010     | MG/L          | 01/06/94 | EPA9066   |
| Chloride by Ion Chrom.  | 89                       | 10        | MG/L          | 12/18/93 | EPA300 0  |
| Chemical Oxygen Demand  | 25U                      | 25        | MG/L          | 12/28/93 | EPA410_4  |
| Chromium VI             | 0.0100                   | 0.010     | MG/L          | 12/11/93 | EPA7196   |
| Nitrate and Nitrite     | 2.7                      | 0.50      | MG/L          | 12/14/93 | EPA353 2  |
| Silica                  | · 6 <b>.</b> 9           | 2.0       | MG/L          | 12/29/93 | 370 1     |
| Sulfate by Ion Chrom.   | 230                      | 10        | MG/L          | 12/16/93 | EPA300 0  |
| Total Dissolved Solids  | 660                      | 10        | MG/L          | 12/14/93 | EPA160 1  |
| Total Kjeldahl Nitrogen | 0.250                    | 0.25      | MG/L          | 01/07/94 | EPA351 3  |
| Total Organic Carbon    | 3.0                      | 1.0       | MG/L          | 12/20/93 | EPA415 1  |
| Total Suspended Solids  | 250                      | 10        | MG/L          | 12/14/93 | EPA160 2  |
| Total Phosphorus        | 0.100                    | 0.10      | MG/L          | 01/07/94 | EPA365_3  |

Page: 15 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1602 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER ANALYSIS DATE: 12/18/93 DILUTION FACTOR: 1.0

UNITS: UG/L

| ONTID: 00/1              |            |    |          |                           |          |     |          |
|--------------------------|------------|----|----------|---------------------------|----------|-----|----------|
|                          |            | R  | eporting |                           |          | R   | eporting |
|                          | Result Qua | al | Limit    |                           | Result Q | ual | Limit    |
| Chloromethane            | 10         | U  | 10       | 1,2-Dichloropropane       | 7.3      |     | 5        |
| Bromomethane             | 10         | U  | 10       | trans-1,3-Dichloropropene | 5        | IJ  | _        |
| Vinyl chloride           | 10         | U  | 10       | Trichloroethene           | 8900     | D   | _        |
| Chloroethane             | 10         | U  | 10       | Chlorodibromomethane      | 5        | U   | 5        |
| Methylene chloride       | 10         | U  | 10       | 1,1,2-Trichloroethane     | 7.3      |     | 5        |
| Acetone                  | 100        | ប  | 100      | Benzene                   | 5.7      |     | 5        |
| Carbon disulfide         | 5          | U  | 5        | cis-1,3-Dichloropropene   | 5        | U   | 5        |
| 1,1-Dichloroethene       | 6.0        |    | 5        | 2-Chloroethylvinyl ether  | 10       | U   | 10       |
| ,1-Dichloroethane        | 5          | U  | 5        | Bromoform                 | 5        | U   | 5        |
| trans-1,2-Dichloroethene | 140        |    | 5        | 2-Hexanone                | 50       | U   | 50       |
| cis-1,2-Dichloroethene   | 1700       | D  | 500      | 4-Methyl-2-pentanone      | 50       | U   | 50       |
| Chloroform               | 4.8        | J  | 5        | Tetrachloroethene         | 4.7      | J   | 5        |
| 1,2-Dichloroethane       | 550        |    | 25       | 1,1,2,2-Tetrachloroethane | 5        | U   | 5        |
| 2-Butanone               | 100        | υ  | 100      | Toluene                   | 1.5      | J   | 5        |
| 1,1,1-Trichloroethane    | 5          | U  | 5        | Chlorobenzene             | 240      |     | 25       |
| Carbon tetrachloride     | 5          | U  | 5        | Ethylbenzene              | 5        | U   | 5        |
| Vinyl acetate            | 10         | U  | 10       | Styrene                   | 5        | U   | 5        |
| Dichlorobromomethane     | 5          | U  | 5        | Xylenes, total            | 5        | U   | 5        |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 100        | 88 - 110 |
| BROMOFLUOROBENZENE    | 100        | 86 - 114 |
| 1,2-DICHLOROETHANE-D4 | 95         | 76 - 114 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 16 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

# IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1602 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/15/93 ANALYSIS DATE: 12/22/93 DILUTION FACTOR: 1.0

| UNITS: UG/L                |        | R    | eporting |                            |            | F          | Reporting |
|----------------------------|--------|------|----------|----------------------------|------------|------------|-----------|
|                            | Result | Qual | Limit    |                            | Result     | Qual       | Limit     |
|                            |        |      |          |                            |            |            |           |
| Phenol                     | 1      |      |          | 2,6-Dinitrotoluene         | 1          |            | 10        |
| bis(2-Chloroethyl)ether    | 1      | -    |          | 3-Nitroaniline             | 2          |            | 25        |
| 2-Chlorophenol             | 1      | _    |          | Acenaphthene               | 1:         | -          | 10        |
| 1,3-Dichlorobenzene        | 4      | _    | 10       | 2,4-Dinitrophenol          | 2          |            | 25        |
| 1,4-Dichlorobenzene        | 25     | _    |          | 4-Nitrophenol              | 2          |            | 25        |
| Benzyl alcohol             | 1      | -    |          | Dibenzofuran               | 1          | -          | 10        |
| 1,2-Dichlorobenzene        | 170    |      |          | 2,4-Dinitrotoluene         | 10         |            | 10        |
| 2-Methylphenol             | 10     | _    |          | Diethylphthalate           | 10         |            | 10        |
| is(2-Chloroisopropyl)ethe  |        | -    |          | 4-Chlorophenyl-phenylether |            |            | 10        |
| 4-Methylphenol             | 1      |      |          | Fluorene                   | 10         |            | 10        |
| N-Nitroso-di-n-propylamine |        | -    |          | 4-Nitroaniline             | 10         | -          | 10        |
| Hexachloroethane           | 10     |      |          | 4,6-Dinitro-2-methylphenol |            | _          | 25        |
| Nitrobenzene               | 1      |      |          | N-Nitrosodiphenylamine (1) | 10         | ט כ        | 10        |
| Isophorone                 | 10     | _    | 10       | 4-Bromophenyl-phenylether  | 10         |            | 10        |
| 2-Nitrophenol              | 10     | _    |          | Hexachlorobenzene          | 10         | -          | 10        |
| 2,4-Dimethylphenol         | 10     |      | 10       | Pentachlorophenol          | 2          | 5 U        | 25        |
| Benzoic Acid               | 10     | ט כ  | 10       | Phenanthrene               | 10         | υ 0        | 10        |
| bis(2-Chloroethoxy)methane | 10     | ט כ  | 10       | Anthracene                 | 10         | υ 0        | 10        |
| 2,4-Dichlorophenol         | 10     | ט כ  | 10       | Di-n-butylphthalate        | 10         | ט כ        | 10        |
| 1,2,4-Trichlorobenzene     | 1      | ט כ  | 10       | Fluoranthene               | 10         | ט כ        | 10        |
| Naphthalene                | 10     | ט כ  | 10       | Pyrene                     | 10         | ט כ        | 10        |
| 4-Chloroaniline            | 10     | ט כ  | 10       | Butylbenzylphthalate       | 10         | ט כ        | 10        |
| Hexachlorobutadiene        | 10     | ט כ  | 10       | 3,3'-Dichlorobenzidine     | 10         | υ c        | 10        |
| 4-Chloro-3-methylphenol    | 10     | ט כ  | 10       | Benzo(a)anthracene         | 10         | <b>U</b> C | 10        |
| 2-Methylnaphthalene        | 10     | ט כ  | 10       | Chrysene                   | 10         | ט כ        | 10        |
| Hexachlorocyclopentadiene  | 10     | ט כ  | 10       | bis(2-Ethylhexyl)phthalate | <b>1</b> 0 | ט כ        | 10        |
| 2,4,6-Trichlorophenol      | 10     | ט כ  | 10       | Di-n-octylphthalate        | 10         | ט כ        | 10        |
| 2,4,5-Trichlorophenol      | 10     | ט כ  | 10       | Benzo(b)fluoranthene       | 10         | ט כ        | 10        |
| 2-Chloronaphthalene        | 10     | ט כ  | 10       | Benzo(k)fluoranthene       | 10         | ט כ        | 10        |
| 2-Nitroaniline             | 2      | 5 ซ  | 25       | Benzo(a)pyrene             | 10         | ט כ        | 10        |
| Dimethylphthalate          | 10     | υ 0  | 10       | Indeno(1,2,3-cd)pyrene     | 10         | υ c        | 10        |
| Acenaphthylene             | 10     | ט כ  | 10       | Dibenzo(a,h)anthracene     | 10         | ט כ        | 10        |
|                            |        |      |          | Benzo(g,h,i)perylene       | 10         | υ c        | 10        |
|                            |        |      |          |                            |            |            |           |

Page: 17 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1602 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 100        | 35 - 114 |
| 2-Fluorobiphenyl     | 80         | 43 - 116 |
| Terphenyl-D14        | 70         | 33 - 141 |
| Phenol-D5            | 106*       | 10 - 94  |
| 2-Fluorophenol       | 86         | 21 - 100 |
| 2,4,6-Tribromophenol | 76         | 10 - 123 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

# Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' - positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

## Referenced notes for these results:

High recovery of phenol-d5 may have been due to internal standard suppression. Analysis at dilution gave recoveries of 104% and 92%.

Page: 18 of 51

Company: IT CORPORATION

Date: 01/10/94

UNITS:

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01

Work Order: B3-12-151

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1602 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER PREP DATE: 12/16/93 ANALYSIS DATE: 01/05/94 DILUTION FACTOR: 1.00000

|        |                                                                                            | Reporting                                                                                                                       |
|--------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Result | Qual                                                                                       | Limit                                                                                                                           |
| 5.1    |                                                                                            | 0.20                                                                                                                            |
| 0.19   |                                                                                            | 0.20                                                                                                                            |
| 0.0050 | UN                                                                                         | 0.0050                                                                                                                          |
| 58     | N                                                                                          | 5.0                                                                                                                             |
| 0.029  | N                                                                                          | 0.010                                                                                                                           |
| 0.049  | N                                                                                          | 0.025                                                                                                                           |
| 5.5    |                                                                                            | 0.10                                                                                                                            |
| 52     |                                                                                            | 5.0                                                                                                                             |
| 0.10   | N                                                                                          | 0.015                                                                                                                           |
| 0.040  | UN                                                                                         | 0.040                                                                                                                           |
| 5.0    | U                                                                                          | 5.0                                                                                                                             |
| 0.10   | UN                                                                                         | 0.10                                                                                                                            |
| 0.010  | UN                                                                                         | 0.010                                                                                                                           |
| 130    |                                                                                            | 5.0                                                                                                                             |
| 0.021  | N                                                                                          | 0.020                                                                                                                           |
|        | 5.1<br>0.19<br>0.0050<br>58<br>0.029<br>0.049<br>5.5<br>52<br>0.10<br>0.040<br>5.0<br>0.10 | 5.1<br>0.19<br>0.0050 UN<br>58 N<br>0.029 N<br>0.049 N<br>5.5<br>52<br>0.10 N<br>0.040 UN<br>5.0 U<br>0.10 UN<br>0.10 UN<br>130 |

## Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 19 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

(512) 892-6684 409832-003-01 Work Order: B3-12-151

SAMPLE ID: A1603

SAMPLE DATE: 12/10/93 14:30:00

SAMPLE MATRIX: WATER

|                         | Note       |        | Reporting |               | Date     | Method    |
|-------------------------|------------|--------|-----------|---------------|----------|-----------|
| Test Name               | <u>Ref</u> | Result | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric |            | 380    | 10        | MG/L as CaCO3 | 12/15/93 | EPA310_1  |
| TPH - IR                |            | 1.00   | 1.0       | MG/L          | 12/27/93 | EPA418_1  |
| Phenolics               |            | 0.0100 | 0.010     | MG/L          | 01/06/94 | EPA9066   |
| Chloride by Ion Chrom.  |            | 34     | 4.0       | MG/L          | 12/16/93 | EPA300_0  |
| Chemical Oxygen Demand  |            | 25U    | 25        | MG/L          | 12/28/93 | EPA410_4  |
| Chromium VI             |            | 0.0100 | 0.010     | MG/L          | 12/11/93 | EPA7196   |
| Nitrate and Nitrite     |            | 3.8    | 0.50      | MG/L          | 12/14/93 | EPA353_2  |
| Silica                  |            | 4.3    | 2.0       | MG/L          | 12/29/93 | 370 1     |
| Sulfate by Ion Chrom.   |            | 24     | 4.0       | MG/L          | 12/16/93 | EPA300 0  |
| Total Dissolved Solids  |            | 450    | 10        | MG/L          | 12/14/93 | EPA160 1  |
| Total Kjeldahl Nitrogen |            | 0.250  | 0.25      | MG/L          | 01/10/94 | EPA351 3  |
| Total Organic Carbon    |            | 1.2    | 1.0       | MG/L          | 12/20/93 | EPA415 1  |
| Total Suspended Solids  |            | 160    | 10        | MG/L          | 12/14/93 | EPA160_2  |
| Total Phosphorus        |            | 0.100  | 0.10      | MG/L          | 01/10/94 | EPA365_3  |

Page: 20 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1603
SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/18/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |          | R   | eporting |                           |        | 1    | Reporting  |
|--------------------------|----------|-----|----------|---------------------------|--------|------|------------|
|                          | Result Q | ual | Limit    |                           | Result | Qual | Limit      |
| Chloromethane            | 10       | U   | 10       | 1,2-Dichloropropane       |        | 5 1  | J 5        |
| Bromomethane             | 10       | υ   | 10       | trans-1,3-Dichloropropene |        | 5 1  | <b>y</b> 5 |
| Vinyl chloride           | 10       | U   | 10       | Trichloroethene           | 9      | 96   | 5          |
| Chloroethane             | 10       | U   | 10       | Chlorodibromomethane      |        | 5 1  | J 5        |
| Methylene chloride       | 10       | υ   | 10       | 1,1,2-Trichloroethane     |        | 5 1  | J 5        |
| Acetone                  | 100      | U   | 100      | Benzene                   |        | 5 1  | J 5        |
| Carbon disulfide         | 5        | U   | 5        | cis-1,3-Dichloropropene   |        | 5 1  | J 5        |
| 1,1-Dichloroethene       | 5        | U   | 5        | 2-Chloroethylvinyl ether  | :      | LO 1 | U 10       |
| ,1-Dichloroethane        | 5        | U   | 5        | Bromoform                 |        | 5 1  | J 5        |
| crans-1,2-Dichloroethene | 3.5      | J   | 5        | 2-Hexanone                | 5      | 50 T | J 50       |
| cis-1,2-Dichloroethene   | 39       |     | 5        | 4-Methyl-2-pentanone      | 9      | 50 t | J 50       |
| Chloroform               | 5        | U   | 5        | Tetrachloroethene         |        | 5 t  | J 5        |
| 1,2-Dichloroethane       | 2.0      | J   | 5        | 1,1,2,2-Tetrachloroethane |        | 5 (  | J 5        |
| 2-Butanone               | 100      | U   | 100      | Toluene                   |        | 5 (  | J 5        |
| 1,1,1-Trichloroethane    | 5        | U   | 5        | Chlorobenzene             | 1.     | .2   | 5          |
| Carbon tetrachloride     | 5        | U   | 5        | Ethylbenzene              |        | 5 1  | J 5        |
| Vinyl acetate            | 10       | U   | 10       | Styrene                   |        | 5 1  | J 5        |
| Dichlorobromomethane     | 5        | U   | 5        | Xylenes, total            |        | 5 1  | J 5        |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 96         | 88 - 110 |
| BROMOFLUOROBENZENE    | 97         | 86 - 114 |
| 1,2-DICHLOROETHANE-D4 | 101        | 76 - 114 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 21 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1603

SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/15/93 ANALYSIS DATE: 12/23/93 DILUTION FACTOR: 1.0

UG/L UNITS: Reporting Reporting Result Qual Limit Result Qual Limit 10 U 10 Phenol 10 U 10 2.6-Dinitrotoluene П 25 25 bis(2-Chloroethyl)ether 10 U 10 3-Nitroaniline 10 U 10 2-Chlorophenol 10 IJ 10 Acenaphthene 25 TT 25 1,3-Dichlorobenzene 10 U 10 2,4-Dinitrophenol 1,4-Dichlorobenzene 10 IJ 10 4-Nitrophenol 25 TT 25 10 10 Ħ Benzyl alcohol 10 U 10 Dibenzofuran 10 10 1,2-Dichlorobenzene 10 Ħ 10 2,4-Dinitrotoluene 10 2-Methylphenol 10 U 10 Diethylphthalate 10 IJ is(2-Chloroisopropyl)ether 10 U 10 4-Chlorophenyl-phenylether 10 IJ 10 10 U 10 \_-Methylphenol 10 U 10 Fluorene 10 10 N-Nitroso-di-n-propylamine TT U 10 10 4-Nitroaniline 25 U 25 Hexachloroethane 10 U 10 4,6-Dinitro-2-methylphenol 10 TT 10 Nitrobenzene 10 TT 10 N-Nitrosodiphenylamine (1) Isophorone 10 U 10 4-Bromophenyl-phenylether 10 U 10 2-Nitrophenol 10 TT 10 10 U 10 Hexachlorobenzene 25 25 2,4-Dimethylphenol 10 U 10 Pentachlorophenol TT 10 TT 10 Benzoic Acid 10 U 10 Phenanthrene bis(2-Chloroethoxy)methane 10 U 10 10 Ħ 10 Anthracene 2,4-Dichlorophenol 10 U 10 Di-n-butvlphthalate 10 Ħ 10 1,2,4-Trichlorobenzene 10 TT 10 Fluoranthene 10 TT 10 10 10 Naphthalene 10 U 10 TT Pvrene 4-Chloroaniline 10 10 10 U 10 Butylbenzylphthalate 3,3'-Dichlorobenzidine 10 Hexachlorobutadiene 10 10 П IJ 10 4-Chloro-3-methylphenol 10 10 10 IJ 10 Benzo(a)anthracene 2-Methylnaphthalene 10 U 10 10 Ħ 10 Chrysene Hexachlorocyclopentadiene 10 U 10 bis(2-Ethylhexyl)phthalate 10 10 Di-n-octylphthalate 10 TT 10 2,4,6-Trichlorophenol 10 U 10 2,4,5-Trichlorophenol 10 TT 10 10 U 10 Benzo(b) fluoranthene 10 TT 10 2-Chloronaphthalene 10 U 10 Benzo(k)fluoranthene 2-Nitroaniline 10 10 25 U 25 Benzo(a)pyrene Dimethylphthalate 10 IJ 10 U 10 10 Indeno(1,2,3-cd)pyrene Acenaphthylene 10 U 10 10 U 10 Dibenzo(a,h)anthracene U 10 10 Benzo(g,h,i)perylene

Page: 22 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1603

SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 93         | 35 - 114 |
| 2-Fluorobiphenyl     | 77         | 43 - 116 |
| Terphenyl-D14        | 84         | 33 - 141 |
| Phenol-D5            | 89         | 10 ~ 94  |
| 2-Fluorophenol       | 77         | 21 - 100 |
| 2,4,6-Tribromophenol | 76         | 10 - 123 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 23 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1603

SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER
PREP DATE: 12/16/93
ANALYSIS DATE: 01/05/94
DILUTION FACTOR: 1.00000

| DILUTION FACTOR: | 1.00000 |        |      |           |
|------------------|---------|--------|------|-----------|
| UNITS: MG/L      |         |        |      | Reporting |
|                  |         | Result | Qual | Limit     |
| Aluminum         | ı       | 1.4    |      | 0.20      |
| Barium           |         | 0.23   |      | 0.20      |
| Cadmium          |         | 0.0050 | UN   | 0.0050    |
| Calcium          |         | 59     | N    | 5.0       |
| Chromium         | 1       | 0.010  | UN   | 0.010     |
| Copper           |         | 0.025  | UN   | 0.025     |
| Iron             |         | 2.0    |      | 0.10      |
| Magnesiu         | m       | 33     |      | 5.0       |
| Manganes         | e       | 0.048  | N    | 0.015     |
| Nickel           |         | 0.040  | UN   | 0.040     |
| Potassiu         | m       | 5.0    | U    | 5.0       |
| Selenium         | l       | 0.10   | UN   | 0.10      |
| Silver           |         | 0.010  | UN   | 0.010     |
| Sodium           |         | 46     |      | 5.0       |
| Zinc             |         | 0.020  | UN   | 0.020     |
|                  |         |        |      |           |

## Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA < 0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 24 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-12-151

SAMPLE ID: A1604

SAMPLE DATE: 12/10/93 14:45:00

SAMPLE MATRIX: WATER

|                         | Note       |        | Reporting |               | Date     | Method    |
|-------------------------|------------|--------|-----------|---------------|----------|-----------|
| Test Name               | <u>Ref</u> | Result | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric |            | 500    | 10        | MG/L as CaCO3 | 12/15/93 | EPA310 1  |
| TPH - IR                |            | 1.00   | 1.0       | MG/L          | 12/27/93 | EPA418 1  |
| Phenolics               |            | 0.0100 | 0.010     | MG/L          | 01/06/94 | EPA9066   |
| Chloride by Ion Chrom.  |            | 57     | 10        | MG/L          | 12/18/93 | EPA300 0  |
| Chemical Oxygen Demand  |            | 25U    | 25        | MG/L          | 12/28/93 | EPA410 4  |
| Chromium VI             |            | 0.0100 | 0.010     | MG/L          | 12/11/93 | EPA7196   |
| Nitrate and Nitrite     |            | 2.6    | 0.50      | MG/L          | 12/14/93 | EPA353_2  |
| Silica                  |            | 11     | 5.0       | MG/L          | 12/29/93 | 370_1     |
| Sulfate by Ion Chrom.   |            | 37     | 5.0       | MG/L          | 12/16/93 | EPA300 0  |
| Total Dissolved Solids  |            | 650    | 10        | MG/L          | 12/14/93 | EPA160 1  |
| Total Kjeldahl Nitrogen |            | 0.25U  | 0.25      | MG/L          | 01/10/94 | EPA351 3  |
| Total Organic Carbon    |            | 1.6    | 1.0       | MG/L          | 12/20/93 | EPA415_1  |
| Total Suspended Solids  |            | 42     | 10        | MG/L          | 12/14/93 | EPA160_2  |
| Total Phosphorus        |            | 0.100  | 0.10      | MG/L          | 01/10/94 | EPA365_3  |

Page: 25 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1604 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER ANALYSIS DATE: 12/18/93 DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |            | Re | eporting |                           |        |      | Re | porting |
|--------------------------|------------|----|----------|---------------------------|--------|------|----|---------|
|                          | Result Qua | 1  | Limit    |                           | Result | Qual | •  | Limit   |
| Chloromethane            | 10         | U  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 10         | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 10         | U  | 10       | Trichloroethene           | •      | 99   |    | 5       |
| Chloroethane             | 10         | U  | 10       | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride       | 10         | U  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 100        | U  | 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         | 5          | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene       | 5          | U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| 1,1-Dichloroethane       | 5          | U  | 5        | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene | 5          | U  | 5        | 2-Hexanone                | !      | 50   | U  | 50      |
| cis-1,2-Dichloroethene   | 24         |    | 5        | 4-Methyl-2-pentanone      | !      | 50   | U  | 50      |
| Chloroform               | 5          | U  | 5        | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       | 5          | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 100        | U  | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    | 5          | U  | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     | 5          | U  | 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 10         | U  | 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     | 5          | U  | 5        | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 95         | 88 - 110 |
| BROMOFLUOROBENZENE    | 96         | 86 - 114 |
| 1,2-DICHLOROETHANE-D4 | 98         | 76 - 114 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' - positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 26 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

# IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1604 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/15/93 ANALYSIS DATE: 12/23/93 DILUTION FACTOR: 1.0

| 1.0    | _                                              |                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             | Reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------|------------------------------------------------|----------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                |                                                    |                            | Dogu 1+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Kesuit | Quar                                           | Limit                                              |                            | Kesuic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quai                                                        | LIMIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10     | U                                              | 10                                                 | 2,6-Dinitrotoluene         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | υ σ                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | 3-Nitroaniline             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 U                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | Acenaphthene               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | υ 0                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | 2,4-Dinitrophenol          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 U                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | 4-Nitrophenol              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 U                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | Dibenzofuran               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | υ 0                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | 2,4-Dinitrotoluene         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ט ס                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | Diethylphthalate           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o u                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| er 10  | U                                              | 10                                                 | 4-Chlorophenyl-phenylether | : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ט ס                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | Fluorene                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ט ס                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| e 10   | U                                              | 10                                                 | 4-Nitroaniline             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | υ 0                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | 4,6-Dinitro-2-methylphenol | L 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 U                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10     | U                                              | 10                                                 | N-Nitrosodiphenylamine (1) | ) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ט ס                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U (                                            | 10                                                 | 4-Bromophenyl-phenylether  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 U                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10     | U                                              | 10                                                 | Hexachlorobenzene          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U 0                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U (                                            | 10                                                 | Pentachlorophenol          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 บ                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | Phenanthrene               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U 0                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| e 10   | ) U                                            | 10                                                 | Anthracene                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | υ 0                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | ) U                                            | 10                                                 | Di-n-butylphthalate        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 U                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | Fluoranthene               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 U                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10     | U                                              | 10                                                 | Pyrene                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 U                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | Butylbenzylphthalate       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 U                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10     | U                                              | 10                                                 | 3,3'-Dichlorobenzidine     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 U                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | υ                                              | 10                                                 | Benzo(a)anthracene         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | υ 0                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | <b>U</b>                                       | 10                                                 | Chrysene                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | υ 0                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10     | U                                              | 10                                                 | bis(2-Ethylhexyl)phthalate | <b>a</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ט ס                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | U                                              | 10                                                 | Di-n-octylphthalate        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | υ 0                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10     | <b>U</b>                                       | 10                                                 | Benzo(b)fluoranthene       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | υ 0                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10     | U                                              | 10                                                 | Benzo(k)fluoranthene       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | υ 0                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25     | υ                                              | 25                                                 | Benzo(a)pyrene             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ט ס                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10     | U                                              | 10                                                 | Indeno(1,2,3-cd)pyrene     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10     | <b>U</b>                                       | 10                                                 | Dibenzo(a,h)anthracene     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |                                                |                                                    | Benzo(g,h,i)perylene       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 υ                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | Result  10 10 10 10 10 10 10 10 10 10 10 10 10 | Result Qual  10 U 10 | Result Qual Limit    10    | Result Qual Limit  10 U 10 2,6-Dinitrotoluene 10 U 10 3-Nitroaniline 10 U 10 Acenaphthene 10 U 10 4-Nitrophenol 10 U 10 Dibenzofuran 10 U 10 Diethylphthalate er 10 U 10 4-Chlorophenyl-phenylether 10 U 10 4-Nitroaniline er 10 U 10 4-Nitroaniline 10 U 10 4-Chlorophenyl-phenylether 10 U 10 4-Chlorophenyl-phenylether 10 U 10 4-Sitroaniline 10 U 10 4-Sitroaniline 10 U 10 4-Bromophenyl-phenylether 10 U 10 Hexachlorobenzene 10 U 10 Hexachlorobenzene 10 U 10 Phenanthrene 10 U 10 Phenanthrene 10 U 10 Anthracene 10 U 10 Fluoranthene 10 U 10 Butylbenzylphthalate 10 U 10 Butylbenzylphthalate 10 U 10 Benzo(a)anthracene 10 U 10 Benzo(b)fluoranthene | Result   Qual Limit   Result   Result   Qual Limit   Result | Result   Qual Limit   Result   Qual   Qual Limit   Result   Qual   Qual Limit   Result   Qual   Qu |

Page: 27 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: KPA8270

SAMPLE ID: A1604
SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |  |  |
|----------------------|------------|----------|--|--|
| Nitrobenzene-D5      | 97         | 35 - 114 |  |  |
| 2-Fluorobiphenyl     | 78         | 43 - 116 |  |  |
| Terphenyl-D14        | 89         | 33 - 141 |  |  |
| Phenol-D5            | 90         | 10 - 94  |  |  |
| 2-Fluorophenol       | 77         | 21 - 100 |  |  |
| 2,4,6-Tribromophenol | 68         | 10 - 123 |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 28 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1604

UNITS:

SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER
PREP DATE: 12/16/93
ANALYSIS DATE: 01/05/94
DILUTION FACTOR: 1.00000

| MG/L      |        |      | Reporting |
|-----------|--------|------|-----------|
|           | Result | Qual | Limit     |
| Aluminum  | 0.95   |      | 0.20      |
| Barium    | 0.24   |      | 0.20      |
| Cadmium   | 0.0050 | UN   | 0.0050    |
| Calcium   | 80     | N    | 5.0       |
| Chromium  | 0.010  | UN   | 0.010     |
| Copper    | 0.025  | UN   | 0.025     |
| Iron      | 1.1    |      | 0.10      |
| Magnesium | 52     |      | 5.0       |
| Manganese | 0.065  | N    | 0.015     |
| Nickel    | 0.040  | UN   | 0.040     |
| Potassium | 1.7    |      | 5.0       |
| Selenium  | 0.10   | UN   | 0.10      |
| Silver    | 0.010  | UN   | 0.010     |
| Sodium    | 43     |      | 5.0       |
| Zinc      | 0.020  | UN   | 0.020     |
|           |        |      |           |

## Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA < 0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 29 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

SAMPLE ID: A1604-MS

SAMPLE DATE: 12/10/93 14:45:00

SAMPLE MATRIX: WATER

|                         | Note |        | Reporting |               | Date     | Method    |
|-------------------------|------|--------|-----------|---------------|----------|-----------|
| Test Name               | Ref  | Result | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric | 1    | 510    | 10        | MG/L AS CACO3 | 12/15/93 | EPA310_1  |
| TPH - IR                |      | 90     |           | % REC         | 12/27/93 | EPA418_1  |
| Phenolics               |      | 90     |           | % REC         | 01/06/94 | EPA9066   |
| Chloride by Ion Chrom.  |      | 99     |           | % REC         | 12/18/93 | EPA300_0  |
| Chemical Oxygen Demand  |      | 106    |           | % REC         | 12/28/93 | EPA410 4  |
| Chromium VI             |      | 98     |           | % REC         | 12/11/93 | EPA7196   |
| Nitrate and Nitrite     |      | 96     |           | % REC         | 12/14/93 | EPA353_2  |
| Silica                  |      | 93     |           | % REC         | 12/29/93 | 370_1     |
| Sulfate by Ion Chrom.   |      | 86     |           | % REC         | 12/16/93 | EPA300_0  |
| Total Dissolved Solids  | 2    | 620    | 10        | MG/L          | 12/14/93 | EPA160_1  |
| Total Kjeldahl Nitrogen |      | 92     |           | % REC         | 01/10/94 | EPA351_3  |
| Total Organic Carbon    |      | 114    |           | % REC         | 12/20/93 | EPA415_1  |
| Total Suspended Solids  | 3    | 38     | 10        | MG/L          | 12/14/93 | EPA160_2  |
| Total Phosphorus        |      | 99     |           | % REC         | 01/10/94 | EPA365_3  |

## Referenced notes for these results:

- 1 Duplicate analysis performed in lieu of a matrix spike.
- 2 Duplicate analysis performed in lieu of a matrix spike.
- 3 Duplicate analysis performed in lieu of a matrix spike.

Page: 30 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1604-MS
SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/18/93
DILUTION FACTOR: 1.0

UNITS: % REC

| Result             |                                                |                                                |                                | Result               |
|--------------------|------------------------------------------------|------------------------------------------------|--------------------------------|----------------------|
| 1,1-Dichloroethene | 100                                            | Trichloroe<br>Benzene<br>Toluene<br>Chlorobenz |                                | 85<br>97<br>93<br>95 |
|                    | Surrogates<br>TOLUENE-D8<br>BROMOFLUOROBENZENE | % Recovery<br>96<br>98                         | Limits<br>88 - 110<br>86 - 114 |                      |

#### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample

99

76 - 114

- 'blank' positive result
  - \* Surrogate recovery is outside QC limit

1,2-DICHLOROETHANE-D4

- D compound identified at a secondary dilution factor
- E concentration exceeds calibration range

Page: 31 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1604-MS
SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/15/93
ANALYSIS DATE: 12/23/93
DILUTION FACTOR: 1.0

UNITS: % REC

| Result                     |    |                    | Result |
|----------------------------|----|--------------------|--------|
| Phenol                     | 83 | Acenaphthene       | 86     |
| 2-Chlorophenol             | 90 | 4-Nitrophenol      | 73     |
| 1,4-Dichlorobenzene        | 71 | 2,4-Dinitrotoluene | 69     |
| N-Nitroso-di-n-propylamine | 83 | Pentachlorophenol  | 68     |
| 1,2,4-Trichlorobenzene     | 73 | Pyrene             | 90     |
| 4-Chloro-3-methylphenol    | 88 | -                  |        |

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 91         | 35 - 114 |
| 2-Fluorobiphenyl     | 73         | 43 - 116 |
| Terphenyl-D14        | 84         | 33 - 141 |
| Phenol-D5            | 80         | 10 - 94  |
| 2-Fluorophenol       | 74         | 21 - 100 |
| 2,4,6-Tribromophenol | 65         | 10 - 123 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 32 of 51

Company: IT CORPORATION

Date: 01/10/94

UNITS:

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684 Work Order: B3-12-151 409832-003-01

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1604-MS SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER PREP DATE: 12/16/93 ANALYSIS DATE: 01/05/94 DILUTION FACTOR: 1.00000

% REC

| % REC     | Result |
|-----------|--------|
| Aluminum  | 100    |
| Barium    | 86     |
| Cadmium   | 79     |
| Calcium   | 121    |
| Chromium  | 80     |
| Copper    | 80     |
| Iron      | 90     |
| Magnesium | 111    |
| Manganese | 79     |
| Nickel    | 77     |
| Potassium | 96     |
| Selenium  | 72     |
| Silver    | 80     |
| Sodium    | 99     |
| Zinc      | 79     |

## Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- ${\tt N}$  spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

#### Referenced notes for these results:

Matrix spike recovery outside control limits due to matrix interference for analysis of cadmium, manganese, nickle, selenium, and zinc by ICPES. LCS / LCSD results and all other method Quality Control within acceptance limits.

Matrix spike recovery and % RPD for matrix spikes outside control limits due to matrix interference for analysis of calcium by ICPES. LCS / LCSD results and all other method Quality Control within acceptance limits.

Page: 33 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

SAMPLE ID: A1604-MSD

SAMPLE DATE: 12/10/93 14:45:00

SAMPLE MATRIX: WATER

|                         | Note |        | Reporting |               | Date     | Method    |
|-------------------------|------|--------|-----------|---------------|----------|-----------|
| Test Name               | Ref  | Result | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric | 1    | 490    | 10        | MG/L AS CACO3 | 12/17/93 | EPA310_1  |
| TPH - IR                |      | 92     |           | % REC         | 12/27/93 | EPA418_1  |
| Phenolics               |      | 85     |           | % REC         | 01/06/94 | EPA9066   |
| Chloride by Ion Chrom.  |      | 97     |           | % REC         | 12/18/93 | EPA300_0  |
| Chemical Oxygen Demand  |      | 104    |           | % REC         | 12/28/93 | EPA410_4  |
| Chromium VI             |      | 98     |           | % REC         | 12/11/93 | EPA7196   |
| Nitrate and Nitrite     |      | 94     |           | % REC         | 12/14/93 | EPA353_2  |
| Silica                  |      | 81     |           | % REC         | 12/29/93 | 370_1     |
| Sulfate by Ion Chrom.   |      | 79     |           | % REC         | 12/16/93 | EPA300_0  |
| Total Dissolved Solids  | 2    | 620    | 10        | MG/L          | 12/14/93 | EPA160_1  |
| Total Kjeldahl Nitrogen |      | 94     |           | % REC         | 01/10/94 | EPA351_3  |
| Total Organic Carbon    |      | 107    |           | % REC         | 12/20/93 | EPA415_1  |
| Total Suspended Solids  | 3    | 40     | 10        | MG/L          | 12/14/93 | EPA160_2  |
| Total Phosphorus ·      |      | 96     |           | % REC         | 01/10/94 | EPA365_3  |

## Referenced notes for these results:

- 1 Duplicate analysis performed in lieu of a matrix spike.
- 2 Duplicate analysis performed in lieu of a matrix spike.
- 3 Duplicate analysis performed in lieu of a matrix spike.

Page: 34 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1604-MSD
SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/18/93
DILUTION FACTOR: 1.0

UNITS: % REC

|                    | Result |                 | Result |
|--------------------|--------|-----------------|--------|
| 1,1-Dichloroethene | 100    | Trichloroethene | 85     |
|                    |        | Benzene         | 98     |
|                    |        | Toluene         | 94     |
|                    |        | Chlorobenzene   | 95     |
|                    |        |                 |        |
| Con                |        |                 |        |

| Surrogates            | * Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 96         | 88 - 110 |
| BROMOFLUOROBENZENE    | 96         | 86 - 114 |
| 1,2-DICHLOROETHANE-D4 | 99         | 76 - 114 |

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 35 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

Pegul+

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

Regult

METHOD REFERENCE: EPA8270

SAMPLE ID: A1604-MSD SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/15/93
ANALYSIS DATE: 12/23/93
DILUTION FACTOR: 1.0

UNITS: % REC

| 144                        | Kesaic |                    |    |
|----------------------------|--------|--------------------|----|
| Phenol                     | 86     | Acenaphthene       | 88 |
| 2-Chlorophenol             | 93     | 4-Nitrophenol      | 78 |
| 1,4-Dichlorobenzene        | 78     | 2,4-Dinitrotoluene | 69 |
| N-Nitroso-di-n-propylamine | 85     | Pentachlorophenol  | 78 |
| 1,2,4-Trichlorobenzene     | 80     | Pyrene             | 92 |
| 4-Chloro-3-methylphenol    | 92     |                    |    |

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 97         | 35 - 114 |
| 2-Fluorobiphenyl     | 76         | 43 - 116 |
| Terphenyl-D14        | 83         | 33 - 141 |
| Phenol-D5            | 76         | 10 - 94  |
| 2-Fluorophenol       | 76         | 21 - 100 |
| 2,4,6-Tribromophenol | 73         | 10 - 123 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 36 of 51

Company: IT CORPORATION

Date: 01/10/94

UNITS:

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES AUSTIN, TX

409832-003-01 (512) 892-6684 Work Order: B3-12-151

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1604-MSD
SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER
PREP DATE: 12/16/93
ANALYSIS DATE: 01/05/94
DILUTION FACTOR: 1.00000

| % REC     | Result |
|-----------|--------|
| Aluminum  | 92     |
| Barium    | 81     |
| Cadmium   | 76     |
| Calcium   | 95     |
| Chromium  | 76     |
| Copper    | 76     |
| Iron      | 84     |
| Magnesium | 93     |
| Manganese | 74     |
| Nickel    | 74     |
| Potassium | 92     |
| Selenium  | 72     |
| Silver    | 76     |
| Sodium    | 84     |
| Zinc      | 75     |

#### Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

#### Referenced notes for these results:

Matrix spike dulicate recovery outside control limits due to matrix interference for analysis of cadmium, manganese, nickle, selenium, silver, chromium, copper, and zinc by ICPES. LCS / LCSD results and all other method Quality Control within acceptance limits.

% RPD for matrix spikes outside control limits due to matrix interference for analysis of calcium by ICPES. LCS / LCSD results and all other method Quality Control within acceptance limits. Page: 37 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

SAMPLE ID: A1605

SAMPLE DATE: 12/10/93 13:20:00

SAMPLE MATRIX: WATER

|                         | Note       |        | Reporting |               | Date     | Method    |
|-------------------------|------------|--------|-----------|---------------|----------|-----------|
| Test Name               | <u>Ref</u> | Result | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric |            | 450    | 10        | MG/L as CaCO3 | 12/15/93 | EPA310_1  |
| TPH - IR                |            | 1.00   | 1.0       | MG/L          | 12/27/93 | EPA418_1  |
| Phenolics               |            | 0.0100 | 0.010     | MG/L          | 01/06/94 | EPA9066   |
| Chloride by Ion Chrom.  |            | 1.00   | 1.0       | MG/L          | 12/16/93 | EPA300_0  |
| Chemical Oxygen Demand  |            | 25U    | 25        | MG/L          | 12/28/93 | EPA410_4  |
| Chromium VI             |            | 0.0100 | 0.010     | MG/L          | 12/11/93 | EPA7196   |
| Nitrate and Nitrite     |            | 0.050ប | 0.050     | MG/L          | 12/14/93 | EPA353_2  |
| Silica                  |            | 0.200  | 0.20      | MG/L          | 12/29/93 | 370_1     |
| Sulfate by Ion Chrom.   |            | 1.00   | 1.0       | MG/L          | 12/16/93 | EPA300_0  |
| Total Dissolved Solids  |            | 17     | 10        | MG/L          | 12/14/93 | EPA160_1  |
| Total Kjeldahl Nitrogen |            | 0.25ប  | 0.25      | MG/L          | 01/10/94 | EPA351_3  |
| Total Organic Carbon    |            | 1.00   | 1.0       | MG/L          | 12/20/93 | EPA415_1  |
| Total Suspended Solids  |            | 100    | 10        | MG/L          | 12/14/93 | EPA160_2  |
| Total Phosphorus        |            | 0.100  | 0.10      | MG/L          | 01/10/94 | EPA365_3  |

Page: 38 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1605 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER ANALYSIS DATE: 12/18/93 DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |        | R    | eporting | r                         |        |      | Re | porting |
|--------------------------|--------|------|----------|---------------------------|--------|------|----|---------|
|                          | Result | Qual | Limit    |                           | Result | Qua: | 1  | Limit   |
| Chloromethane            | 1      | ο τ  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 1      | 0 υ  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 1      | 0 U  | 10       | Trichloroethene           |        | 5    | U  | 5       |
| Chloroethane             | 1      | 0 U  | 10       | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride       | 1      | 0 υ  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 10     | 0 U  | 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         |        | 5 บ  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5       |
| 1,1-Dichloroethene       |        | 5 ซ  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| 1,1-Dichloroethane       |        | 5 บ  | 5        | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene |        | 5 ช  | 5        | 2-Hexanone                | !      | 50   | U  | 50      |
| cis-1,2-Dichloroethene   |        | 5 ช  | 5        | 4-Methyl-2-pentanone      | !      | 50   | U  | 50      |
| Chloroform               |        | 5 บ  | 5        | Tetrachloroethene         |        | 5    | U  | 5       |
| 1,2-Dichloroethane       |        | 5 บ  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 10     | υ 0  | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    |        | 5 บ  | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     |        | 5 U  | 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 10     | U 0  | 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     |        | 5 ช  | 5        | Xylenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |  |  |
|-----------------------|------------|----------|--|--|
| TOLUENE-D8            | 94         | 88 - 110 |  |  |
| BROMOFLUOROBENZENE    | 96         | 86 - 114 |  |  |
| 1,2-DICHLOROETHANE-D4 | 101        | 76 - 114 |  |  |

#### Data Qualifier Key:

U - none detected

C-----

- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 39 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

## IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1605 SAMPLE DATE: 12/10/93 SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/15/93 ANALYSIS DATE: 12/23/93 DILUTION FACTOR: 1.0

| UNITS: UG/L                |        | F    | eporting    |                            |        | 3        | Reporting |
|----------------------------|--------|------|-------------|----------------------------|--------|----------|-----------|
|                            | Result | Qual | Limit       |                            | Result | Qual     | Limit     |
| Phenol                     | 1      | ο τι | 10          | 2,6-Dinitrotoluene         | 10     | ט כ      | 10        |
| bis(2-Chloroethyl)ether    | _      | 0 U  |             | 3-Nitroaniline             | 2!     | -        | 25        |
| 2-Chlorophenol             | _      | 0 U  |             | Acenaphthene               | 10     | -        | 10        |
| 1,3-Dichlorobenzene        | _      | 0 U  |             | 2,4-Dinitrophenol          | 2!     | -        | 25        |
| 1,4-Dichlorobenzene        | _      | 0 U  |             | 4-Nitrophenol              | 2!     |          | 25        |
| Benzyl alcohol             | 1      | 0 U  |             | Dibenzofuran               | 10     | _        | 10        |
| 1,2-Dichlorobenzene        | 1      | 0 υ  |             | 2,4-Dinitrotoluene         | 10     | ט כ      | 10        |
| 2-Methylphenol             | 1      | ο υ  |             | Diethylphthalate           | 10     | ט כ      | 10        |
| is(2-Chloroisopropyl)ethe  | er 1   | 0 U  |             | 4-Chlorophenyl-phenylether | : 10   | ง ช      | 10        |
| 4-Methylphenol             |        | 0 υ  | 10          | Fluorene                   | 10     | ט כ      | 10        |
| N-Nitroso-di-n-propylamine | 1      | 0 υ  | 10          | 4-Nitroaniline             | 10     | <b>U</b> | 10        |
| Hexachloroethane           |        | 0 υ  | 10          | 4,6-Dinitro-2-methylphenol | 2      | 5 0      | 25        |
| Nitrobenzene               | 1      | 0 υ  | 10          | N-Nitrosodiphenylamine (1) |        | ט כ      | 10        |
| Isophorone                 | 1      | 0 υ  | 10          | 4-Bromophenyl-phenylether  | 10     | ט כ      | 10        |
| 2-Nitrophenol              | 1      | 0 υ  | 10          | Hexachlorobenzene          | 10     | ט כ      | 10        |
| 2,4-Dimethylphenol         | 1      | 0 U  | 10          | Pentachlorophenol          | 2      | 5 U      | 25        |
| Benzoic Acid               | 1      | 0 υ  | 10          | Phenanthrene               | 10     | υ σ      | 10        |
| bis(2-Chloroethoxy)methane | 1      | 0 υ  | 10          | Anthracene                 | 10     | ט כ      | 10        |
| 2,4-Dichlorophenol         | 1      | 0 υ  | 10          | Di-n-butylphthalate        | 1.3    | 3 J      | 10        |
| 1,2,4-Trichlorobenzene     | 1      | 0 υ  | 10          | Fluoranthene               | 10     | ט כ      | 10        |
| Naphthalene                | 1      | 0 υ  | 10          | Pyrene                     | 10     | ט כ      | 10        |
| 4-Chloroaniline            | 1      | 0 U  | 10          | Butylbenzylphthalate       | 10     | ט כ      | 10        |
| Hexachlorobutadiene        | 1      | 0 υ  | 10          | 3,3'-Dichlorobenzidine     | 10     | ט כ      | 10        |
| 4-Chloro-3-methylphenol    | 1      | 0 U  | 10          | Benzo(a)anthracene         | 10     | ט כ      | 10        |
| 2-Methylnaphthalene        | 1      | 0 U  | 10          | Chrysene                   | 10     | ט כ      | 10        |
| Hexachlorocyclopentadiene  | 1      | 0 υ  | 10          | bis(2-Ethylhexyl)phthalate | e 10   | ט כ      | 10        |
| 2,4,6-Trichlorophenol      | 1      | 0 U  | 10          | Di-n-octylphthalate        | 10     | υ (      | 10        |
| 2,4,5-Trichlorophenol      | 1      | 0 υ  | 10          | Benzo(b)fluoranthene       | 10     | ט כ      | 10        |
| 2-Chloronaphthalene        | 1      | υ 0  | 10          | Benzo(k)fluoranthene       | 10     | ט כ      | 10        |
| 2-Nitroaniline             | 2      | -    | <del></del> | Benzo(a)pyrene             | 10     | ט כ      | 10        |
| Dimethylphthalate          | 1      |      |             | Indeno(1,2,3-cd)pyrene     | 10     |          | 10        |
| Acenaphthylene             | 1      | 0 υ  | 10          | Dibenzo(a,h)anthracene     | 10     |          | 10        |
|                            |        |      |             | Benzo(g,h,i)perylene       | 10     | ט ט      | 10        |

Page: 40 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1605

SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER

| Surrogates           | <pre>% Recovery</pre> | Limits   |  |  |  |
|----------------------|-----------------------|----------|--|--|--|
| Nitrobenzene-D5      | 93                    | 35 - 114 |  |  |  |
| 2-Fluorobiphenyl     | 74                    | 43 - 116 |  |  |  |
| Terphenyl-D14        | 85                    | 33 - 141 |  |  |  |
| Phenol-D5            | 89                    | 10 - 94  |  |  |  |
| 2-Fluorophenol       | 77                    | 21 - 100 |  |  |  |
| 2,4,6-Tribromophenol | 72                    | 10 - 123 |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 41 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1605

SAMPLE DATE: 12/10/93
SAMPLE MATRIX: WATER
PREP DATE: 12/16/93
ANALYSIS DATE: 01/05/94
DILUTION FACTOR: 1.00000

UNITS: MG/L Reporting Result Qual Limit Aluminum 0.20 0.20 U Barium 0.20 U 0.20 Cadmium 0.0050 0.0050 UN Calcium 5.0 N 5.0 Chromium 0.010 UN 0.010 Copper 0.025 0.025 UN Iron 0.10 0.10 U Magnesium 5.0 U 5.0 Manganese 0.015 UN 0.015 Nickel 0.040 UN 0.040 Potassium 5.0 U 5.0

### Data qualifier key:

Zinc

Selenium

Silver

Sodium

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance

0.10

5.0

0.010

0.020

UN

UN

U

UN

0.10

5.0

0.010

0.020

- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 42 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: WATER

|                         | Note       |             | Reporting |               | Date     | Method    |
|-------------------------|------------|-------------|-----------|---------------|----------|-----------|
| Test Name               | <u>Ref</u> | Result      | Limit     | Units         | Analyzed | Reference |
| Alkalinity, Titrimetric |            | 100         | 10        | MG/L as CaCO3 | 12/15/93 | EPA310_1  |
| TPH - IR                |            | 1.00        | 1.0       | MG/L          | 12/27/93 | EPA418_1  |
| Phenolics               |            | 0.0100      | 0.010     | MG/L          | 01/06/94 | EPA9066   |
| Chloride by Ion Chrom.  |            | 1.00        | 1.0       | MG/L          | 12/16/93 | EPA300_0  |
| Chemical Oxygen Demand  |            | 25 <b>U</b> | 25        | MG/L          | 12/28/93 | EPA410_4  |
| Chromium VI             |            | 0.0100      | 0.010     | MG/L          | 12/11/93 | EPA7196   |
| Nitrate and Nitrite     |            | 0.0500      | 0.050     | MG/L          | 12/14/93 | EPA353_2  |
| Silica                  |            | 0.200       | 0.20      | MG/L          | 12/29/93 | 370_1     |
| Sulfate by Ion Chrom.   |            | 1.00        | 1.0       | MG/L          | 12/16/93 | EPA300_0  |
| Total Dissolved Solids  |            | 10 <b>U</b> | 10        | MG/L          | 12/14/93 | EPA160_1  |
| Total Kjeldahl Nitrogen |            | 0.25U       | 0.25      | MG/L          | 01/07/94 | EPA351_3  |
| Total Organic Carbon    |            | 1.00        | 1.0       | MG/L          | 12/20/93 | EPA415_1  |
| Total Suspended Solids  |            | 100         | 10        | MG/L          | 12/14/93 | EPA160_2  |
| Total Phosphorus        |            | 0.100       | 0.010     | MG/L          | 01/07/94 | EPA365_3  |

Page: 43 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/17/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |            | R  | eporting |                           |        |      | Re | eporting |
|--------------------------|------------|----|----------|---------------------------|--------|------|----|----------|
|                          | Result Qua | al | Limit    |                           | Result | Qual | L  | Limit    |
| Chloromethane            | 10         | U  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5        |
| Bromomethane             | 10         | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5        |
| Vinyl chloride           | 10         | U  | 10       | Trichloroethene           |        | 5    | U  | 5        |
| Chloroethane             | 10         | U  | 10       | Chlorodibromomethane      |        | 5    | U  | 5        |
| Methylene chloride       | 10         | U  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5        |
| Acetone                  | 100        | U  | 100      | Benzene                   |        | 5    | U  | 5        |
| Carbon disulfide         | 5          | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U  | 5        |
| 1,1-Dichloroethene       | 5          | U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10       |
| ,1-Dichloroethane        | 5          | U  | 5        | Bromoform                 |        | 5    | U  | 5        |
| trans-1,2-Dichloroethene | 5          | U  | 5        | 2-Hexanone                | !      | 50   | U  | 50       |
| cis-1,2-Dichloroethene   | 5          | U  | 5        | 4-Methyl-2-pentanone      | !      | 50   | U  | 50       |
| Chloroform               | 5          | U  | 5        | Tetrachloroethene         |        | 5    | U  | 5        |
| 1,2-Dichloroethane       | 5          | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5        |
| 2-Butanone               | 100        | U  | 100      | Toluene                   |        | 5    | U  | 5        |
| 1,1,1-Trichloroethane    | 5          | U  | 5        | Chlorobenzene             |        | 5    | U  | 5        |
| Carbon tetrachloride     | 5          | U  | 5        | Ethylbenzene              |        | 5    | U  | 5        |
| Vinyl acetate            | 10         | Ü  | 10       | Styrene                   |        | 5    | U  | 5        |
| Dichlorobromomethane     | 5          | U  | 5        | Xylenes, total            |        | 5    | U  | 5        |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 94         | 88 - 110 |
| BROMOFLUOROBENZENE    | 92         | 86 - 114 |
| 1,2-DICHLOROETHANE-D4 | 102        | 76 - 114 |

### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 44 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

### IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: WATER

EXTRACTION DATE: 12/15/93 ANALYSIS DATE: 12/29/93 DILUTION FACTOR: 1.0

| _                          | .0   |            |          |                            |        |      |           |
|----------------------------|------|------------|----------|----------------------------|--------|------|-----------|
| UNITS: UG/L                |      | R          | eporting |                            |        |      | Reporting |
| Re                         | sult | Qual       | Limit    |                            | Result | Qual | Limit     |
| Phenol                     | -    |            |          |                            |        |      | 4.0       |
| <del>-</del>               | 10   |            |          | 2,6-Dinitrotoluene         | 10     |      | 10        |
| bis(2-Chloroethyl)ether    | 10   | _          |          | 3-Nitroaniline             | 2!     | -    | 25        |
| 2-Chlorophenol             | 10   | _          |          | Acenaphthene               | 10     | -    | 10        |
| 1,3-Dichlorobenzene        | 10   | -          |          | 2,4-Dinitrophenol          | 2      |      | 25        |
| 1,4-Dichlorobenzene        | 10   | _          |          | 4-Nitrophenol              | 2!     |      | 25        |
| Benzyl alcohol             | 10   | _          |          | Dibenzofuran               | 10     | _    | 10        |
| 1,2-Dichlorobenzene        | 10   |            |          | 2,4-Dinitrotoluene         | 10     |      | 10        |
| 2-Methylphenol             | 10   | -          |          | Diethylphthalate           | 10     |      | 10        |
| is(2-Chloroisopropyl)ether | 10   | _          |          | 4-Chlorophenyl-phenylether |        |      | 10        |
| 4-Methylphenol             | 10   |            |          | Fluorene                   | 10     | -    | 10        |
| N-Nitroso-di-n-propylamine | 10   |            | 10       | 4-Nitroaniline             | 10     |      | 10        |
| Hexachloroethane           | 10   | υ (        |          | 4,6-Dinitro-2-methylphenol | _ 2!   | 5 U  | 25        |
| Nitrobenzene               | 10   | ט כ        | 10       | N-Nitrosodiphenylamine (1) | 10     | υ 0  | 10        |
| Isophorone                 | 10   | ט כ        | 10       | 4-Bromophenyl-phenylether  | 10     | ט כ  | 10        |
| 2-Nitrophenol              | 10   | ט כ        | 10       | Hexachlorobenzene          | 10     | ט כ  | 10        |
| 2,4-Dimethylphenol         | 10   | υ (        | 10       | Pentachlorophenol          | 2      | 5 U  | 25        |
| Benzoic Acid               | 10   | ο σ        | 10       | Phenanthrene               | 10     | ט ָכ | 10        |
| bis(2-Chloroethoxy)methane | 10   | <b>0</b>   | 10       | Anthracene                 | 10     | ט כ  | 10        |
| 2,4-Dichlorophenol         | 10   | <b>0</b> 0 | 10       | Di-n-butylphthalate        | 10     | ט כ  | 10        |
| 1,2,4-Trichlorobenzene     | 10   | υ (        | 10       | Fluoranthene               | 10     | ט כ  | 10        |
| Naphthalene                | 10   | <b>U</b>   | 10       | Pyrene                     | 10     | ט כ  | 10        |
| 4-Chloroaniline            | 10   | ט כ        | 10       | Butylbenzylphthalate       | 10     | υ (  | 10        |
| Hexachlorobutadiene        | 10   | ט כ        | 10       | 3,3'-Dichlorobenzidine     | 10     | υ (  | 10        |
| 4-Chloro-3-methylphenol    | 10   | ט כ        | 10       | Benzo(a)anthracene         | 10     | ט כ  | 10        |
| 2-Methylnaphthalene        | 10   | υ (        |          | Chrysene                   | 10     | ט כ  | 10        |
| Hexachlorocyclopentadiene  | 10   | ט כ        | 10       | bis(2-Ethylhexyl)phthalate | . 10   | ט כ  | 10        |
| 2,4,6-Trichlorophenol      | 10   | ) U        |          | Di-n-octylphthalate        | 10     | ט כ  | 10        |
| 2,4,5-Trichlorophenol      | 10   | ט כ        |          | Benzo(b)fluoranthene       | 10     | ט כ  | 10        |
| 2-Chloronaphthalene        | 10   | ) U        |          | Benzo(k)fluoranthene       | 10     | ט כ  | 10        |
| 2-Nitroaniline             | 25   | _          |          | Benzo(a)pyrene             | 10     | _    | 10        |
| Dimethylphthalate          | 10   |            |          | Indeno(1,2,3-cd)pyrene     | 10     | _    | 10        |
| Acenaphthylene             | 10   | _          |          | Dibenzo(a,h)anthracene     | 10     | -    | 10        |
|                            |      | •          |          | Benzo(g,h,i)perylene       | 10     |      | 10        |
|                            |      |            |          | (g,, _ , por ] rome        | - '    | . •  |           |

Page: 45 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 82         | 35 - 114 |
| 2-Fluorobiphenyl     | 85         | 43 - 116 |
| Terphenyl-D14        | 81         | 33 - 141 |
| Phenol-D5            | 75         | 10 - 94  |
| 2-Fluorophenol       | 64         | 21 - 100 |
| 2,4,6-Tribromophenol | 73         | 10 - 123 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\ensuremath{\mathtt{B}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
    - D compound identified at a secondary dilution factor
    - E concentration exceeds calibration range

Page: 46 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

UNITS:

SAMPLE MATRIX: WATER
PREP DATE: 12/16/93
ANALYSIS DATE: 01/05/94
DILUTION FACTOR: 1.0

| MG/L      |        |      | Reporting |
|-----------|--------|------|-----------|
|           | Result | Qual | Limit     |
| Aluminum  | 0.20   | U    | 0.20      |
| Barium    | 0.20   | U    | 0.20      |
| Cadmium   | 0.0050 | U    | 0.0050    |
| Calcium   | 5.0    | U    | 5.0       |
| Chromium  | 0.010  | U    | 0.010     |
| Copper    | 0.025  | U    | 0.025     |
| Iron      | 0.10   | U    | 0.10      |
| Magnesium | 5.0    | U    | 5.0       |
| Manganese | 0.015  | U    | 0.015     |
| Nickel    | 0.040  | U    | 0.040     |
| Potassium | 5.0    | U    | 5.0       |
| Selenium  | 0.010  | U    | 0.010     |
| Silver    | 0.010  | U    | 0.010     |
| Sodium    | 5.0    | U    | 5.0       |
| Zinc      | 0.020  | U    | 0.020     |

### Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 47 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-151

SAMPLE ID: LAB BLANK #2

SAMPLE DATE:

SAMPLE MATRIX: WATER

|                         | Note |        | Reporting |               | Date     | Method          |
|-------------------------|------|--------|-----------|---------------|----------|-----------------|
| Test Name               | Ref  | Result | Limit     | Units         | Analyzed | Reference       |
| Alkalinity, Titrimetric |      | 100    | 10        | MG/L as CaCO3 | 12/17/93 | EPA310 1        |
| Total Kjeldahl Nitrogen |      | 0.25T  | 0.25      | MG/L          | 01/10/94 | EPA351 3        |
| Total Phosphorus        |      | 0.100  | 0.10      | MG/L          | 01/10/94 | <b>EPA365</b> 3 |

Page: 48 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

### IV. Methodology

Requested analyses were performed according to the following methods.

TEST NAME Alkalinity, Titrimetric TEST CODE 310 1

Alkalinity EPA 310.1 - Chemical Analysis of Water and Wastewater.

Titrimetric with sulfuric acid.

TEST NAME TPH - IR TEST CODE 418 1

418\_1 Method 418.1: Total Recoverable Petroleum Hydorcarbons,

infrared spectrophotmetric method. Methods for the

chemical analysis of water and wastes. USEPA.

TEST NAME ICP Metals TEST CODE 6010

Metals by ICP Inductively coupled emission spectroscopy according to

Method 6010, "Test Methods for Evaluating Solid Waste

Physical/Chemical Methods", SW-846, Third Edition.

TEST NAME Hazardous Substance Vols. TEST CODE 8240TK

Hazardous Substance Method 8240, SW-846, Test Methods for Evaluating Solid

List Volatiles Wastes, Third Edition. GC/MS Purge and Trap analysis.

TEST NAME ABN HSL GC/MS Extractables TEST CODE 8270TK

Hazardous Substance Method 8270, SW-846, Test Methods for Evaluating Solid

List Extractables Waste, Third Edition. Acid/Base-Neutral extraction

followed by GC/MS analysis.

TEST NAME Phenolics TEST CODE 9066

Phenolics SW-846 Method 9066. Total Recoverable Phenolics.

Colorimetric, Automated 4-AAP with Distillation.

Equivalent to EPA Method 420.2.

TEST NAME Arsenic - Graphite Furnace TEST CODE AS GF

Page: 49 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME Arsenic - Graphite Furnace TEST CODE AS GF

Arsenic

Graphite Furnace Method 7060, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. EPA 206.2-Technical Additions to Methods for Chemical Analysis of Water and Wastes,

EPA-600/4-82-055, December 1982.

TEST NAME Chloride by Ion Chrom.

TEST CODE CL IC

Chloride

USEPA 300.0 - The determination of inorganic anions in water by ion chromatography.

TEST NAME Chemical Oxygen Demand

TEST CODE COD

COD

EPA 410.4 - Chemical Analysis of Water and Wastewater. Colorimetric analysis for Chemical Oxygen Demand.

TEST NAME Chromium VI

TEST CODE CR VI

Chromium VI

Method 7196, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Colorimetric analysis. Equivalent to Standard Methods 3500-Cr D.

TEST NAME Mercury

TEST CODE HG AA

Mercury

Method 7471, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Cold vapor atomic absorption. Method 7470 is used for water.

Method 245.5-"Technical Additions to Methods for Chemical Analysis of Water and Wastes,"

EPA-600/4-82-055, December 1982.

TEST NAME Metals

TEST CODE ICPTK4

Method not available.

Page: 50 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME Nitrate and Nitrite

TEST CODE NO3NO2

Nitrate + Nitrite

Method 353.2-Chemical Analysis of Water and Wastewater. Colorimetric Automated Cadmium Reduction method using Lachat autoanalyzer for NO3 and NO2 as N.

TEST NAME Lead - Graphite Furnace

TEST CODE PB\_GF

Lead

EPA 7421, SW-846, Test Methods for Evaluating Solid

Wastes, Third Edition.

Graphite Furnace

EPA 239.2-Technical Additions to Methods for Chemical

Analysis of Water and Wastes," EPA-600/4-82-055,

December 1982.

TEST NAME Silica

TEST CODE SIO2

Silica

Method 370.1-Chemical Analysis of Water and Wastewater. Colorimetric Analysis. This is equal to ASTM D859B.

TEST NAME Sulfate by Ion Chrom.

TEST CODE SO4 IC

Sulfate

USEPA Method 300.0 - The Determination of Inorganic Anions in Water by Ion Chromatography.

TEST NAME Total Dissolved Solids

TEST CODE TDS

Total Dissolved

Method 160.1-Chemical Analysis of Water and Wastewater.

Solids

Gravimetric analysis.

TEST NAME Total Kjeldahl Nitrogen

TEST CODE TKN\_N

Kjeldahl Nitrogen

Method 351.3-Chemical Analysis of Water and Wastewater.

Digestion and colorimetric analysis.

TEST NAME Total Organic Carbon

TEST CODE TOC

Page: 51 of 51

Company: IT CORPORATION

Date: 01/10/94

Client Work ID: D.O. 5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-151

TEST NAME Total Organic Carbon

TEST CODE TOC

Total Organic

Carbon

Method 415.1-Chemical Analysis of Water and Wastewater.

Chemical oxidation and nondispersive

infrared analysis. Equivalent to SW-846 Method 9060. Sample prep is instrument manufacturer specific.

TEST NAME Total Suspended Solids

TEST CODE TSS

Total Suspended

Solids

Method 160.2-Chemical Analysis of Water and Wastewater. Filtration and gravimetric analysis of non-filterable

residue.

TEST NAME Total Phosphorus

TEST CODE T\_P

Total Phosphorus

Method 365.3-Chemical Analysis of Water and Wastewater.

Digestion and colorimetric analysis.

TEST NAME ICPES Digestion - Water TEST CODE 23005

Water Digestion

Method 3005A, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Digestion procedure for the preparation of surface and ground water samples for analysis by flame atomic absorption spectroscopy and inductively coupled plasma spectroscopy. The procedure determines total recoverable or dissolved metals.

TEST NAME GFAA Digestion - Water

TEST CODE **Z3020** 

Water Digestion

Method 3020, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Acid digestion technique for

Graphite Furnace.



# ANALYSIS RELJEST AND CHAIN OF CUSTODY RECORD\*

Samples Shipment Date 7 12/10 /93

Project Name/No. 17 wher 5001 /409833

Sample Team Members 2 M W / TS / K K

3597

Profit Center No. 3

 $\mathcal{K}$  3/2/5/ Reference Document N., 314024 Page 1 of +

409832,03,01 D.O. 5001 Bill to:5

White: To accompany samples

Lab Destination 8 LTAS Auskin

Report to: 10 Trm Jennings Carrier/Waybill No. <sup>13</sup>8460755800 Fed Fx Lab Contact 9 Kor May Deene 12 (105) 736-3360 Project Contact/Phone 12 Dan Mchager

ONE CONTAINER PER LINE Project Manager 4 Jimmy Toylor Purchase Order No. 6 409832, 03. 01 Required Report Date 11。 八の「ma」

|                                                                           |                                                        |                                                                                            |                |                     |                                 |                                                                   | The state of the s |                                      |
|---------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|---------------------|---------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Sample <sup>14</sup><br>Number                                            | Sample <sup>15</sup><br>Description/Type               | Date/Time <sup>16</sup> Container <sup>17</sup> Sample <sup>18</sup> Collected Type Volume | Container Type | Sample 18<br>Volume | Pre- <sup>19</sup><br>servative | Requested Testing <sup>20</sup><br>Program                        | Condition on <sup>21</sup><br>Recgipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Disposal <sup>22</sup><br>Record No. |
| A 1599                                                                    | Trip Blank                                             | 00L1                                                                                       |                | 140h                | HCI                             | 207 OTE8                                                          | 3-5-C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83291020                             |
| A 1600                                                                    | Water / Fire Training 12/10/93                         | 1300                                                                                       | Clear          | (+)<br>(+)          | Hcl                             | 8240 NOC                                                          | The 12/11/83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                    |
|                                                                           |                                                        | -                                                                                          | 4 m ber        |                     | ice                             | 8270 Svoc                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3146032                              |
|                                                                           |                                                        |                                                                                            | 7              | 71                  | Hasoy                           | 418.1 JPH                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|                                                                           |                                                        |                                                                                            |                | 500ml               |                                 | 9066 Phenols                                                      | का<br>199<br>199<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
|                                                                           |                                                        |                                                                                            |                | 250 M               |                                 | 410,4 COD                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|                                                                           |                                                        |                                                                                            |                | 250ml               | <b>^</b>                        | Vitrie Mither 353.2<br>TKN 351.3                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| <del>-}</del>                                                             | 7                                                      | ->                                                                                         | Plaste         | 500ml HNOS          | HNO                             | metaly 17000                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Special Instructions: 23                                                  | ons: <sup>23</sup>                                     |                                                                                            |                |                     |                                 |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| Possible Hazard Identification: <sup>24</sup> Non-hazard J Flammable J Sk | ldentification: <sup>24</sup><br>lammable 📘 Skin Irrit | 24<br>Skin Irritant 📘 Poison B                                                             |                | J Unknown           |                                 | Sample Disposal: <sup>25</sup><br>Return to Client <b>J</b> Dispo | Disposal by Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (mos.)                               |

Yellow: Field copy

\*See back of form for special instructions

Project Specific (specify);

Unknown OC Level: 27

Turnaround Time Required: <sup>26</sup>

Rush,

Normal **X** 

1. Relinquished by 28

(Signature/Affiliation)

2. Relinquished by (Signature/Affiliation)

3. Relinquished by (Signature/Affiliation)

Comments: <sup>29</sup>

Received by <sup>28</sup>

FF 4wshin Date: 13 -10 - 93

Date: Time: Date: Time:

(Signature/Affiliation)

2. Received by (Signature/Affiliation)

3. Received by (Signature/Affiliation)

Date: ,

Time:

Time:

Date:

Time:

Date:

MCA 3/15/9

INTERNATIONAL TECHNOLOGY CORPORATION

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD (cont.)\*

Reference Document No.30 314034 Page 2 of 14

8312151

|                          | ~            | <b>/</b> hite                   | : To                  | accor         | npany       | / samp          | oles       | Ye           | ellow:    | Field (          | сору                 | ·             |                       | *Se                            | e back           | of for    | m fo         | r spe     | cial ins         | struct           | ions.            |               |
|--------------------------|--------------|---------------------------------|-----------------------|---------------|-------------|-----------------|------------|--------------|-----------|------------------|----------------------|---------------|-----------------------|--------------------------------|------------------|-----------|--------------|-----------|------------------|------------------|------------------|---------------|
| 86/01/e1                 |              | Disposal 22<br>Record No.       |                       |               | 133271030   |                 |            |              |           |                  |                      |               |                       | 83 291020                      | 3146032          |           |              |           |                  |                  |                  |               |
| Samples Shipment Date    |              | Condition on 21<br>Receipt      | J. E - E Juag         | 1 2           |             |                 |            |              |           |                  |                      |               |                       |                                |                  |           |              |           |                  |                  |                  | $\rightarrow$ |
| Sample                   |              | requescea rescing ∠∪<br>Program | Stordard Gw poremetry | 7196 Cr64     | SOY OYES    | 8270 SVOC       | 41(8,1 TPH | 9066 Phanols | 410,4 COD | / >              | Metals<br>6010 (7000 | GW poranetaro | 7196 Cr <sup>64</sup> | Som ones                       | 8270 SVOC        | HG1 1.811 | 9066 Phonols | 416.4 COD | えっ               | Metulo 6010/1000 | aw porometers as | 51            |
| . 409832                 |              | 86                              | ice                   | ادو           | HC          | سبب ،           | H2504      |              |           | <b>→</b>         | HNO3                 | 1,58          | أدو                   | HCI                            | ice              | H3504     |              |           | `<br>→           | HNO3             | ice              | 7             |
| ). <i>L</i> (0°          | Sample 18    | Volume                          | 11                    | 125ml         | € <u>₹</u>  | 8-5-F           | 7          | 500m1        | 250ml     | 250ml            | 500m                 | 1             | 125m1                 | (4)<br>(100)                   | 2,5 L            | 7         | 500 ml       | 250m      | <del>-&gt;</del> | 500ml            | 1                | 135m1         |
| Project No.              |              | Type                            | Ploshi                | $\rightarrow$ | clear       | Amber<br>9 lass | 7          |              |           | <del>-&gt;</del> | Ploshic              | _             | <b>~</b>              | Cleor<br>O-loss                | 4 mher<br>5 logs |           |              |           | <b>/</b>         | Plustic          |                  | 7             |
|                          | Date/Time 16 | Collected                       | 1390                  | <b>→</b>      | 1330        |                 |            |              |           |                  |                      |               | >                     | 1365<br>1355                   |                  |           |              |           |                  |                  |                  | 7             |
| inlier 5001              | Sample 15    | Description/Type                | Well Water / Fire     | ·<br>•        | Field Blank |                 |            |              |           |                  |                      |               | ->                    | Well Fire Area Wooten Training | 7                |           |              |           |                  |                  |                  | <del>-</del>  |
| Project Name Tinlier 500 | Sample 14    | Number                          | A 1600                | ->            | A 1605      |                 |            |              |           |                  |                      |               |                       | A 1601                         |                  |           |              |           |                  |                  |                  | >             |

MCA 3 15.91

INTERNATIONAL TECHNOLOGY CORPORATION

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD (cont.)\*

Reference Document No.30 314034 Page 3 of 4

B312151

|                           |           | White                                | e: To a        | accon     | npany     | samp         | les       | Ye                           | llow:            | Field o          | сору            |                   |           | *See      | back         | of fo     | m for                | spec              | cial ins         | tructi                | ons. |   |
|---------------------------|-----------|--------------------------------------|----------------|-----------|-----------|--------------|-----------|------------------------------|------------------|------------------|-----------------|-------------------|-----------|-----------|--------------|-----------|----------------------|-------------------|------------------|-----------------------|------|---|
| 19/10/63                  |           | Disposal 22<br>Record No.            | 133241000      | 3146.052  |           | -            |           |                              |                  |                  |                 | 83291020          | 3146032   |           |              |           |                      |                   |                  |                       |      |   |
| Samples Shipment Date     |           | Condition on 21<br>Receipt           | J. 8-6 2009    | 11/19     |           |              |           |                              |                  |                  |                 |                   |           |           |              |           |                      |                   |                  |                       |      |   |
|                           | PER LINE  | Requested Testing 20<br>Program      | SZYO VOC       | 8270 SUOC | 418,1 TPH | 4066 Phenols | 415,1 COD | Nitrak 10 353,2<br>TKN 351,3 | Metals 60,0/2000 | 6w parameters as | Cot 7196        | 8240 VOC          | 8270 SVOC | 418.1 TPH | 9066 Phonols | 410.4 COD | Utrate/Nitrite 363,3 | 6010/7000 materia | Gw Perameters as | Cr <sup>6t</sup> 7196 |      |   |
| Project No. 409832,03.01  |           | Pre-19<br>servative                  | ИС             | 1.ce      | H2504     |              |           | <b>→</b>                     | HNO3             | ) es!            | <del>-}</del>   | HCI               | ice       | H2504     |              |           | <u>-</u>             | HNOS              |                  | 7                     |      |   |
| 4038                      | CONTAINER | Sample 18<br>Volume                  | (તું<br>ઉ      | 25 L      | 1         | 500ml        | JED m     | <del>-&gt;</del>             | 500ml            | 71               | 135ml           | Jwgh              | 25L       | 14        | 500 m        | 250ml     | _>                   | 500 ml            | 71               | D5ml                  |      |   |
| Project No                | ONE       |                                      | Cleor<br>Sloss | Amber     | >         |              |           | $\rightarrow$                | Plastic          |                  | $\rightarrow$   | (1001<br>9 1085   | Huber     | 7         |              |           | $\rightarrow$        | P(astic           |                  | <b>→</b>              |      |   |
|                           |           | Date/Time <sup>16</sup><br>Collected | 1356<br>1356   |           |           |              |           | _                            |                  |                  | <del>&gt;</del> | 1430              |           |           |              |           |                      |                   |                  | 7                     |      |   |
| nher 5001                 |           | Sample 15<br>Description/Type        | well pplicate  |           |           |              |           |                              |                  |                  | -3              | Well Training Wed |           |           |              |           |                      |                   |                  |                       |      | \ |
| Project Name 7 in her 500 |           | Sample 14<br>Number                  | A 1602 DA      |           |           |              |           |                              |                  |                  | -7              | A1603             |           |           |              |           |                      |                   |                  | 7                     |      |   |

INTERNATIONAL TECHNOLOGY CORPORATION

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD (cont.)\*

B3/2/5-/ Reference Document No.30 3/4034 Page 4 of 4

Samples Shipment Date 13-110 /93

White: To accompany samples

|                          |               |                                 | _                    |                | _           | _            |            |                                      |           | _             |               | <br> |   | Dack | יטו וטו | <br> | 101 1115 | <br>,, ,J |             |
|--------------------------|---------------|---------------------------------|----------------------|----------------|-------------|--------------|------------|--------------------------------------|-----------|---------------|---------------|------|---|------|---------|------|----------|-----------|-------------|
| 13/10/93                 |               | Disposal 22<br>Record No.       | 3329,020             | 3146032        |             |              |            |                                      |           |               |               |      |   |      |         |      |          |           | MCA 3 15 91 |
| Samples Shipment Date    |               | Condition on 21<br>Receipt      | Red Twice            | what 1s 11sted | Good 2-3°C. | Se RUR       | Th 12/1/93 |                                      |           |               |               |      | · |      |         |      |          |           |             |
| Sampl                    | PER LINE      | Requested Testing 20<br>Program | 8240 VOC             | 8270 SVOC      | 418,17PH    | 9066 Phenols | 21 L       | Nithode / Nithink 353.3<br>TKN 351.3 | 0002/0109 | Cw perenteral | Cret 7196     |      |   |      |         |      |          |           |             |
| 739                      | VINER         | Pre-19<br>servative             | HC.                  | ).<br>32       | H2504       | )            |            | <del>- )</del>                       | HNOS      | عنا           | 7             |      |   |      |         |      |          |           | _           |
| 406                      | ONE CONTAINER | Sample 18<br>Volume             | (4g)                 | 2,5 L          | 7           | 500ml        | 250ml      | ~                                    | 500 m     | 1 6           | lasm          |      |   |      |         |      |          |           |             |
| Project No. 409833       | ONE           | Container <sup>17</sup><br>Type | Cleor<br>91055       | Amber<br>glass | <b>-</b>    |              |            | ->                                   | Plastic   |               | ->            |      |   |      |         |      |          |           | \           |
|                          |               |                                 |                      |                |             |              |            |                                      |           |               | <b>→</b>      |      |   |      |         |      |          |           |             |
| nher 5001                |               | Sample 15<br>Description/Type   | Water / Fire Taining |                |             |              |            |                                      |           |               | $\rightarrow$ |      |   |      |         |      |          |           |             |
| Project Name Tinker 5001 |               | Sample 14<br>Number             | A1604                |                |             |              |            |                                      |           |               | 7             |      |   |      |         |      |          |           | _           |

Yellow: Field copy

\*See back of form for special instructions

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID  | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|--------------|--------------|------------------|----------------|
| 02B  | 3520MS |                    |              |              | 12/21/93         |                |
|      | 418_1  | B312151-10A        | 1220TPHIR1   | 12/20/93     |                  |                |
| 02C  | 310_1  | B312151-11A        | 1217310 11 1 | 2/17/93      | 12/17/93         | 1.0            |
|      | 9066   | B312151-10A        | 122790661    | 12/27/93     | 01/06/94         | 1.0            |
|      | CL_IC  | B312151-10A        | 1216CL_IC1   | 12/16/93     | 12/16/93         | 5.0            |
|      | COD    | B312151-10A        | 1228COD2     | 12/28/93     | 12/28/93         | 1.0            |
|      | CR_VI  | B312151-10A        | 1211CR_VI2   | 12/11/93     | 12/11/93         | 1.0            |
|      | NO3NO2 | B312151-10A        | 1214NO3NO2   | 12/14/93     | 12/14/93         | 10.0           |
|      | SIO2   | B312151-10A        | 1229SIO21B   | 12/29/93     | 12/29/93         | 10.0           |
|      | SO4_IC | B312151-10A        | 1216SO4_IC   | 12/16/93     | 12/16/93         | 5.0            |
|      | TDS    | B312151-10A        | 1214TDS1     | 12/14/93     | 12/14/93         | 1.0            |
|      | TKN_N  | B312151-10A        | 0105TKN N1   | 01/05/94     | 01/07/94         | 1.0            |
|      | TOC    | B312151-10A        | 1220TOC3B    | 12/20/93     |                  | 1.0            |
|      | TSS    | B312151-10A        | 1214TSS1     | 12/14/93     | 12/14/93         | 1.0            |
|      | T_P    | B312151-10A        | 0105T_P1     | 01/05/94     | 01/07/94         | 1.0            |
| 02D  |        |                    |              |              |                  |                |
|      | AS GF  | B312151-10A        | 121530203    | 12/15/93     | 12/19/93         | 1.0            |
|      | HG AA  | B312151-10A        | 1216HGAA3    | 12/16/93     | • •              | 1.0            |
|      | PB_GF  | B312151-10A        | 121530203    | 12/15/93     |                  | 1.0            |

| FRAC | Tests  | Blank<br>Reference         | Batch<br>ID            | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|----------------------------|------------------------|--------------|------------------|----------------|
| 03в  |        |                            |                        |              |                  |                |
|      | 418_1  | B312151-10A                | 1220TPHIR1             | 12/20/93     | 12/27/93         | 1.0            |
| 03C  | 310_1  | B312151-10A                | 1215310_12 1           | 2/15/93      | 12/15/93         | 1.0            |
|      | 9066   | B312151-10A                | 122790661              | 12/27/93     | 01/06/94         | 1.0            |
|      | CL_IC  | B312151-10A                | 1216CL_IC1             | 12/18/93     | 12/18/93         | 10.0           |
|      | COD    | B312151-10A                | 1228COD2               | 12/28/93     | 12/28/93         | 1.0            |
|      | CR_VI  | B312151-10A                | 1211CR_VI2             | 12/11/93     | 12/11/93         |                |
|      | NO3NO2 | B312151-10A                | 1214NO3NO2             | 12/14/93     | 12/14/93         | 10.0           |
|      | SIO2   | B312151-10A                | 1229SIO21B             | 12/29/93     | 12/29/93         | 10.0           |
|      | SO4_IC | B312151-10A                | 1216SO4_IC             | 12/16/93     | 12/16/93         | 5.0            |
|      | TDS    | B312151-10A                | 1214TDS1               | 12/14/93     | 12/14/93         | 1.0            |
|      | TKN_N  | B312151-10A                | 0105 <b>TKN_N1</b>     | 01/05/94     | 01/07/94         | 1.0            |
|      | TOC    | B312151-10A                | 1220TOC3B              | 12/20/93     | 12/20/93         | 1.0            |
|      | TSS    | B312151-10A                | 1214TSS1               | 12/14/93     | 12/14/93         | 1.0            |
|      | T_P    | B312151-10A                | 0105T_P1               | 01/05/94     | 01/07/94         | 1.0            |
| 03D  |        |                            |                        |              |                  |                |
| 000  | AS GF  | B312151-10A                | 121530203              | 12/15/02     | 12/10/02         | 1.0            |
|      | HG AA  | B312151-10A<br>B312151-10A | 121530203<br>1216HGAA3 | 12/15/93     | • •              | 1.0            |
|      | PB_GF  | B312151-10A<br>B312151-10A |                        | 12/16/93     |                  | 1.0            |
|      | . 5_0. | B312151-10A                | 121530203              | 12/15/93     | 12/19/93         | 1.0            |

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID  | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|--------------|--------------|------------------|----------------|
| 04B  |        |                    |              |              |                  |                |
|      | 418_1  | B312151-10A        | 1220TPHIR1   | 12/20/93     | 12/27/93         | 1.0            |
| 04C  | 310_1  | B312151-10A        | 1215310_12 1 | 2/15/93      | 12/15/93         | 1.0            |
|      | 9066   | B312151-10A        | 122790661    | 12/27/93     | 01/06/94         | 1.0            |
|      | CL_IC  | B312151-10A        | 1216CL_IC1   | 12/18/93     | 12/18/93         | 10.0           |
|      | COD    | B312151-10A        | 1228COD2     | 12/28/93     | 12/28/93         | 1.0            |
|      | CR_VI  | B312151-10A        | 1211CR_VI2   | 12/11/93     | 12/11/93         | 1.0            |
|      | NO3NO2 | B312151-10A        | 1214NO3NO2   | 12/14/93     | 12/14/93         | 10.0           |
|      | SIO2   | B312151-10A        | 1229SIO21B   | 12/29/93     | 12/29/93         | 10.0           |
|      | SO4_IC | B312151-10A        | 1216SO4_IC   | 12/16/93     | 12/16/93         | 10.0           |
|      | TDS    | B312151-10A        | 1214TDS1     | 12/14/93     | 12/14/93         | 1.0            |
|      | TKN_N  | B312151-10A        | 0105TKN_N1   | 01/05/94     | 01/07/94         | 1.0            |
|      | TOC    | B312151-10A        | 1220TOC3B    | 12/20/93     | 12/20/93         | 1.0            |
|      | TSS    | B312151-10A        | 1214TSS1     | 12/14/93     | 12/14/93         | 1.0            |
|      | T_P    | B312151-10A        | 0105T_P1     | 01/05/94     | 01/07/94         | 1.0            |
| 04D  |        |                    |              |              |                  |                |
|      | AS GF  | B312151-10A        | 121530203    | 12/15/93     | 12/19/93         | 1.0            |
|      | HG AA  | B312151-10A        | 1216HGAA3    | 12/16/93     |                  | 1.0            |
|      | PB_GF  | B312151-10A        | 121530203    | 12/15/93     |                  | 1.0            |

### Auxiliary Data Summary 01/11/94

Work order : B312151

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID        | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|--------------------|--------------|------------------|----------------|
| 05B  |        |                    |                    |              |                  |                |
|      | 418_1  | B312151-10A        | 1220TPHIR1         | 12/20/93     | 12/27/93         | 1.0            |
| 05C  | 310_1  | B312151-10A        |                    |              | 12/15/93         | 1.0            |
|      | 9066   | B312151-10A        | 122790661          | 12/27/93     |                  | 1.0            |
|      | CL_IC  | B312151-10A        | 1216CL_IC1         |              |                  | 4.0            |
|      | COD    | B312151-10A        | 1228COD2           | 12/28/93     | • •              |                |
|      | CR_VI  | B312151-10A        | 1211CR_VI2         |              |                  |                |
|      | NO3NO2 | B312151-10A        | 1214NO3NO2         | ,,           | • •              |                |
|      | SIO2   | B312151-10A        | 1229SIO21B         | 12/29/93     | 12/29/93         | 10.0           |
|      | SO4_IC | B312151-10A        | 1216SO4_IC         | 12/16/93     | 12/16/93         | 4.0            |
|      | TDS    | B312151-10A        | 1214TDS1           | 12/14/93     | 12/14/93         | 1.0            |
|      | TKN_N  | B312151-11A        | 0107 <b>TKN_N1</b> | 01/07/94     | 01/10/94         | 1.0            |
|      | TOC    | B312151-10A        | 1220TOC3B          | 12/20/93     | 12/20/93         | 1.0            |
|      | TSS    | B312151-10A        | 1214TSS1           | 12/14/93     | 12/14/93         | 1.0            |
|      | T_P    | B312151-11A        | 0107T_P1           | 01/07/94     | 01/10/94         | 1.0            |
| 05D  |        |                    |                    |              |                  |                |
|      | AS GF  | B312151-10A        | 121530203          | 12/15/93     | 12/19/93         | 1.0            |
|      | HG AA  | B312151-10A        | 1216HGAA3          | 12/16/93     |                  | 1.0            |
|      | PB_GF  | B312151-10A        | 121530203          | 12/15/93     |                  | 1.0            |

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|-------------|--------------|------------------|----------------|
| 06B  |        |                    |             |              |                  |                |
|      | 418_1  | B312151-10A        | 1220TPHIR1  | 12/20/93     | 12/27/93         | 1.0            |
| 06C  | 310_1  | B312151-10A        | 1215310_12  | 12/15/93     | 12/15/93         | 1.0            |
|      | 9066   | B312151-10A        | 122790661   | 12/27/93     | 01/06/94         | 1.0            |
|      | CL_IC  | B312151-10A        | 1216CL_IC1  | 12/18/93     | 12/18/93         | 10.0           |
|      | COD    | B312151-10A        | 1228COD2    | 12/28/93     | 12/28/93         | 1.0            |
|      | CR_VI  | B312151-10A        | 1211CR_VI2  | 12/11/93     | 12/11/93         | 1.0            |
|      | NO3NO2 | B312151-10A        | 1214NO3NO2  | 12/14/93     | 12/14/93         | 10.0           |
|      | SIO2   | B312151-10A        | 1229SIO21B  | 12/29/93     | 12/29/93         | 25.0           |
|      | SO4_IC | B312151-10A        | 1216SO4_IC  | 12/16/93     | 12/16/93         | 5.0            |
|      | TDS    | B312151-10A        | 1214TDS1    | 12/14/93     | 12/14/93         | 1.0            |
|      | TKN_N  | B312151-11A        | 0107TKN_N1  | 01/07/94     | 01/10/94         | 1.0            |
|      | TOC    | B312151-10A        | 1220TOC3B   | 12/20/93     | 12/20/93         | 1.0            |
|      | TSS    | B312151-10A        | 1214TSS1    | 12/14/93     | 12/14/93         | 1.0            |
|      | T_P    | B312151-11A        | 0107T_P1    | 01/07/94     | 01/10/94         | 1.0            |
| 06D  |        |                    |             |              |                  |                |
|      | AS GF  | B312151-10A        | 121530203   | 12/15/93     | 12/19/93         | 1.0            |
|      | HG AA  | B312151-10A        | 1216HGAA3   | 12/16/93     | • •              | 1.0            |
|      | PB_GF  | B312151-10A        | 121530203   | 12/15/93     | 12/19/93         | 1.0            |

### Sample ID : A1604-MS

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID         | Prep Z   | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|---------------------|----------|------------------|----------------|
| 07в  |        |                    |                     |          |                  |                |
|      | 418_1  | B312151-10A        | 1220TPHIR1          | 12/20/93 | 12/27/93         | 1.0            |
| 07C  | 310_1  | B312151-10A        | 1215310_12 1        | 2/15/93  | 12/15/93         | 1.0            |
|      | 9066   | B312151-10A        | 122790661           | 12/27/93 | 01/06/94         | 1.0            |
|      | CL_IC  | B312151-10A        | 1216CL_IC1          | 12/18/93 | 12/18/93         | 10.0           |
|      | COD    | B312151-10A        | 1228COD2            | 12/28/93 | 12/28/93         | 1.0            |
|      | CR_VI  | B312151-10A        | 1211CR_VI2          | 12/11/93 | 12/11/93         | 1.0            |
|      | NO3NO2 | B312151-10A        | 1214NO3NO2          | 12/14/93 | 12/14/93         | 10.0           |
|      | SIO2   | B312151-10A        | 1229SIO21B          | 12/29/93 | 12/29/93         | 25.0           |
|      | SO4_IC | B312151-10A        | 1216SO4_IC          | 12/16/93 | 12/16/93         | 5.0            |
|      | TDS    | B312151-10A        | 1214TDS1            | 12/14/93 | 12/14/93         | 1.0            |
|      | TKN_N  | B312151-11A        | 0107 <b>TKN_N</b> 1 | 01/07/94 | 01/10/94         | 1.0            |
|      | TOC    | B312151-10A        | 1220TOC3B           | 12/20/93 | 12/20/93         | 1.0            |
|      | TSS    | B312151-10A        | 1214TSS1            | 12/14/93 | 12/14/93         | 1.0            |
|      | T_P    | B312151-11A        | 0107T_P1            | 01/07/94 | 01/10/94         | 1.0            |
| 07D  |        |                    |                     |          |                  |                |
|      | AS GF  | B312151-10A        | 121530203           | 12/15/93 | 12/19/93         | 1.0            |
|      | HG AA  | B312151-10A        | 1216HGAA3           | 12/16/93 |                  |                |
|      | PB_GF  | B312151-10A        | 121530203           | 12/15/93 |                  |                |

### Sample ID : A1604-MSD

| FRAC | Tests  | Blank<br>Reference         | Batch<br>ID            | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|----------------------------|------------------------|--------------|------------------|----------------|
| 08B  |        |                            |                        |              |                  |                |
|      | 418_1  | B312151-10A                | 1220TPHIR1             | 12/20/93     | 12/27/93         | 1.0            |
| 08C  | 310_1  | B312151-11A                | 1217310_11 1           | 2/17/93      | 12/17/93         | 1.0            |
|      | 9066   | B312151-10A                | 122790661              | 12/27/93     | 01/06/94         | 1.0            |
|      | CL_IC  | B312151-10A                | 1216CL_IC1             | 12/18/93     | 12/18/93         | 10.0           |
|      | COD    | B312151-10A                | 1228COD2               | 12/28/93     | 12/28/93         | 1.0            |
|      | CR_VI  | B312151-10A                | 1211CR_VI2             | 12/11/93     | 12/11/93         | 1.0            |
|      | NO3NO2 | B312151-10A                | 1214NO3NO2             | 12/14/93     | 12/14/93         | 10.0           |
|      | SIO2   | B312151-10A                | 1229SIO21B             | 12/29/93     | 12/29/93         | 25.0           |
|      | SO4_IC | B312151-10A                | 1216SO4_IC             | 12/16/93     | 12/16/93         | 5.0            |
|      | TDS    | B312151-10A                | 1214TDS1               | 12/14/93     | 12/14/93         | 10.0           |
|      | TKN_N  | B312151-11A                | 0107TKN_N1             | 01/07/94     | 01/10/94         | 1.0            |
|      | TOC    | B312151-10A                | 1220TOC3B              | 12/20/93     | 12/20/93         | 1.0            |
|      | TSS    | B312151-10A                | 1214TSS1               | 12/14/93     | 12/14/93         | 1.0            |
|      | T_P    | B312151-11A                | 0107T_P1               | 01/07/94     | 01/10/94         | 1.0            |
| 08D  |        |                            |                        |              |                  |                |
| JOD  | AS GF  | B312151-10A                | 121530203              | 12/15/02     | 12/19/93         | 1.0            |
|      |        | B312151-10A<br>B312151-10A | 121530203<br>1216HGAA3 | 12/15/93     |                  |                |
|      | HG_AA  | B312151-10A<br>B312151-10A | 1215HGAA3<br>121530203 | 12/16/93     |                  | 1.0<br>1.0     |
|      | PB_GF  | B312131-1UA                | 121530203              | 12/15/93     | 12/19/93         | 1.0            |

| FRAC | Tests  | Blank<br>Reference         | Batch<br>ID            | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|----------------------------|------------------------|--------------|------------------|----------------|
|      |        |                            |                        |              |                  |                |
| 09B  |        |                            |                        |              |                  |                |
|      | 418_1  | B312151-10A                | 1220TPHIR1             | 12/20/93     | 12/27/93         | 1.0            |
| 09C  | 310_1  | B312151-10A                | 1215310 12 1           | 2/15/93      | 12/15/93         | 1.0            |
|      | 9066   | B312151-10A                | 122790661              | 12/27/93     |                  | 1.0            |
|      | CL_IC  | B312151-10A                | 1216CL_IC1             | 12/16/93     | 12/16/93         | 1.0            |
|      | COD    | B312151-10A                | 1228COD2               | 12/28/93     | 12/28/93         | 1.0            |
|      | CR_VI  | B312151-10A                | 1211CR_VI2             | 12/11/93     | 12/11/93         | 1.0            |
|      | NO3NO2 | B312151-10A                | 1214NO3NO2             | 12/14/93     | 12/14/93         | 1.0            |
|      | SIO2   | B312151-10A                | 1229SIO21B             | 12/29/93     | 12/29/93         | 1.0            |
|      | SO4_IC | B312151-10A                | 1216SO4_IC             | 12/16/93     | 12/16/93         | 1.0            |
|      | TDS    | B312151-10A                | 1214TDS1               | 12/14/93     | 12/14/93         | 1.0            |
|      | TKN_N  | B312151-11A                | 0107TKN_N1             | 01/07/94     | 01/10/94         | 1.0            |
|      | TOC    | B312151-10A                | 1220TOC3B              | 12/20/93     | 12/20/93         | 1.0            |
|      | TSS    | B312151-10A                | 1214TSS1               | 12/14/93     | 12/14/93         | 1.0            |
|      | T_P    | B312151-11A                | 0107T_P1               | 01/07/94     | 01/10/94         | 1.0            |
| 09D  |        |                            |                        |              |                  |                |
| 335  | AS GF  | B312151-10A                | 121530203              | 12/15/93     | 12/19/93         | 1.0            |
|      | HG AA  | B312151-10A<br>B312151-10A | 121530203<br>1216HGAA3 | 12/15/93     |                  | 1.0            |
|      | PB GF  | B312151-10A<br>B312151-10A | 12151GAA3<br>121530203 | 12/15/93     |                  | 1.0            |
|      | - 2_01 | B312131-10R                | 121330203              | 12/15/93     | 14/19/93         | 1.0            |

Sample ID : LAB BLANK #1

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|-------------|--------------|------------------|----------------|
| 10A  | 310_1  | B312151-10A        | 1215310_12  | 12/15/93     | 12/15/93         | 1.0            |
|      | 418_1  | B312151-10A        | 1220TPHIR   | 1 12/20/93   | 12/27/93         | 1.0            |
|      | 9066   | B312151-10A        | 122790661   | 12/27/93     | 01/06/94         | 1.0            |
|      | AS_GF  | B312151-10A        | 121530203   | 12/15/93     | 12/19/93         | 1.0            |
|      | CL_IC  | B312151-10A        | 1216CL IC:  | 1 12/16/93   | •                | 1.0            |
|      | COD    | B312151-10A        | 1228COD2    | 12/28/93     | •                | 1.0            |
|      | CR_VI  | B312151-10A        | 1211CR VI   |              |                  | 1.0            |
|      | HG_AA  | B312151-10A        | 1216HGAA3   | • •          | • •              | 1.0            |
|      | NO3NO2 | B312151-10A        | 1214N03N02  | , ,          |                  | 1.0            |
|      | PB_GF  | B312151-10A        | 121530203   |              |                  | 1.0            |
|      | SIO2   | B312151-10A        | 122951021   |              | •                | 1.0            |
|      | SO4_IC | B312151-10A        | 1216SO4 I   | • •          |                  | 1.0            |
|      | TDS    | B312151-10A        | 1214TDS1    | 12/14/93     |                  | 1.0            |
|      | TKN_N  | B312151-10A        | 0105TKN N1  | • •          |                  | 1.0            |
|      | TOC    | B312151-10A        | 1220TOC3B   | 12/20/93     | •                | 1.0            |
|      | TSS    | B312151-10A        | 1214TSS1    | 12/14/93     |                  | 1.0            |
|      | T_P    | B312151-10A        | 0105T_P1    | 01/05/94     |                  | 1.0            |

Sample ID : LAB BLANK #2

| FRAC | Tests                 | Blank<br>Reference                        | Batch<br>ID                            | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor    |
|------|-----------------------|-------------------------------------------|----------------------------------------|--------------|------------------|-------------------|
|      | 310_1<br>rkn_n<br>r_p | B312151-11A<br>B312151-11A<br>B312151-11A | 1217310_11 1<br>0107TKN_N1<br>0107T_P1 |              | 01/10/94         | 1.0<br>1.0<br>1.0 |

TINKER\_5001

| WORK ORDE              | r # 63                                | <u> 31215</u>     | 1             |                |   |
|------------------------|---------------------------------------|-------------------|---------------|----------------|---|
|                        | R SAMPLES                             | 11 -              |               |                |   |
| # OF SOIL              | SAMPLES                               |                   |               |                |   |
| 8240                   | . 11                                  |                   | S102          |                | / |
| 8270<br>IR             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | <b>-</b> .        | TDS TKN_N TOC | - / /<br>- / v |   |
| CRIV<br>HG             | <b>//</b>                             | <del>-</del><br>- | TSS<br>T_P    | Ju V           | / |
| PB SO4_IC              |                                       |                   |               |                |   |
| 310_1<br>9066<br>CL_IC |                                       |                   |               |                |   |
| COD NO3NO2             | 11                                    |                   |               |                |   |

2-6 +9

### APPENDIX A

### **DEFINITIONS**

| ND(U) | - | Analyte was analyzed for, but not detected. The value given after the ND or "U" is the detection limit for that compound.                                    |
|-------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A     | - | The compound denoted with an "A" indicates a suspected aldol condensation product.                                                                           |
| В     | - | Indicates the compound was also detected in the blank, but at levels less than 5X the detection limit. Values for this compound may be suspect.              |
| J     | - | Indicates the compound was detected in the sample, but at levels less than the detection limit, but above the MDL. Results should be requarded as estimated. |
| כ     | - | Indicates that the compound was identified in an analysis at a secondary dilution factor.                                                                    |
| N     | • | Indicates presumptive evidence of a compound. This flag is used for tentatively identified compounds.                                                        |

| MS - Matrix Spike                 | UG/L - Micrograms/Liter     |
|-----------------------------------|-----------------------------|
| MSD - Matrix Spike Duplicate      | UG/KG - Micrograms/Kilogram |
| RPD - Relative Percent Difference | MG/KG - Milligrams/Kilogram |
|                                   | MG/L - Milligrams/Liter     |
| DL - Detection limit              | %REC - Percent Recovery     |

### OC Acceptance Limits

| Method 8240                                                                         | Water                                                 | Soil                       | Method 8270                                                                                                                                                                                            | Water                                                                                                                         | Soil                                                          |
|-------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Surrogate % Recover:<br>BFB<br>Dichloroethane<br>Toluene-d8                         | 86-115<br>76-114<br>88-110                            | 74-121<br>70-120<br>31-117 | Surrogate & Recoveries Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol                                                                                    | 35 - 114<br>43 - 116<br>33 - 141<br>10 - 94<br>21 - 100<br>10 - 123                                                           | 18 - 13 $24 - 11$                                             |
| Matrix Spike Limits 1,1-Dichloroethene Trichloroethene Benzne Toluene Chlorobenzene | (%)<br>61-145<br>71-120<br>76-127<br>76-125<br>75-130 |                            | Matrix Spike Limits(%) Phenoi Chlorophenoi 1,4-Dichlorobenzene N-Nitroso-di-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenoi Acenaphthene 4-Nitrophenoi 2,4-Dinitrotoluene Pentachlorophenoi | 14 - 99<br>19 - 107<br>18 - 101<br>32 - 108<br>24 - 109<br>31 - 111<br>33 - 110<br>1 - 141<br>35 - 106<br>1 - 147<br>42 - 119 | 17 - 10<br>30 - 11<br>21 - 11<br>34 - 10<br>30 - 11<br>d - 13 |

### METALS CONTROL LIMITS

ICP: ± 20% for MS/MSD & Duplicate

GF: Control Charts for MS/MSD; ± 20% for Dup

### ICV/CCV

GF ICV ± 20% GF CCV ± 20% ICP ICV/CCV ± 10% HG AA ± 20%

# CONTROL LIMITS GRAPHITE FURNACE/MERCURY

| ANALYTE | MATRIX | LIMITS    | COMMENTS                 |
|---------|--------|-----------|--------------------------|
| Нд      | water  | 21 - 170  | Control Charts (B inst.) |
| Hg      | soil   | 44 - 150  | Control Charts (B)       |
| As      | water  | 59 - 150  | D                        |
| As      | soil   | 75 - 125  | D                        |
| As      | water  | 52 - 140  | С                        |
| As      | soil   | 35 - 142  | С                        |
| Pb      | water  | 48 - 153  | D                        |
| Pb      | soil   | 75 - 125  | D                        |
| Pb      | water  | 33 - 163  | C                        |
| Pb      | soil   | 75 - 125  | С                        |
| Se      | water  | 37 - 136  | D                        |
| Se      | soil   | 27 - 118  | D                        |
| Se      | water  | 20 - 147  | С                        |
| Se      | soil   | 2.6 - 139 | С                        |

| PREPR                            | EP METHOD:                                             |                                                                                     |            |                |
|----------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------|------------|----------------|
|                                  | EP METHOD:                                             |                                                                                     |            |                |
| ANALYS                           | IS METHOD: C                                           | 2-16                                                                                |            |                |
|                                  | BATCH DATE.                                            | 12/14/93                                                                            |            |                |
| !NS                              | TRUMENT ID:                                            | A                                                                                   |            |                |
| SE                               | T (BATCH) #:                                           | i i                                                                                 |            |                |
|                                  |                                                        |                                                                                     |            |                |
| Work Orders/Fraction             | s Associated With                                      | Batch                                                                               |            |                |
| Lab Samble 10's                  | Batch QC ID's                                          |                                                                                     |            |                |
| 1 B312147-GC                     | LCS ID: 1269                                           | 3~1                                                                                 |            |                |
| 2 -20C                           | LCSD ID: (2169                                         |                                                                                     |            |                |
| 3 B312078-01E                    | MB ID: 12169                                           |                                                                                     |            |                |
| 4 B312151-02C                    | 140 15                                                 | 2151-076                                                                            |            |                |
| 5 -03C                           | 1/00 10 -                                              | 151-08C                                                                             |            |                |
| 6 -040                           |                                                        | =1-06C                                                                              |            |                |
| 7 -05C                           |                                                        | 000                                                                                 |            |                |
| 8 -06C                           | Batch QC Results                                       | }                                                                                   | MDL:       | PQL: my        |
| 9 -090                           |                                                        |                                                                                     |            |                |
| 10                               | Sample ID                                              | Result : Units                                                                      | Analyst  [ | Date/Time      |
| 11                               | Method Blk                                             | ND molL                                                                             |            | 12/16/93 10:25 |
|                                  |                                                        |                                                                                     |            |                |
| 12                               | LCS % Rec                                              |                                                                                     |            | 10.00          |
| 12                               | 1 000 00 0                                             | 100 1% Rec                                                                          |            |                |
|                                  | LCSD % Rec                                             | 100  % Rec<br>99.4  % Rec                                                           |            |                |
| 13                               | LCSD % Rec<br>LCS/LCSD RPD:                            | 100  % Rec<br>99.4  % Rec<br>0-60 % RPD                                             |            |                |
| 13                               | LCSD % Rec<br>LCS/LCSD RPD:<br>MS % Rec                | 100  % Rec<br>99.4  % Rec<br>0.60 % RPD<br>98.5 % Rec                               |            |                |
| 13<br>14<br>15                   | LCSD % Rec<br>LCS/LCSD RPD:<br>MS % Rec                | 100  % Rec<br>99.4  % Rec<br>0.60 % RPD<br>98.5 % Rec<br>97.0  % Rec                |            |                |
| 13<br>14<br>15                   | LCSD % Rec<br>LCS/LCSD RPD:<br>MS % Rec<br>MSD % Rec   | 100  % Rec<br>99.4  % Rec<br>0.60 % RPD<br>98.5 % Rec<br>97.0  % Rec<br>1.53  % RPD |            |                |
| 13<br>15<br>16<br>17             | LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | 100  % Rec<br>99.4  % Rec<br>0.60 % RPD<br>98.5 % Rec<br>97.0  % Rec<br>1.53  % RPD |            |                |
| 13<br>: 4<br>15<br>16<br>17      | LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | 100  % Rec<br>99.4  % Rec<br>0.60 % RPD<br>98.5 % Rec<br>97.0  % Rec<br>1.53  % RPD |            |                |
| 13<br>14<br>15<br>16<br>17<br>18 | LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | 100  % Rec<br>99.4  % Rec<br>0.60 % RPD<br>98.5 % Rec<br>97.0  % Rec<br>1.53  % RPD |            |                |
| 13<br>14<br>15<br>16<br>17<br>18 | LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | 100  % Rec<br>99.4  % Rec<br>0.60 % RPD<br>98.5 % Rec<br>97.0  % Rec<br>1.53  % RPD |            |                |
| 13<br>15<br>16<br>17<br>18<br>19 | LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | 100  % Rec<br>99.4  % Rec<br>0.60 % RPD<br>98.5 % Rec<br>97.0  % Rec<br>1.53  % RPD |            |                |
| 13<br>15<br>16<br>17<br>18<br>19 | LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | 100  % Rec<br>99.4  % Rec<br>0.60 % RPD<br>98.5 % Rec<br>97.0  % Rec<br>1.53  % RPD |            |                |
| 13<br>15<br>16<br>17<br>18<br>19 | LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | 100  % Rec<br>99.4  % Rec<br>0.60 % RPD<br>98.5 % Rec<br>97.0  % Rec<br>1.53  % RPD |            |                |
| 13<br>15<br>16<br>17<br>18<br>19 | LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | 100  % Rec<br>99.4  % Rec<br>0.60 % RPD<br>98.5 % Rec<br>97.0  % Rec<br>1.53  % RPD |            |                |

QC BATCH ID FOR WET CHEM - Test Code. COL

| QC BATCH ID FOR  | WET CHEM - Test Code: <u>SOY-F</u> C |
|------------------|--------------------------------------|
| PREPREP METHOD:  |                                      |
| PREP METHOD:     |                                      |
| ANALYSIS METHOD: | 300.0                                |
| BATCH DATE:      | 12-16-93                             |
| INSTRUMENT ID:   | A                                    |
| SET (BATCH) #:   | 1                                    |

# Work Orders/Fractions Associated With Batch

| Lab | Sample ID's                 | Batch QC ID's  |         | -              |            |           |             |
|-----|-----------------------------|----------------|---------|----------------|------------|-----------|-------------|
| 2   | B311261 -010<br>B311074-010 | LCS ID: LCS    | 0 12/69 | 7-1            |            |           |             |
| 3   | 020                         | MB ID: PB      |         |                |            |           |             |
| 4   | B3120 B312147_0             | 9C MS ID: 83/2 |         | <del>, -</del> |            |           |             |
| 5   | 200                         | MSD ID: 13/2   |         |                |            |           |             |
| 6   | B312078-01E                 | REP ID: 83/2   | 151-060 | £'             |            |           |             |
| 7   | B312137.06A                 |                |         |                | MDI.       | DOI .     | 10          |
| 8_  | B312151 -02C                | Batch QC Resul | ts      |                | MDL:       | PQL:      |             |
| 9   | 030                         | <u> </u>       | ·<br>   | <u></u>        | 14 - 1 - 4 | D-4- (7:  | <del></del> |
| 10  | 046                         | Sample ID      | Result  | Units          |            | Date/Time |             |
| 11  | 050                         | Method Blk     | NO      | mg/L           | BBG        | 12-16-53  | 10:25       |
| 12  | 060                         | LCS % Rec      | 100     | % Rec          |            | 1         |             |
| 13  | 076                         | LCSD % Rec     | 102     | % Rec          |            |           |             |
| 14  | 086                         | LCS/LCSD RPD   | 2       | % RPD          |            |           |             |
| 15  | 09 C                        | MS % Rec       | 86      | % Rec          |            |           |             |
| 16  | <u> </u>                    | MSD % Rec      | 79      | % Rec          |            |           |             |
| 17  |                             | MS/MSD RPD     | 8.5     | % RPD          |            |           |             |
| 18  |                             | REP RPD        | 0.5     | % RPD          | F          |           |             |
| 19  |                             |                |         |                |            |           |             |
| 20  |                             |                |         |                |            |           |             |
|     | nments:                     |                |         |                |            |           |             |
|     |                             |                |         | <del></del>    |            |           |             |
|     |                             |                |         |                |            |           |             |
|     |                             |                |         |                |            |           |             |

| 11                | AS_Austin                         | Volatiles    | QA Sp                      | ike Lot Summa                                                                   | ry L011:                                                               |                     |
|-------------------|-----------------------------------|--------------|----------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------|
|                   | te/Time:_!                        |              |                            | Intrument                                                                       | : GC/MS A1                                                             |                     |
|                   | erator: <u>n</u>                  |              |                            | Test/Hatr                                                                       | 1x: 8240 / Wa                                                          | ter                 |
|                   |                                   | TX 502.2     |                            | Operator:                                                                       | MBP                                                                    |                     |
|                   | ype<br>Sample<br>MS<br>MSD<br>LCS | - C          | ) 6<br>) 7<br>  8<br>  3 s | lab file 10<br>  > A   5   6<br>  > A   5   7<br>  > A   5   8<br>  > A   7   8 | J. J.                                                                  |                     |
| •                 | Client Sample                     |              |                            | Sample                                                                          | Lab File<br>  ID                                                       |                     |
| 01                | Dime                              | <u> </u>     | B31                        | 2151-01                                                                         |                                                                        |                     |
| 02                |                                   |              | 1                          | -02<br>-03                                                                      |                                                                        | <b>=</b>            |
| 84                |                                   |              | <del> </del>               | -04<br>-05                                                                      |                                                                        | 二                   |
| 26                |                                   |              | 1                          | -06<br>-09                                                                      |                                                                        |                     |
| 80                |                                   |              | 1                          | , = 09                                                                          |                                                                        | <b>—</b>            |
| 99                |                                   |              | <del> </del>               |                                                                                 |                                                                        | 二                   |
| III               |                                   |              | 1                          |                                                                                 |                                                                        |                     |
| 13                |                                   |              |                            |                                                                                 |                                                                        |                     |
| P                 |                                   |              | }                          |                                                                                 |                                                                        | $\rightrightarrows$ |
| 首                 |                                   |              | 1                          |                                                                                 |                                                                        |                     |
| 16<br>7<br>8<br>9 |                                   |              | <del> </del>               |                                                                                 |                                                                        | 二                   |
| I                 |                                   |              |                            |                                                                                 |                                                                        | 士                   |
| -<br>- X1         | <del> </del>                      |              | <b></b>                    |                                                                                 |                                                                        | ·                   |
| Con               | ments:                            |              |                            |                                                                                 |                                                                        |                     |
| • •               | Field us                          | ed only if n | ecessi                     | Prep<br>Test (                                                                  | QC Batch ID . Code/Date:/_ Code/Date: <u>8240_/12/17</u> : IInst. ID:A | <u>.</u> 193        |
|                   |                                   | •            |                            | 231                                                                             |                                                                        |                     |

,

### WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY AND BLANK SPIKE RECOVERY

iab Mame: ITAS - Austin Date Ran: 12/17/93

QC BATCH ID

Sample Names:

Prep Code/Date:

Test Code/Date: 8240 | 12/17/93

CLIENT ID:

Matrix Spike - SAM Sample No. B312151/06 Matrix: WATER Set #:

Inst.ID: A1

( 5.000 NL TO 5 NL)

1.0 X DIL

| 1                   | SPIKE      | SAMPLE   | MS         | HS    | QC       |          |
|---------------------|------------|----------|------------|-------|----------|----------|
| COMPOUND            | ADDED      | CONC     | CONC       | 1     | LIMITS   |          |
| NAME                | (ug/L)     | (ug/L)   | (ug/L)     | REC # | REC.     | -        |
|                     | :== ====== | : ====== | ********** |       | =======  | =        |
| 1.1-Dichloroethene_ | 58.88      | .00      | 49.81      | 100   | 61 - 149 | ,        |
| Trichloroethene     | 58.88      | 99.48    | 141.88     | 85    | 71 - 126 |          |
| Benzene             | 50.00      | .66      | 48.42      | 97    | 76 - 127 | <b>'</b> |
| Toluene             | 50.00      | .00      | 46.42      | 93    | 76 - 125 | ,        |
| Chlorobenzene       | 56.88      | .00      | 47.36      | 95    | 75 - 130 |          |
|                     | i          | İİ       |            |       |          | _        |

| BLANK  | BS        | 85    | QC       |
|--------|-----------|-------|----------|
| CONC   | CONC      | 1     | LIMITS   |
| (ug/L) | (ug/L)    | REC # | REC.     |
| ====== | = ======= | ===== | ======== |
|        | 58.25     | 101   | 61 - 145 |
| •      | 46.02     | 92    | 71 - 120 |
|        | 47.69     | 95    | 76 - 127 |
|        | 46.01     | 92    | 76 - 125 |
| •      | 46.33     | 93    | 75 - 130 |
|        | 1         | l     |          |

|            |            | MSD                                                                                                         | 1                     | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|------------|-------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADDED      | CONC.      | 1                                                                                                           | 1                     | QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LIMITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (ug/L)     | (vg/L)     | REC #                                                                                                       | RPD #                 | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | REC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| = ======== | .   ====== |                                                                                                             |                       | ======                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =======================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 50.00      | 50.19      | 100                                                                                                         | 1                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61 - 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 58.88      | 141.79     | 85                                                                                                          |                       | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 50.00      | 48.99      | 98                                                                                                          | 1 1                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76 - 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 58.88      | 46.76      | 94                                                                                                          | 1 1                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 50.00      | 47.64      | 95                                                                                                          | 1 1                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75 - 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | (ug/L)<br> | (ug/L)   (ug/L)  <br>   <br>  50.00   50.19  <br>  50.00   141.79  <br>  50.00   48.99  <br>  50.00   46.76 | (ug/L)   (ug/L)   REC | (ug/L)   (ug/L)   REC   RPD   REC   (ug/L)   (ug/L)   REC   RPD   
# Column to be used to flag recovery and RPD values with an asterisk.

\* Values outside of QC limits.

• out of 5 outside limits.

Spike Recovery: 0 out of 10 outside limits.

SURROGATE RECOVERIES

| Toluene - d8            | 96 | 96 | 95 | 88 -  | 116 |
|-------------------------|----|----|----|-------|-----|
| Bromofluorobenzene      | 98 | 96 | 97 | 86 -  | 115 |
| 1.2-Dichloroethane - d4 | 99 | 99 | 98 | 178 - | 114 |
|                         |    |    | _  |       |     |

outside limits.

00:32 00:58 20:58

)A1517 )A1518 )ABS17 LIMITS > A BB17 ⇒ all reg

FORM III VOA-2

| QC BATCH ID FOR  | R GFAA/CVAA - Tes | t Code: AS_GF |
|------------------|-------------------|---------------|
| PREPREP METHOD:  |                   |               |
| PREP METHOD:     | Z3020             |               |
| ANALYSIS METHOD: | 7060              |               |
| BATCH DATE:      | 12/15/93          |               |
| INSTRUMENT ID:   | D                 |               |
| SET (BATCH) #:   | 3                 |               |

# Work Orders/Fractions Associated With Batch

# Lab Sample ID's

### 1 B312151-020 CHD <u>050</u> <u>080</u>

<u>09</u>D 

## Batch QC ID's

| LCS ID: LCG 20 (21593.2      |
|------------------------------|
| LCSD ID: 62.593 20 121593 -2 |
| MB ID: 0320 121593-2         |
| MS ID: 33,2151 - 670         |
| MSD ID: 8312151 - 080        |
| REP ID: 8312151-060          |
|                              |

Batch QC Results

MDL: 0.010 PQL: 0.010

| Sample ID    | Result | Units | Analyst | Date/Time      |
|--------------|--------|-------|---------|----------------|
| Method Blk   | 20.010 | MG/L  | KMB     | 12/19/93 12:15 |
| LCS % Rec    | 96.3   | % Rec |         |                |
| LCSD % Rec   | 91.5   | % Rec |         |                |
| LCS/LCSD RPD | 5,11   | % RPD |         |                |
| MS % Rec     | 92.5   | % Rec |         |                |
| MSD % Rec    | 92.5   | % Rec |         |                |
| MS/MSD RPD   | 0.0    | % RPD |         |                |
| REP RPD      | 0.0    | % RPD | 1       | 1              |

| Comments: | Analytical Spike = 117 % |  |
|-----------|--------------------------|--|
|           |                          |  |
|           |                          |  |
|           |                          |  |
|           |                          |  |

| QC BATCH ID FOR  | R GFAA/CVAA - Test Code: PR_GF |
|------------------|--------------------------------|
| PREPREP METHOD:  |                                |
| PREP METHOD:     | 73020                          |
| ANALYSIS METHOD: | 7421                           |
| BATCH DATE:      | 12/15/93                       |
| INSTRUMENT ID:   | C                              |
| SET (BATCH) #:   | 3                              |

# Work Orders/Fractions Associated With Batch

| Lab S | Sample I          | D's         |
|-------|-------------------|-------------|
|       |                   |             |
| 1 3   | 312151            | -020        |
| _2    |                   | 030         |
| _3    |                   | 040         |
| 4     |                   | 050         |
| 5     |                   | C60         |
| 6     |                   | 970         |
| 7     |                   | 0 <u>80</u> |
| 8     | <u> </u>          | <u> 90</u>  |
| 9     |                   | 7_          |
| 10    |                   |             |
| 11    | 7                 |             |
| 12    |                   |             |
| 13    | 1/1/10            | 5           |
| 1.4   | $\sim 1/\sqrt{2}$ |             |

# Batch QC ID's

| LCS ID: LC 20 121593.2      |
|-----------------------------|
| LCSD ID: (2,5020 12,593 - 2 |
| MB ID: 13 % 20 (21593-2     |
| MS ID: 33,2151 - 670        |
| MSD ID: 0302 151 - 080      |
| REP ID: 1312 151- 060       |
|                             |

# Batch QC Results

| Sample ID    | Result  | Units | Analyst | Date/Time     |
|--------------|---------|-------|---------|---------------|
| Method Blk   | 20.0030 | MGIL  | KMB     | 12/19/93/1:51 |
| LCS % Rec    | 104     | % Rec | }       |               |
| LCSD % Rec   | 105     | % Rec |         |               |
| LCS/LCSD RPD | 0:457   | % RPD |         |               |
| MS % Rec     | 101     | % Rec |         |               |
| MSD % Rec    | 98.0    | % Rec |         |               |
| MS/MSD RPD   | 3.02    | % RPD |         |               |
| REP RPD      | 0.0     | % RPD | V       | 1             |

MDL: 0.0030 PQL: 0.0030

| Comments: | Analytical | Spike | = | 112 % |      |
|-----------|------------|-------|---|-------|------|
|           | <u> </u>   |       |   |       |      |
|           |            |       |   |       | <br> |
|           |            |       |   |       |      |

Hg-HA 12/16/93 MhA

| QC BATCH ID FOR  | GFAA/CVAA - Test Code: |
|------------------|------------------------|
| PREPREP METHOD:  | 1311                   |
| PREP METHOD:     |                        |
| ANALYSIS METHOD: | 7470                   |
| BATCH DATE:      | 12/16/43               |
| INSTRUMENT ID:   | <i>'</i> A'            |
| SET (BATCH) #:   | 1(3)                   |

# Work Orders/Fractions Associated With Batch

| Lab Sample ID's                                              | Batch QC ID's                                                      |        | _                |                                                  |                |
|--------------------------------------------------------------|--------------------------------------------------------------------|--------|------------------|--------------------------------------------------|----------------|
| 1 B312151 - 027<br>2 03D<br>3 04D<br>4 05D<br>5 06D<br>6 075 | LCS ID: JCV LCSD ID: CCV-1 MB ID: JCB MS ID: JS312 MSD ID: REP ID: |        | -<br>-<br>-<br>- |                                                  |                |
| 8 09)                                                        | Batch QC Resul                                                     | lts    |                  | MDL: 0                                           | .020 PQL: 0.03 |
| 10                                                           | Sample ID                                                          | Result | Units            | Analyst                                          | Date/Time      |
| 11                                                           | Method Blk                                                         | O,O    | my/L             | M44                                              |                |
| 12                                                           | LCS % Rec                                                          | 96.5   | % Rec            | NIST                                             | 12/16/43 22:00 |
| 13                                                           | LCSD % Rec                                                         | 102    | % Rec            | <del>                                     </del> |                |
| 14 MhA / 62                                                  | LCS/LCSD RPD                                                       |        | % RPD            | † <i>†</i> †                                     |                |
| 15 12/10/12                                                  | MS % Rec                                                           | 111    | % Rec            | 1 /                                              |                |
| 16                                                           | MSD % Rec                                                          | 112    | % Rec            | 1                                                |                |
| 17                                                           | MS/MSD RPD                                                         | 0.90   | % RPD            |                                                  |                |
| 18                                                           | REP RPD                                                            | 0      | % RPD            | V                                                | 3/             |
| 19 / 20 /                                                    |                                                                    |        |                  |                                                  |                |
| Comments:                                                    |                                                                    |        |                  |                                                  |                |
|                                                              |                                                                    |        |                  |                                                  |                |
|                                                              |                                                                    |        |                  |                                                  |                |
|                                                              |                                                                    |        |                  |                                                  |                |

| Tes | t | ode/Date: | 8270     | 12-5-97 |
|-----|---|-----------|----------|---------|
| Set |   | _         | nst. IDi |         |

| Туре                                | Lab Sample ID   Lab File ID   (Y or N) |
|-------------------------------------|----------------------------------------|
| Blank<br>Sample<br>HS<br>HSD<br>ICS | B312151-7B 6m5<br>-8B 6m5D             |

This QA Spike Lot applies to the following Samples:

| Client                                                                                                                 | Lab Sample<br>  ID | Lab File<br>  ID |
|------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|
| 1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   10   10   10   10   10   10   10 | B312151 · 2B       | 12-15 Set1       |

| Comments: |  |
|-----------|--|
|           |  |

#### WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY AND BLANK SPIKE RECOVERY

Lab Name: ITAS - Austin

CLIENT ID:

QC BATCH ID

Sample Names:

D#517 00518 Prep Code/Date:

3520 12/15/93

Date Ran:

12/23/93 12/23/93

Test Code/Date:

68 1

2 | 46 |

8 | 55 |

1 | 43 |

2 | 18 |

4 | 37

2 | 45

6 | 71

13 | 143

8270 | 12/15/93

Time Ran:

Set #: 1

Inst.ID:0

1 - 147 | |

32 - 108 |

24 - 109 |

31 - 111 |

33 - 110

1 - 141 |

35 - 106 |

1 - 147 |

42 - 119 |

Natrix Spike - SAN Sample No.

| PENTACHLOROPHENOL

1.48 2.16

B312151/06 Matrix: WATER

( 1000 ML

TO 1 ML ) 1.6 X OIL

| COMPOUND<br>NAME                                        | SPIKE<br>  ADDED<br> (ug/L)  | SAMPLE<br>  COMC<br> (ug/L) | NS<br>  CONC<br>  (ug/L) | MS<br>  %<br>  REC #   | QC<br>LIMITS<br>REC.                | BLANK<br>CONC<br>(ug/L) | BS<br>  CONC<br> (ug/L) | BS<br>  *<br>  REC # | QC<br>LIMITS<br>REC.                |
|---------------------------------------------------------|------------------------------|-----------------------------|--------------------------|------------------------|-------------------------------------|-------------------------|-------------------------|----------------------|-------------------------------------|
| PHENOL                                                  | 100.00                       | .11                         | 83.42<br>90.12           | 83<br>90               | 14 - 99  <br>19 - 147               | •                       | .11                     | t                    | 14 - 99                             |
| 1,4-DICHLOROBENZENE<br>  N-NITROSODI-N-PROPYLANINE      | 50.00<br>  50.00             | .00                         | 35.45<br>41.66           | 71<br>  83             | 18 - 101  <br>32 - 108              |                         | .00<br>  .00            | 1 1                  |                                     |
| 1,2,4-TRICHLOROBENZENE                                  | 50.00<br>  100.00            | .01                         | 36.74<br>88.48           | 73<br>  88             | 24 - 109  <br>31 - 111              |                         | .01                     |                      | 24 - 109  <br>31 - 111              |
| ACEMAPHTHENE<br>  4-MITROPHENOL<br>  2.4-DIMITROTOLUENE | 50.00<br>  100.00<br>  50.00 | .01<br>  .00<br>  .00       | 43.19<br>73.17<br>34.27  | 86  <br>  73  <br>  69 | 33 - 110  <br>1 - 141  <br>35 - 106 |                         | 10.<br>  00.<br>  10.   |                      | 33 - 110  <br>1 - 141  <br>35 - 186 |

| PYRENE                                                  | 51.00                     | .11                     | 45.06          |                  | 98             | 42 - 119                        | 1 .11                           |
|---------------------------------------------------------|---------------------------|-------------------------|----------------|------------------|----------------|---------------------------------|---------------------------------|
| COMPOUND                                                | SPIKE                     | NSD CONC.               | MSD 1          | ;                | QC             | LIMITS                          | CLP<br>LIMITS                   |
| NAME                                                    | [(ug/L)                   | (ug/L)  <br>            | REC #          | RPD #            | RPD            | REC.                            | SPIKE                           |
| PHENOL  <br>  2-CHLOROPHENOL  <br>  1,4-DICHLOROBENZENE | 100.00<br>100.00<br>50.00 | 86.37<br>93.06<br>39.05 | 86<br>93<br>78 | 3<br>  3<br>  10 | 41<br>45<br>46 | 14 - 99<br>19 - 107<br>18 - 101 | 12 - 110<br>27 - 123<br>36 - 97 |

85

8# I

92 |

88

78

69 |

78

92

|   | LINITS   |       |  |
|---|----------|-------|--|
|   | SPIKE    | RPD   |  |
| į |          | ===== |  |
|   | 12 - 110 | 42    |  |
| į | 27 - 123 | 40    |  |
| - | 36 - 97  | 28    |  |
| - | 41 - 116 | 38    |  |
| - | 39 - 98  | 28    |  |
| ĺ | 23 - 97  | 42    |  |
| ĺ | 46 - 118 | 31    |  |
| j | 10 - 80  | 51    |  |
| i | 24 - 96  | 38 j  |  |
| i | 9 - 103  | 50    |  |
| i | 26 - 127 | 51    |  |
| ì |          |       |  |

• 1

1 4 1 - 147 |

4 \* | 42 - 119 |

. 44

. 11

| ŧ | Co. | lumn | to | þe | used | to | flag | recovery | and | RPD | values | with | an | asterisk. |
|---|-----|------|----|----|------|----|------|----------|-----|-----|--------|------|----|-----------|
|---|-----|------|----|----|------|----|------|----------|-----|-----|--------|------|----|-----------|

1 100.00 |

.00 | 68.34

ACENAPHTHENE\_\_\_\_

PENTACHLOROPHENOL\_\_\_\_

14-WITROPHEMOL

|N-NITROSODI-N-PROPYLANINE\_| 50.00 | 42.47 |

1,2,4-TRICHLOROBENZENE\_\_\_| 50.00 | 39.96 |

| 4-CHLORD-3-METHYLPHENOL\_\_\_| 100.00 | 92.37 |

|2,4-DINITROTOLUENE\_\_\_\_| 50.00 | 34.44 |

RPD: 0 out of 11 outside limits.

1 108.00 | 77.99 |

1 100.00 | 78.08 |

50.00 | 45.92 |

44.00

Spike Recovery: 0 out of 22 outside limits.

50.00

| Spike Recovery:      | 22 | outside li |       | in 1951 94 |     |       |       |    |       |            |
|----------------------|----|------------|-------|------------|-----|-------|-------|----|-------|------------|
| SURROGATE RECOVERIES |    |            | ON517 | 00518      |     |       | D0902 | 41 | LINII | r <b>s</b> |
| DS-NITROBENZENE      |    |            | 91    | 9          | 7   | 1 1   | 107   | 1  | 35 -  | 114        |
| 2-FLUOROBIPHENYL     |    |            | 73    | 70         | 6   |       | 14    | İ  | 43 -  | 116        |
| D14-P-TERPHENYL      |    |            | 84    | 8:         | 3 j |       | 1/4   | Ì  | 33 -  | 141        |
| DS-PHENOL            |    |            | 80    | 71         | 6   | 1 1   | 1/8   | 1  | 10 -  | 94         |
| 2-FLUOROPHENOL       |    |            | 74    | 1 70       | 5   | 1 1   | 90    | İ  | 21 -  | 100        |
| 2.4.6-TRIBRONOPHENOL |    |            | 65    | 1 7:       | 3   | 1 • 1 | 131   | *  | 10 -  | 123        |

FORM III SV-1

<sup>\*</sup> Values outside of QC limits.

## WATER SENIVOLATILE BLANK SPIKE RECOVERY

Lab Name: ITAS - Austin CLIENT ID: QC BATCH ID

 Sample Names:
 DBP51
 DBK51
 Prep Code/Date:
 3520
 12/15/93

 Date Ran:
 12/22/93
 12/22/93
 Test Code/Date:
 8270
 12/15/93

Time Ran: 22.58 22.34 Set #:1 Inst.ID: 0

Matrix Spike - SAM Sample No. B312151/BS Matrix: WATER

( 1000.00 ML TO 1.00 ML) 1.0 X DIL

| COMPOUND                 | SPIKE  | BLANK  | BS<br>CONC | 85    | QC<br>LIMITS | CLP<br>LINIT |     |
|--------------------------|--------|--------|------------|-------|--------------|--------------|-----|
| NAME                     | (ug/L) | (ug/L) | (ug/L)     | REC # | REC.         | SPIKE        | RPD |
| PHENOL                   | 100.00 | . 44   | 86.48      | 86    | 14 - 99      | 12 - 110     | 42  |
| 2-CHLOROPHENOL           | 100.00 | .11    | 91.48      | 91    | 19 - 107     | 27 - 123     | 40  |
| 1,4-DICHLOROBENZENE      | 54.44  | .11    | 35.58      | 71    | 18 - 101     | 36 - 97      | 28  |
| N-NITROSODI-N-PROPYLANIN | 54.44  | .00    | 41.32      | 83    | 32 - 108     | 41 - 116     | 38  |
| 1,2,4-TRICHLOROBENZENE   | 54.44  | .00    | 34.51      | 69    | 24 - 169     | 39 - 98      | 28  |
| 4-CHLORO-3-NETHYLPHENOL_ | 100.00 | . 41   | 86.13      | 86    | 31 - 111     | 23 - 97      | 42  |
| ACENAPHTHENE             | 50.00  | . 44   | 42.18      | 84    | 33 - 110     | 46 - 118     | 31  |
| 4-NITROPHENOL            | 144.44 | .00    | 71.59      | 72    | 1 - 141      | 10 - 80      | 50  |
| 2,4-DINITROTOLUENE       | 54.44  | .41    | 34.19      | 68    | 35 - 106     | 24 - 96      | 38  |
| PENTACHLOROPHENOL        | 100.00 | .41    | 66.14      | 66    | 1 - 147      | 9 - 103      | 50  |
| PYRENE                   | 50.00  |        | 44.57      | 89    | 42 - 119     | 26 - 127     | 51  |

<sup>#</sup> Column to be used to flag recovery and RPD values with an asterisk.

Spike Recovery: 0 out of 11 outside limits.

| l 91 | 1 444          |                           |
|------|----------------|---------------------------|
|      | 100            | 35 - 114                  |
|      | 81             | 43 - 116                  |
| 84   | 85             | 33 - 141                  |
| 86   | 98 *           | 10 - 94                   |
| 76   | 79             | 21 - 100                  |
| 75   | 78             | 10 - 123                  |
|      | 84<br>86<br>76 | 84 85<br>86 98 *<br>76 79 |

<sup>\*</sup> Values outside of QC limits.

# PREPREP METHOD: NA PREP METHOD: 23005 ANALYSIS METHOD: 60/0 BATCH DATE: /2-/6-93 INSTRUMENT ID: B SET (BATCH) #: /

## Work Orders/Fractions Associated With Batch

## Lab Sample ID's

## 1) B312151-020 -050 -060 -090 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19)

20)

## Batch QC Samples

| LCS ID: LC505 121693-1  |       |
|-------------------------|-------|
| LCSD ID: LCSD05/2/693-/ |       |
| MB ID: PBN05121693-1    | 0 -   |
| MS ID: B312151-070 ms   | .F06D |
| MSD ID: B3/2/5/-080 MSD | L     |
| REP ID:                 |       |
|                         |       |
|                         |       |
|                         |       |

## ANALYTES REQUIRED FOR BATCH:

Ag Al As B Ba Be Ca Cd Co Cr Cu Fe K Mg Mn Mo Na

| QC Batch ID      |          |
|------------------|----------|
| eprep Method:    |          |
| Prep Method:     | 3005     |
| Analysis Method: | 6010     |
| Batch Date:      | 12/16/93 |
| Instrument ID:   | В        |
| Batch (Set) #:   | 1        |

| Matrix: WATER Units: MG/L | Data Repo      | orted to PQL |
|---------------------------|----------------|--------------|
| OTINO. IVIO,E             |                | Corr. Fact.  |
| Method Blk ID:            | PB05121693-1   | 1            |
| LCS ID:                   | LCS05121693-1  | 1            |
| LCSD ID:                  | LCSD05121693-1 | 1            |
| MS Sample ID:             | B312151-07D    | 1            |
| MSD Sample ID:            | B312151-08D    | 1            |
| Rep Sample ID:            |                | 0            |

Page 1 of 2

|         | Replicate  | Sample Da | ta    |        | E  | Blank / LC | S Batch QC  |        |          |   |       |          |                |              |
|---------|------------|-----------|-------|--------|----|------------|-------------|--------|----------|---|-------|----------|----------------|--------------|
|         | Original   | <u> </u>  |       | Н      |    | Method     |             | LCS    | <u> </u> |   | LCSD  | <u> </u> | Т              | % RPD for    |
|         | Result for | Replicate |       |        |    | Blank      | LCS true    | Conc.  | LCS      |   | Conc. | LCSD     |                | LCS/LCSD     |
| Analyte | Replicate  | Result    | % RPD | Q      |    | Result     | Value (mg/L | Found  | % Rec.   | a | Found | % Rec.   | la             | Recoveries Q |
| Ag      |            |           |       | Ħ      | <  | 0.010      | 1           | 0.9617 | 96       |   | 0.97  | 97       | <del> </del> = | 0.95         |
| Al      |            |           |       | H      | <  | 0.20       | 10          | 10.2   | 102      | Н | 10.22 | 102      | t              | 0.20         |
| As      |            |           | ····  | $\Box$ | <  | 0.10       | 1           | 1.046  | 105      | П | 1.06  | 106      |                | 1.61         |
| В       |            |           |       | П      | <  | 0.20       | 1           | 0.9738 | 97       | П | 0.99  | 99       | T              | 1.77         |
| Ba      |            |           |       | П      | ~  | 0.20       | 1           | 0.9872 | 99       |   | 0.99  | 99       | Г              | 0.14         |
| Be      |            |           |       | $\Box$ | <  | 0.0050     | 1           | 0.9767 | 98       | П | 0.99  | 99       | Τ              | 0.89         |
| Ca      |            |           |       | П      | <  | 5.0        | 20          | 20.79  | 104      |   | 21.00 | 105      | T              | 1.01         |
| Cd      |            |           |       | П      | <  | 0.0050     | 1           | 0.9664 | 97       |   | 0.98  | 98       | Γ              | 1.13         |
| Co      |            |           |       | П      | <  | 0.050      | 1           | 0.9388 | 94       |   | 0.95  | 95       | Г              | 1.25         |
| Cr      |            |           |       | П      | <  | 0.010      | 1           | 0.9905 | 99       |   | 1.00  | 100      |                | 0.52         |
| Cu      |            |           |       | П      | <  | 0.025      | 1           | 0.9395 | 94       |   | 0.94  | 94       | П              | 0.37         |
| Fe      |            |           |       |        | <  | 0.10       | 10          | 10.62  | 106      |   | 10.51 | 105      |                | 1.04         |
| K       |            |           |       |        | <  | 5.0        | 20          | 19.47  | 97       |   | 20.03 | 100      |                | 2.84         |
| Mg      |            |           |       |        | <  | 5.0        | 20          | 20.23  | 101      |   | 20.32 | 102      |                | 0.44         |
| Mn      |            |           |       |        | <  | 0.015      | 1           | 0.9468 | 95       |   | 0.95  | 95       |                | 0.60         |
| Мо      |            |           |       |        | <  | 0.10       | 1           | 0.9549 | 95       |   | 0.97  | 97       |                | 1.20         |
| Na      |            |           |       |        | <  | 5.0        | 20          | 20.14  | 101      |   | 20.15 | 101      |                | 0.05         |
| Ni      |            |           |       |        | <  | 0.040      | 1           | 0.946  | 95       |   | 0.95  | 95       |                | 0.87         |
| Рь      |            |           |       |        | <  | 0.050      | 1           | 0.9492 | 95       |   | 0.96  | 96       |                | 0.90         |
| Sb      |            |           |       |        | <  | 0.060      | 1           | 1.015  | 101      |   | 1.00  | 100      |                | 1.39         |
| Se      |            |           |       |        | <  | 0.10       | 1           | 1.001  | 100      |   | 1.03  | 103      |                | 2.86         |
| Si      |            |           |       |        | <  | 1.0        | 10          | 11.26  | 113      |   | 11.12 | 111      |                | 1.25         |
| Sn      |            |           |       |        | <  | 0.10       | 1           | 0.9343 | 93       |   | 1.00  | 100      |                | 7.09         |
| Ti      |            |           |       |        | <  | 0.10       | 1           | 0.9903 | 99       |   | 0.99  | 99       |                | 0.33         |
| П       |            |           |       |        | <  | 0.20       | 1           | 1.055  | 106      |   | 1.03  | 103      |                | 2.20         |
| V       |            |           |       | Ц      | <_ | 0.050      | 1           | 0.9608 | 96       |   | 0.97  | 97       |                | 0.76         |
| Zn      |            |           |       |        | <  | 0.020      | 1           | 0.9605 | 96       |   | 0.96  | 96       |                | 0.12         |

| QC Data Reviewed By: | Q | _ Date/Time: | 14/6:00 |  |
|----------------------|---|--------------|---------|--|
| Comments:            | 0 |              | •       |  |
|                      |   |              |         |  |
|                      |   |              |         |  |
|                      |   |              |         |  |
|                      |   |              |         |  |

.⊋ualifiers:

N - LCS % Recovery was outside method limits of 80-120 %.

R - % RPD for LCS/LCSD was outside control limit of 20 %.

<sup>\*</sup> Replicate RPD was outside method control limit of 20 %

| QC Batch ID      |          |
|------------------|----------|
| eprep Method:    |          |
| Prep Method:     | 3005     |
| Analysis Method: | 6010     |
| Batch Date:      | 12/16/93 |
| Instrument ID:   | В        |
| Batch (Set) #:   | 1        |

| Batch QC Information |                |               |
|----------------------|----------------|---------------|
| Matrix: WATER        | Data Rep       | ported to PQL |
| Units: MG/L          |                |               |
|                      | _              | Corr. Factor  |
| Method Blk ID:       | PB05121693-1   | 1             |
| LCS ID:              | LCS05121693-1  | 1             |
| LCSD ID:             | LCSD05121693-1 | 1             |
| MS Sample ID:        | B312151-07D    | 1             |
| MSD Sample ID:       | B312151-08D    | 1             |
| Rep Sample ID:       |                |               |

Page 2 of 2

|         | Spike Sam  | ple Data |          |        |          |        |           |        |   |              |          |               | _ |
|---------|------------|----------|----------|--------|----------|--------|-----------|--------|---|--------------|----------|---------------|---|
|         | Original   |          |          |        | Τ        |        |           |        | Т | % RPD for    |          | % RPD for     | Γ |
|         | Result for | MS       | MS Spike | MS     |          | MSD    | MSD Spike | MSD    | ı | MS/MSD       |          | MS/MSD Result |   |
| Analyte | MS/MSD     | Result   | Added    | % Rec. | Q        | Result | Added     | % Rec. | a | Recoveries   | Q        | As Replicates | 0 |
| Ag      | ND         | 0.8002   | 1.00     | 80     |          | 0.7585 | 1.00      | 76     | N | 5.35         |          |               | Γ |
| Al      | 0.9548     | 10.99    | 10.00    | 100    |          | 10.14  | 10.00     | 92     | Π | 8.84         |          |               | Γ |
| As      |            |          |          |        |          |        |           |        | Γ |              |          |               | Γ |
| В       |            |          |          |        |          |        |           |        | Π |              |          |               | Γ |
| Ba      | 0.2409     | 1.104    | 1.00     | 86     |          | 1.046  | 1.00      | 81     | Γ | 6.95         |          |               | Γ |
| Ве      | ND         | 0.8165   | 1.00     | 82     |          | 0.7781 | 1.00      | 78     | N | 4.82         |          |               | Γ |
| Ca      | 79.83      | 104.1    | 20.00    | 121    | Z        | 98.89  | 20.00     | 95     | Π | 24.05        | R        |               | Γ |
| Cd      | ND         | 0.7886   | 1.00     | 79     | Z        | 0.761  | 1.00      | 76     | N | 3.56         |          |               | Γ |
| Co      |            |          |          |        |          |        |           |        |   |              |          |               | Γ |
| Cr      | ND         | 0.8021   | 1.00     | 80     |          | 0.76   | 1.00      | 76     | N | 5.39         |          |               |   |
| Cu      | ND         | 0.7963   | 1.00     | 80     | П        | 0.7555 | 1.00      | 76     | Z | 5.26         |          |               |   |
| Fe      | 1.139      | 10.13    | 10.00    | 90     | П        | 9.519  | 10.00     | 84     | П | 7.03         |          |               | _ |
| K       | ND         | 19.21    | 20.00    | 96     | П        | 18.49  | 20.00     | 92     | П | 3.82         |          |               | _ |
| Mg      | 52.03      | 74.33    | 20.00    | 111    | П        | 70.7   | 20.00     | 93     | П | 17.72        |          |               | _ |
| Mn      | 0.0647     | 0.8518   | 1.00     | 79     | 7        | 0.8092 | 1.00      | 74     | N | 5. <b>56</b> | ٦        |               | _ |
| Мо      |            |          |          |        | П        |        |           |        | П |              | T        |               | _ |
| Na      | 42.66      | 62.51    | 20.00    | 99     |          | 59.41  | 20.00     | 84     | П | 16.94        |          |               | _ |
| Ni      | ND         | 0.7694   | 1.00     | 77     | N        | 0.7405 | 1.00      | 74     | N | 3.83         | 1        |               | _ |
| РЬ      |            |          |          |        | П        |        |           |        | П |              |          |               | _ |
| Sb      |            |          |          |        | П        |        |           |        |   |              | 7        |               | _ |
|         | ND         | 0.7169   | 1.00     | 72     | N        | 0.7211 | 1.00      | 72     | N | 0.58         | 1        |               | _ |
| Si      |            |          |          |        | П        |        |           |        | П |              | 7        |               | _ |
| Sn      |            |          |          |        |          |        |           |        | П |              | 7        |               | _ |
| Ti      |            |          |          |        |          |        |           |        | П |              | 7        |               | _ |
| П       |            |          |          |        | П        |        |           |        | П |              | 7        |               | _ |
| ٧       |            |          |          |        | $\sqcap$ |        |           |        |   |              | $\dashv$ |               | _ |
| Zn      | ND         | 0.7893   | 1.00     | 79     | N        | 0.7496 | 1.00      | 75     | N | 5.16         | 7        |               | _ |

| Comments: | ncm | for | ALL | Nflags. |  |
|-----------|-----|-----|-----|---------|--|
|           |     |     |     |         |  |

Qualifiers (Q):

- H Sample concentration was greater than five times the spike level.
- N Spike recovery was outside method control limits of 80-120 %.
- R Percent RPD for MS/MSD recoveries was outside method control limit of 20 %.
- D Sample concentration was greater than five times the spike level.

  The RPD was calculated between the MS and MSD results as replicates.

QC Batch ID

| Prep  | Code/Date TAHTE / 12/2019 |
|-------|---------------------------|
| Test  | Code/Date: 418.1          |
| Set ( | Inst. ID:                 |

| Type                                 | <br>  Lab Sample ID               | Result                       | Percent<br>Recovery | QC fimits                                            |
|--------------------------------------|-----------------------------------|------------------------------|---------------------|------------------------------------------------------|
| Blank_<br>Blank spike_<br>HS_<br>HSD | B312151-BUK<br>B5<br>07m)<br>08mD | ₹.5. <b>\$</b><br>5.1<br>5.2 | NI)<br>90<br>92     | Reporting limit 70 to 130% 70 to 130% Ppg 70 to 130% |

This QA Spike Lot applies to the following Samples:

|                                                                                           | Client         | Sam # + Fraction | Date of Prep |
|-------------------------------------------------------------------------------------------|----------------|------------------|--------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | BSIZIST Tinker |                  | Date of Prep |
| 18  <br>19  <br>20                                                                        |                |                  |              |

| Comments |  |
|----------|--|
|          |  |
|          |  |

| QC BATCH ID FO   | OR WET CHEM - Test Code: 102 002 |
|------------------|----------------------------------|
| PREPREP METHOD:  |                                  |
| PREP METHOD:     |                                  |
| ANALYSIS METHOD: | 353.2                            |
| BATCH DATE:      | 12-14-93                         |
| INSTRUMENT ID:   | Д                                |
| SET (BATCH) #:   | 2                                |

| Lab Sample ID's                                                 | Batch QC ID's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | -             |      |               |     |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|------|---------------|-----|
| 1 1312151-026<br>2 -036<br>3 -046<br>4 -056<br>5 -066<br>6 -096 | LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: MB ID: MB ID: MB ID: MS ID: MSD ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LC | 2151-05<br>2151-05<br>208 | <u>)</u><br>- | C' . |               |     |
| 8                                                               | Batch QC Resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lts                       |               | MDL: | PQL: 💁 🤆      | 250 |
| 9                                                               | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result                    | Units         |      | Date/Time     | ]   |
| 10                                                              | Method Blk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.050                   | ~5/L          | 053  | 12/14/93/6:29 | 1   |
| 11 12                                                           | LCS % Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105                       | % Rec         | 1    | 1-144(1310-7  | 1   |
| 13                                                              | LCSD % Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101                       | % Rec         |      |               | 1   |
| 14                                                              | LCS/LCSD RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | % RPD         |      |               |     |
| 15                                                              | MS % Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96.0                      | % Rec         |      |               |     |
| 16                                                              | MSD % Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93,6                      | % Rec         |      |               |     |
| 17                                                              | MS/MSD RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.53                      | % RPD         |      | j             |     |
| 18                                                              | REP RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.88                      | % RPD         |      |               |     |
| 19                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | <u> </u>      | L    |               | ,   |
| 20                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |               |      |               |     |
| Comments:                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |               |      |               |     |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |               |      |               |     |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |               |      |               |     |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |               |      |               |     |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |               |      |               |     |

| QC BATCH ID FOR  | R WET CHEM - Test Code: T_P |
|------------------|-----------------------------|
| PREPREP METHOD:  |                             |
| PREP METHOD:     |                             |
| ANALYSIS METHOD: | 365.4 TKP                   |
| BATCH DATE:      | 1-5-94 *** Ibish            |
| INSTRUMENT ID:   | A                           |
| SET (BATCH) #:   | 2                           |

| Lab | Sample   | ID's          |
|-----|----------|---------------|
|     |          |               |
| 1   | B31215   | 4-2-          |
| 2   | 1        | -034          |
| 3   |          | - 045         |
| 4   | :        | -054          |
| 5   | ;        | <u> - 165</u> |
| 6   |          | -090          |
| 7   | · ·      | -104          |
| 8   | 13312151 | - 026         |
| 9   | !        | - 036         |
| 10  | `        | - 046         |
| 11  |          |               |
| 12  |          |               |
| 13  |          |               |
| 14  |          |               |
| 15  |          |               |
| 16  |          |               |
| 17  |          |               |
| 18  |          |               |
| 19  |          |               |
| 20  |          |               |
|     |          |               |

| Batch QC | ID's        |            |
|----------|-------------|------------|
| LCS ID:  | LC5010594-1 | _          |
| LCSD ID: | NA          | •          |
| MB ID:   | PBW010594-1 | -          |
| MS ID:   | B312154-076 | ms of 08 c |
| MSD ID:  | -076        | msc 0+060  |
| REP ID:  | IEVIJEULU   | F          |
|          |             |            |

Batch QC Results

| Sample ID    | Result | Units | Analyst | Date/Time  |
|--------------|--------|-------|---------|------------|
| Method Blk   | <0.10  | WIL   | Q53     | 1794 14:15 |
| LCS % Rec    | 104    | % Rec | 1       |            |
| LCSD % Rec   | M      | % Rec |         |            |
| LCS/LCSD RPD | M      | % RPD |         | ·          |
| MS % Rec     | 100    | % Rec |         |            |
| MSD % Rec    | 98     | % Rec |         |            |
| MS/MSD RPD   | 2,0    | % RPD |         |            |
| REP RPD      | 3.7,   | % RPD |         | V          |

MDL: \_\_\_\_ PQL: 0.10

| Comments: |  |   | <br> |
|-----------|--|---|------|
|           |  |   |      |
|           |  |   | <br> |
|           |  |   |      |
|           |  |   | <br> |
|           |  |   | <br> |
|           |  | • |      |
|           |  |   |      |

| QC BATCH ID FOR V  | WET CHEM - Test Code: TP |
|--------------------|--------------------------|
| PREPREP METHOD:    |                          |
| PREP METHOD: —     |                          |
| ANALYSIS METHOD: 3 | 65.4                     |
| BATCH DATE:        | -7-94                    |
| INSTRUMENT ID:     | A                        |
| SET (BATCH) #:     |                          |

| Lab Sample ID's                                        | Batch QC ID's                                                                                                            |        |        |                                                  |                  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------|--------|--------------------------------------------------|------------------|--|
| 1 1331215125C<br>2 - USC 11644<br>3 - USC 11644<br>5 6 | LCS ID: LCSW 010794-1  LCSD ID:  MB ID: PBW 010794-1  MS ID: B312151-070 marces  MSD ID: \lambda -080 marces  REP ID: NA |        |        |                                                  |                  |  |
| 8                                                      | Batch QC Resul                                                                                                           | ts     |        | MDL:                                             | PQL: <u>0.10</u> |  |
| 9                                                      | Sample ID                                                                                                                | Result | Units  | Analyst                                          | Date/Time        |  |
| 10                                                     | Method Blk                                                                                                               | <0.i0  | MAIL   | asb                                              | 1/10/44 10:40    |  |
| 11                                                     | LCS % Rec                                                                                                                | 104    | % Rec  | 1                                                | 11017110110      |  |
| 12                                                     | LCSD % Rec                                                                                                               | 101    | % Rec  | <del>                                     </del> |                  |  |
| 13                                                     | LCS/LCSD RPD                                                                                                             |        | % RPD  |                                                  |                  |  |
| 14                                                     | MS % Rec                                                                                                                 | 99     | % Rec  |                                                  |                  |  |
| 15                                                     |                                                                                                                          |        | % Rec  |                                                  |                  |  |
| 16                                                     | MSD % Rec                                                                                                                | 96     | % RPD  |                                                  |                  |  |
|                                                        | MS/MSD RPD                                                                                                               | 3.1    | % RPD  |                                                  |                  |  |
|                                                        | REP RPD                                                                                                                  |        | /6 NFD |                                                  |                  |  |
| 19                                                     |                                                                                                                          |        |        |                                                  |                  |  |
| 20                                                     |                                                                                                                          |        |        |                                                  |                  |  |
| Comments:                                              |                                                                                                                          |        |        |                                                  |                  |  |
|                                                        |                                                                                                                          |        |        |                                                  |                  |  |
|                                                        |                                                                                                                          |        |        |                                                  |                  |  |
|                                                        |                                                                                                                          |        |        |                                                  |                  |  |
|                                                        |                                                                                                                          |        |        |                                                  |                  |  |

| QC BATCH ID FC   | OR WET CHEM - Test Code: TKN |
|------------------|------------------------------|
| PREPREP METHOD:  | <b>****</b>                  |
| PREP METHOD:     | -                            |
| ANALYSIS METHOD: | 351.2                        |
| BATCH DATE:      | 1-5-94                       |
| INSTRUMENT ID:   | Α                            |
| SET (BATCH) #:   | 1                            |

| Lab Sample ID's                                                | Batch QC ID's             |         |                                                                  |      |          |              |          |             |
|----------------------------------------------------------------|---------------------------|---------|------------------------------------------------------------------|------|----------|--------------|----------|-------------|
| 1 3312154-02C<br>2 03C<br>3 -04C<br>4 -05C<br>5 -06C<br>6 -09C | MBID: PBI MSID: 33 MSDID: | NO 1059 | 14-1<br>27-1 ms<br>28-12-18-18-18-18-18-18-18-18-18-18-18-18-18- | 6F ( | )6<br>)6 |              |          |             |
| 7 -10C<br>8 3312143-01C                                        | Batch QC Resul            | ts      |                                                                  | MD   | L:       |              | _ PC     | QL:         |
| 8 3312143-01C<br>9 -02C                                        |                           |         |                                                                  |      |          |              |          |             |
| 10 B312151-02C                                                 | Sample ID                 | Result  | Units                                                            | Ana  | alyst    | Di           | ate/Tir  | ne          |
| 11 -034                                                        | Method Blk                | < 0.25  | MSIL                                                             | DS   | 3        | 11           | 7/94     | 15:04       |
| 12 - 045                                                       | LCS % Rec                 | 99      | % Rec                                                            |      |          | $oxed{oxed}$ |          |             |
| 13                                                             | LCSD % Rec                |         | % Rec                                                            |      | !        | _            |          |             |
| 14                                                             | LCS/LCSD RPD              |         | % RPD                                                            |      |          | _            |          | <del></del> |
| 15                                                             | MS % Rec                  | 93.8    | % Rec                                                            | ,    |          | _            |          |             |
| 16                                                             | MSD % Rec                 | 94.6    | % Rec                                                            |      |          |              |          |             |
| 17                                                             | MS/MSD RPD                | 0.85    | % RPD                                                            |      |          | _            |          |             |
| 18                                                             | REP RPD                   | 0.92    | % RPD                                                            |      |          | L            | <u> </u> |             |
| 19                                                             |                           |         |                                                                  |      |          |              |          |             |
| 20                                                             |                           |         |                                                                  |      |          |              |          |             |
| Comments:                                                      |                           |         |                                                                  |      |          |              |          |             |
|                                                                |                           |         | •                                                                |      |          |              |          |             |

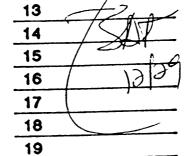
| QC BATCH ID FOR W | ET CHEM - Test Code: Trn-N |
|-------------------|----------------------------|
| PREPREP METHOD:   |                            |
| PREP METHOD:      |                            |
| ANALYSIS METHOD:  | 351,2                      |
| BATCH DATE:       | DI-07-94                   |
| INSTRUMENT ID:    | A                          |
| SET (BATCH) #:    | /                          |

| Lab Sample ID's        | Batch QC ID's        |                                               | -           |             |                   |  |
|------------------------|----------------------|-----------------------------------------------|-------------|-------------|-------------------|--|
| 1 B312151-05C<br>2 06C | LCSD ID: LCS         | LCS ID: ICV 010794-1<br>LCSD ID: LCS 010794-1 |             |             |                   |  |
| 3 09C                  |                      | 3 01079                                       | <del></del> |             |                   |  |
| 5 -020 1/10            |                      | 12 151 - 07<br>12 15 1 - 08                   |             |             |                   |  |
| 5 <u>-02</u> 11°       | REP ID:              | 12/3/ -00                                     | -           |             |                   |  |
| 7 β312276-038          |                      |                                               | -           |             |                   |  |
| 8 -055                 | Batch QC Resul       | ts                                            |             | MDL:        | PQL: <u>0, 25</u> |  |
| 9 -3312327 010         |                      |                                               | Τ           | <del></del> |                   |  |
| 10 020                 | Sample ID            | Result                                        | Units       | Analyst     | Date/Time         |  |
| 11 <del>030</del>      | Method Blk           | ND                                            |             | 05B         | 1/10/94 08:44     |  |
| 12 040                 | LCS % Rec            | 85.0                                          | % Rec       | 1           | , ,               |  |
| 13 <del>05 H</del>     | LCSD % Rec           | 93. 2                                         | % Rec       |             | ·                 |  |
| 14                     | LCS/LCSD RPD — % RPD |                                               | <u> </u>    | ·           |                   |  |
| 15                     | MS % Rec             | 92.4                                          | % Rec       | 1 1         |                   |  |
| 16                     | MSD % Rec            | 93.8                                          | % Rec       |             |                   |  |
| 17                     | MS/MSD RPD           | 1.5                                           | % RPD       |             |                   |  |
| 18                     | REP RPD              |                                               | % RPD       |             |                   |  |
| 19                     |                      |                                               |             |             |                   |  |
| 20                     |                      |                                               |             |             |                   |  |
| Comments:              |                      |                                               |             |             |                   |  |
|                        |                      |                                               |             |             |                   |  |
|                        |                      |                                               |             |             |                   |  |
|                        |                      |                                               |             |             |                   |  |
|                        |                      |                                               |             |             |                   |  |

| QC BATCH ID FOR  | WET CHEM - Test Code: 9066 |
|------------------|----------------------------|
| PREPREP METHOD:  |                            |
| PREP METHOD:     |                            |
| ANALYSIS METHOD: | 9066                       |
| BATCH DATE:      | 12-27-93                   |
| INSTRUMENT ID:   | A                          |
| SET (BATCH) #:   |                            |

| _ab Sample ID's                                            | Batch QC ID's                                                                                                                                                            |          | _     |              |                                                  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|--------------|--------------------------------------------------|--|
| 1 B3/2/5/-02C<br>2 O3C<br>3 O4C<br>4 O5C<br>5 O6C<br>6 O9C | LCS ID: $LCS = \frac{122193}{122493}$ -/ LCSD ID: $LCS = \frac{122493}{122493}$ -/ MB ID: $MB = \frac{122493}{122493}$ -/ MS ID: $B312151 - 08C$ REP ID: $B312151 - 08C$ |          |       |              |                                                  |  |
| 8                                                          | Batch QC Resul                                                                                                                                                           | ts       |       | MDL:         | PQL: <u></u>                                     |  |
| 9                                                          |                                                                                                                                                                          | Dogult   | Units | Analyst      | Date/Time                                        |  |
| 10                                                         |                                                                                                                                                                          | Campions |       | Ron          | 1-6-94 17:02                                     |  |
| 11                                                         | Method Blk                                                                                                                                                               | ND       | % Rec | 10011        | 1-6-14 11.02                                     |  |
| 12                                                         | LCS % Rec                                                                                                                                                                | 93       | % Rec |              | <del>                                     </del> |  |
| 13                                                         | LCSD % Rec                                                                                                                                                               | 100      |       |              |                                                  |  |
| 14                                                         | LCS/LCSD RPD 7. 2 % RPD                                                                                                                                                  |          |       |              |                                                  |  |
| 15                                                         | MS % Rec                                                                                                                                                                 | 90       | % Rec | <del> </del> |                                                  |  |
| 16                                                         | MSD % Rec                                                                                                                                                                | 85       | % Rec | <del> </del> | -                                                |  |
| 17                                                         | MS/MSD RPD                                                                                                                                                               | 5,7      | % RPD | -            |                                                  |  |
| 18                                                         | REP RPD / % RPD /                                                                                                                                                        |          |       |              |                                                  |  |
| 19                                                         |                                                                                                                                                                          |          |       |              |                                                  |  |
| 20                                                         |                                                                                                                                                                          |          |       |              |                                                  |  |
| Comments:                                                  |                                                                                                                                                                          |          |       |              |                                                  |  |
|                                                            |                                                                                                                                                                          |          |       |              |                                                  |  |

| QC BATCH ID FO   | R WET CHEM - Test Code: ALK-T |
|------------------|-------------------------------|
| PREPREP METHOD:  | NA                            |
| PREP METHOD:     | N.A                           |
| ANALYSIS METHOD: | ALK TO                        |
| BATCH DATE:      | 12-15-93                      |
| INSTRUMENT ID:   | A                             |
| SET (BATCH) #:   |                               |


| Lab Sample ID's  | Batch QC ID's            |         | _                         |                        |                    |
|------------------|--------------------------|---------|---------------------------|------------------------|--------------------|
| 6 B312147-09C,20 | MB ID: ///A  MS ID: ///A | -43 - L | -<br>-<br>-<br>2151, B312 | 1154, <del>831</del> 2 | <del>. 147</del> M |
| 7 8              | Batch QC Resu            |         |                           | MDL:                   |                    |
| 9                |                          |         |                           |                        | 10.4. /T-0         |
| 10               | Sample ID                | Result  | Units                     |                        | Date/Time          |
| 11               | Method Blk               | 10      |                           | JAM                    | 12-15-93           |
| 12               | LCS % Rec                | 100     | % Rec                     |                        |                    |
| 13               | LCSD % Rec               | 100     | 1% Rec                    | !                      |                    |
| : 4              | LCS/LCSD RPD             | DI NA   | % RPD                     |                        |                    |
| 15               | MS % Rec                 |         | 1% Rec                    | ;                      | ;                  |
| 16               | MSD % Rec                |         | % Rec                     |                        |                    |
| 17               | MS/MSD RPD               |         | % RPD                     | i .                    |                    |
| 18               | REP RPD                  | 1,24    | % RPD                     | <u> </u>               | :                  |
| 19               |                          |         |                           | •                      |                    |
| 20               |                          |         |                           |                        |                    |
|                  |                          |         |                           |                        |                    |
| Comments:        |                          |         |                           |                        |                    |
|                  |                          |         |                           |                        |                    |
|                  |                          |         |                           |                        |                    |
|                  |                          |         |                           |                        |                    |

| QC BATCH ID FOR WET CHEM - Test Code: STOR |
|--------------------------------------------|
| PREPREP METHOD:                            |
| PREP METHOD:                               |
| ANALYSIS METHOD: SIDA                      |
| BATCH DATE: 12/25/63                       |
| INSTRUMENT ID: A                           |
| SET (BATCH) #: ) B                         |

# Lab Sample ID's 1 R31 2 3

| 2151-03C |
|----------|
| - 540    |
| -050     |
| -66T     |
|          |

| 7  |  |
|----|--|
| 8  |  |
| 9  |  |
| 10 |  |
| 11 |  |
| 12 |  |



20

| Batch | QC | ID's |
|-------|----|------|
|       |    |      |

| LCS ID: LCS1229 53-1  |
|-----------------------|
| MBID: MB 123963-/     |
| MBID: MB 122993-/     |
| MS ID: R312151-07C    |
| MSD ID: 1312151-08C   |
| REP ID: LCSD 122993-1 |

| Batch | QC | Results |
|-------|----|---------|
|       |    |         |

| Sample ID    | Result   | Units | Analyst | Date/Time |
|--------------|----------|-------|---------|-----------|
| Method Blk   | D        | hs/L  | SA      | 12 29     |
| LCS % Rec    | 90.0     | % Rec |         |           |
| LCSD % Rec   | 960      | % Rec |         |           |
| LCS/LCSD RPD | 6.45     | % RPD |         |           |
| MS % Rec     | 92.8     | % Rec |         | ·         |
| MSD % Rec    | 80,8     |       |         |           |
| MS/MSD RPD   | 13.8     | % RPD |         |           |
| REP RPD      | 6.45     | % RPD |         | <u> </u>  |
| L            | <u> </u> |       | 1       |           |

MDL:\_\_\_\_\_ PQL: 0,20"5

| Comments: |  |
|-----------|--|
| Commence. |  |
|           |  |
|           |  |
|           |  |

| GC                                                             | BATCH ID FOR                                                                   | WET CHE                               | M - Test C                                              | cae. TO |            |
|----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|---------|------------|
| PREPRE                                                         | P METHOD:                                                                      |                                       |                                                         |         |            |
|                                                                | P METHOD:                                                                      |                                       |                                                         |         |            |
| ANALYSI                                                        | S METHOD: +                                                                    | か(                                    |                                                         |         |            |
| В                                                              | ATCH DATE. 12                                                                  | 30K3                                  |                                                         |         |            |
|                                                                | RUMENT ID: A                                                                   |                                       |                                                         |         |            |
| SET                                                            | (BATCH) #:                                                                     | <b>₽</b>                              |                                                         |         |            |
| Work Orders/Fractions                                          | s Associated W                                                                 | ith Batch                             |                                                         |         |            |
| Lab Sample 10's                                                | Batch QC ID'                                                                   | s                                     |                                                         |         |            |
| 1 13312151-02C                                                 | LCS ID: LC                                                                     | 512209                                | 3-3                                                     |         |            |
| 2 D3C                                                          | LCSD ID: La                                                                    | 0661 AZ                               | 53-3                                                    |         |            |
| 3 - 640                                                        | MB ID: M                                                                       | - 1000                                | <u>`3</u> -3                                            |         |            |
| 4 -650                                                         | MS ID: 立会                                                                      | -0707                                 | (                                                       |         |            |
| <u>5</u> <u>-06</u> C                                          |                                                                                | 12151 - 08                            | <u>(C</u>                                               |         |            |
| 6 -09 C                                                        | REP ID: 13                                                                     | 17121-016                             | <del></del>                                             |         |            |
| 8                                                              | Batch QC Res                                                                   | sults                                 |                                                         | MDL:    | PQL: 1, D  |
| <del></del>                                                    |                                                                                |                                       |                                                         | _       |            |
| 9                                                              |                                                                                |                                       |                                                         |         |            |
| 9                                                              | Sample ID                                                                      | Result                                | Units                                                   | Anajyst | !Date/Time |
|                                                                | Sample ID<br>Method Blk                                                        | Result                                | Units<br>ms/L                                           | Analyst |            |
| 10                                                             |                                                                                | IResult                               | · · · · · · · · / · · ·                                 |         | !Date/Time |
| 10                                                             | Method Blk                                                                     | ID                                    | i ms/L                                                  |         |            |
| 10 11 12                                                       | Method Blk                                                                     | 108                                   | ms/L<br>1% Rec                                          |         |            |
| 10<br>11<br>12<br>13                                           | Method Blk ILCS % Rec LCSD % Rec LCS/LCSD RP                                   | 108                                   | 1% Rec                                                  |         |            |
| 10<br>11<br>12<br>13                                           | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RP                                    | 108<br>108<br>108                     | 1% Rec<br>1% Rec<br>1% RPD                              |         |            |
| 10<br>11<br>12<br>13<br>14<br>15                               | Method Blk ILCS % Rec ILCSD % Rec ILCS/LCSD RF IMS % Rec IMSD % Rec IMSD % RPD | 108<br>108<br>108<br>114<br>107<br>63 | % Rec<br> % Rec<br> % RPD<br> % Rec<br> % Rec<br> % RPD |         |            |
| 10<br>11<br>12<br>13<br>15<br>16                               | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RF MS % Rec MSD % Rec                 | 108<br>108<br>108<br>114<br>107<br>63 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec            |         |            |
| 10<br>11<br>12<br>13<br>15<br>16<br>17<br>18                   | Method Blk ILCS % Rec ILCSD % Rec ILCS/LCSD RF IMS % Rec IMSD % Rec IMSD % RPD | 108<br>108<br>108<br>114<br>107<br>63 | % Rec<br> % Rec<br> % RPD<br> % Rec<br> % Rec<br> % RPD |         |            |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18             | Method Blk ILCS % Rec ILCSD % Rec ILCS/LCSD RF IMS % Rec IMSD % Rec IMSD % RPD | 108<br>108<br>108<br>114<br>107<br>63 | % Rec<br> % Rec<br> % RPD<br> % Rec<br> % Rec<br> % RPD |         |            |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | Method Blk ILCS % Rec ILCSD % Rec ILCS/LCSD RF IMS % Rec IMSD % Rec IMSD % RPD | 108<br>108<br>108<br>114<br>107<br>63 | % Rec<br> % Rec<br> % RPD<br> % Rec<br> % Rec<br> % RPD |         |            |
| 10<br>11<br>12<br>13<br>15<br>16<br>17<br>18                   | Method Blk ILCS % Rec ILCSD % Rec ILCS/LCSD RF IMS % Rec IMSD % Rec IMSD % RPD | 108<br>108<br>108<br>114<br>107<br>63 | % Rec<br> % Rec<br> % RPD<br> % Rec<br> % Rec<br> % RPD |         |            |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | Method Blk ILCS % Rec ILCSD % Rec ILCS/LCSD RF IMS % Rec IMSD % Rec IMSD % RPD | 108<br>108<br>108<br>114<br>107<br>63 | % Rec<br> % Rec<br> % RPD<br> % Rec<br> % Rec<br> % RPD |         |            |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | Method Blk ILCS % Rec ILCSD % Rec ILCS/LCSD RF IMS % Rec IMSD % Rec IMSD % RPD | 108<br>108<br>108<br>114<br>107<br>63 | % Rec<br> % Rec<br> % RPD<br> % Rec<br> % Rec<br> % RPD |         |            |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | Method Blk ILCS % Rec ILCSD % Rec ILCS/LCSD RF IMS % Rec IMSD % Rec IMSD % RPD | 108<br>108<br>108<br>114<br>107<br>63 | % Rec<br> % Rec<br> % RPD<br> % Rec<br> % Rec<br> % RPD |         |            |

| QC .                  | BATCH ID FOR WE! CHEM - Test C | لهر ۱۹۰۰      | _          |               |
|-----------------------|--------------------------------|---------------|------------|---------------|
| PREPRE                | EP METHOD:                     |               |            |               |
|                       | EP METHOD:                     |               |            |               |
| ANALYSI               | S METHOD: TDS                  |               |            |               |
| В                     | ATCH DATE. 1211493             |               |            |               |
| INST                  | RUMENT ID: A                   |               |            |               |
| SET                   | (BATCH) #: )                   |               |            |               |
| Work Orders/Fractions | s Associated With Batch        |               |            |               |
| Lab Sample IU's       | Batch QC ID's                  |               |            |               |
| 1 B312154-40C         | LCS ID: 1214 93-1              |               |            |               |
| <u>2</u> 03C          | LCSD ID: 1 CSD 12148-1         |               |            |               |
| 3 (24)C               | MB ID: NA                      |               |            |               |
| 4 050                 | MS ID: NA                      |               |            |               |
| 5 00                  | MSD ID: NA                     |               |            |               |
| 6 09 C                | REP ID: B312154 070,080        |               |            |               |
|                       | Batch QC Results               | 1401          | /          | n ng          |
| 9 09C                 | Daten GO Nesults               | MDL:          | PQL: /     | 0 7           |
| 10 Dyc                | Sample ID   Result   Units     | Analyst       | !Date/Time |               |
| 11 050                | Method Blk NA My/              | TAM           | 15/14 9:30 |               |
| 12 06                 | LCS % Rec /DO 1% Rec           | -naut         | 1          | 2             |
| 13                    | LCSD % Rec / 0 / 1 % Rec       |               |            | _             |
| :4                    | LCS/LCSD RPD: 0947 % RPD       |               |            |               |
| 15 / CAT              | MS % Rec NA % Rec              |               |            | <del></del> ; |
| 16                    | MSD % Rec NA 1% Rec            |               |            |               |
| 17 10 00              | MS/MSD RPD NA 1% RPD           | 1,            |            | <del>-</del>  |
| 18                    | REP RPD 354 515 75 11 18 RPD   | $\overline{}$ |            | _             |
| 19                    | 199                            | <del></del>   |            |               |
| 20                    |                                |               |            |               |
| Comments:             |                                |               |            |               |
| Comments.             |                                | <del></del>   |            |               |
| Comments.             |                                |               |            |               |
| Comments.             |                                |               |            |               |
| Comments.             |                                |               |            |               |

| QC BATCH ID FOR WET CHEM - Test Code: TDS |
|-------------------------------------------|
| PREPREP METHOD:                           |
| PREP METHOD:                              |
| ANALYSIS METHOD: T DS                     |
| BATCH DATE: 12/14/9/30                    |
| INSTRUMENT ID: 人'                         |
| SET (BATCH) #:                            |

| Lab Sample ID's                                            | Batch QC ID's                                                                                                  |          | _             |           |              |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------|---------------|-----------|--------------|
| 1 R312154-02C<br>2 03C<br>3 04C<br>4 05C<br>5 0CD<br>6 02C | LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: LCS ID: NA MS ID: NA MSD ID: NA REP ID: RS II. | D 12149. | <del></del> , |           |              |
| 7(DOP 6F76) (USC                                           | <u>B3/</u>                                                                                                     | 2151-08  | 2             |           | 1 Nord       |
| 8 696                                                      | 区3/-<br>Batch QC Resu                                                                                          | ilts     |               | MDL:      | PQL: 10 ms/L |
| 9 1/56                                                     |                                                                                                                |          |               |           | 5 1 5        |
| 10 R3/2/5/-09C                                             | Sample ID                                                                                                      | Result   | Units         | Analyst   |              |
| 11 634                                                     | Method Blk                                                                                                     | INA      | 1 mg/r        | SATTORATH | 12/145:30    |
| 12 040                                                     | LCS % Rec                                                                                                      | 100      | % Rec         |           |              |
| 13 056                                                     | LCSD % Rec                                                                                                     | 101      | 1% Rec        |           |              |
| 068                                                        | LCS/LCSD RP                                                                                                    | 01 .955  | % RPD         |           |              |
| 15 N7C                                                     | MS % Rec                                                                                                       | INA      | i% Rec        |           |              |
| 16 (DUPDF7C)08C                                            | MSD % Rec                                                                                                      | NA       | % Rec         |           |              |
| 17                                                         | MS/MSD RPD                                                                                                     | INA      | % RPD         |           |              |
| 18                                                         | REP RPD                                                                                                        | 3.K/32   | 31% RPD       | <u> </u>  | V            |
| 19                                                         |                                                                                                                | ,        |               |           |              |
| 20                                                         |                                                                                                                |          |               |           |              |
|                                                            |                                                                                                                |          |               |           |              |
| Comments:                                                  |                                                                                                                |          |               |           |              |
|                                                            |                                                                                                                |          |               |           |              |
|                                                            |                                                                                                                |          |               |           |              |
|                                                            |                                                                                                                |          |               |           |              |
|                                                            |                                                                                                                |          |               |           |              |

| QC BATCH ID FOR  | R WET CHEM - Test Code: 60 5 |
|------------------|------------------------------|
| PREPREP METHOD:  |                              |
| PREP METHOD:     |                              |
| ANALYSIS METHOD: | C 0 1                        |
| BATCH DATES      | जाव <u>कि8 ५</u> 3           |
| INSTRUMENT ID:   | D I                          |
| SET (BATCH) #:   | <b>à</b>                     |

| Lab Sample ID's |
|-----------------|
| 1B312151-02C    |
| 3 040           |
| 4 050           |
| 5 660           |
| 6 D4C           |
| 7               |
| 8               |
| 9               |
| 10              |
| 11              |
| 12              |
| 13              |
| 14              |
| 15              |
| 16 300          |
| 17              |
| 18              |
| 19              |
| 20              |

| Batch QC ID's          |
|------------------------|
| LCS ID: LCS 122893-2   |
| LCSD ID: LCSD 13-893-3 |
| MB ID: MB 12853-2      |
| MS ID: B312151-07C     |
| MSDID: B312151-08C     |
| REP ID: LCSD 120893-3  |

Batch QC Results

| Sample ID    | Result | Units | Analyst  | Date/Time  |
|--------------|--------|-------|----------|------------|
| Method Blk   | 0      | W9/T  | SAT      | 1998 16:00 |
| LCS % Rec    | 106    | % Rec | 11'      | 1          |
| LCSD % Rec   | 1049LH | % Rec |          |            |
| LCS/LCSD RPD |        | % RPD |          |            |
| MS % Rec     | 106    | % Rec |          | ·          |
| MSD % Rec    |        | % Rec |          | /          |
| MS/MSD RPD   | 1.9    | % RPD |          | /          |
| REP RPD      | 9.49   | % RPD | <u> </u> |            |
| 11-11-1      | L      | L.,   |          |            |

MDL:\_\_\_

| Comments: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |

|                                                                                                                               | OC BATCH ID FOR WET CHEM - Test (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Code. <u>T55</u>    |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| PRF                                                                                                                           | PREP METHOD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
|                                                                                                                               | PREP METHOD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
|                                                                                                                               | YSIS METHOD: T SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| ANAL                                                                                                                          | BATCH DATE. 12/14/53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
|                                                                                                                               | NSTRUMENT ID: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
|                                                                                                                               | SET (BATCH) #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
|                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| Work Orders/Fracti                                                                                                            | ions Associated With Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| Lab Samble IU's                                                                                                               | Batch QC ID's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 1 B312154-0X                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2 43                                                                                                                          | LCSD ID: Leso 121493-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 3 040                                                                                                                         | MB ID: NON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 4 <u>05</u> (                                                                                                                 | MS ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 5, 121                                                                                                                        | MSD ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.                  |
| a bursful wic                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C ¥                 |
| 7 DUPOFUNSC                                                                                                                   | B313151-076,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ĺ                   |
| 8 - MC                                                                                                                        | Batch QC Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MDL:PQL:)           |
|                                                                                                                               | Date: do nesalts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WIDE. POL: 10       |
| 9 100                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 9 10C<br>10 R32)51-620                                                                                                        | Sample ID   Result   Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analyst !Date/Time  |
| 9 10C<br>10 R323151-636<br>11 OSC                                                                                             | Sample ID Result Units Method Blk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| 9 10C<br>10 7342151-626<br>11 05C<br>12 03C                                                                                   | Sample ID Result Units Method Blk DA nJ/L LCS % Rec 88.3 1% Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analyst  Date/Time  |
| 9 10C<br>10 R32151-62C<br>11 OSC<br>12 03C<br>13 D4C                                                                          | Sample ID   Result   Units     Method Blk   NA n3/L     LCS % Rec   88.3   % Rec     LCSD % Rec   93.1   % Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyst  Date/Time  |
| 9 10C<br>10 7342151-620<br>11 05C<br>12 03C<br>13 04C<br>14 05C                                                               | Sample ID   Result   Units   Method Blk   DA   n3/L   LCS % Rec   88.3   % Rec   LCSD % Rec   93.1   % Rec   LCS/LCSD RPD   5.39 % RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyst  Date/Time  |
| 9 10C<br>10 R320151-60C<br>11 0SC<br>12 03C<br>13 04C<br>14 05C                                                               | Sample ID Result Units Method Blk NA n3/L LCS % Rec 88.3 % Rec LCSD % Rec 93.1 % Rec LCS/LCSD RPD 5.39 % RPD MS % Rec NA % Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyst  Date/Time  |
| 9 10C<br>10 7323151-62C<br>11 05C<br>12 03C<br>13 04C<br>15 05C<br>15 05C                                                     | Sample ID   Result   Units   Method Blk   WA   n3/L   LCS % Rec   88.3   % Rec   LCS/LCSD RPD   5.39 % RPD   MS % Rec   WA   % Rec   MSD % Rec   1% Rec   1% Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyst  Date/Time  |
| 9 10C<br>10 7323151-62C<br>11 05C<br>12 03C<br>13 04C<br>15 05C<br>16 00 P of (1)-07C<br>17 DUPA-20 -08C                      | Sample ID   Result   Units   Method Blk   DA   nJ/L   LCS % Rec   88.3   % Rec   LCS/LCSD RPD   5.31   % RPD   MS % Rec   DA   % Rec   MSD % Rec   1% Rec   MSD % Rec   1% Rec   MS/MSD RPD   1% RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyst  Date/Time  |
| 9 10C<br>10 RYDISI - 60C<br>11 0SC<br>12 03C<br>13 04C<br>15 05C<br>15 06C<br>16 00 P O(L1) - 07C<br>17 DURY - 20 - 08C<br>18 | Sample ID Result Units Method Blk NA n3/L LCS % Rec 88.3 % Rec LCSD % Rec 93.1 % Rec LCS/LCSD RPD 5.39 % RPD MS % Rec NA % Rec MSD % Rec 1% Rec MS/MSD RPD 1% RPD REP RPD 1% RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyst  Date/Time  |
| 9 10C<br>10 R32151-20C<br>11 05C<br>12 03C<br>13 04C<br>15 05C<br>15 05C<br>16 DUP OLL 1-07C<br>17 DUP OLL 1-07C<br>18 19     | Sample ID   Result   Units   Method Blk   DA   nJ/L   LCS % Rec   88.3   % Rec   LCS/LCSD RPD   5.31   % RPD   MS % Rec   DA   % Rec   MSD % Rec   1% Rec   MSD % Rec   1% Rec   MS/MSD RPD   1% RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyst  Date/Time  |
| 9 10C<br>10 RYDISI - 60C<br>11 0SC<br>12 03C<br>13 04C<br>15 05C<br>15 06C<br>16 00 P O(L1) - 07C<br>17 DURY - 20 - 08C<br>18 | Sample ID Result Units Method Blk NA n3/L LCS % Rec 88.3 % Rec LCSD % Rec 93.1 % Rec LCS/LCSD RPD 5.39 % RPD MS % Rec NA % Rec MSD % Rec 1% Rec MS/MSD RPD 1% RPD REP RPD 1% RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyst  Date/Time  |
| 9 10C<br>10 R32151-20C<br>11 05C<br>12 03C<br>13 04C<br>15 05C<br>15 05C<br>16 DUP OLL 1-07C<br>17 DUP OLL 1-07C<br>18 19     | Sample ID   Result   Units   Method Blk   DA   n3/L   LCS % Rec   88.3   % Rec   LCS/LCSD RPD   5.39   % RPD   MS % Rec   DA   % Rec   MSD % Rec   1% Rec   MS/MSD RPD   1% RPD   REP RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% RPD   1% | Analyst  Date/Time  |
| 9 10C 10 R32151-20C 11 05C 12 03C 13 04C 15 05C 16 DUP O(LP)-07C 17 DUPL-20 -08C 18 19 20 120                                 | Sample ID   Result   Units   Method Blk   DA   nJ/L   LCS % Rec   88.3   % Rec   LCSD % Rec   93.1   % Rec   LCS/LCSD RPD   5.31   % RPD   MS % Rec   DA   % Rec   MSD % Rec   1% Rec   MSD % Rec   1% Rec   MS/MSD RPD   1% RPD   REP RPD   1% RPD   10.0/4.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analyst  Date/Time  |
| 9 10C 10 R32151-20C 11 05C 12 03C 13 04C 15 05C 16 DUP O(LP)-07C 17 DUPL-20 -08C 18 19 20 120                                 | Sample ID   Result   Units   Method Blk   WA   nJ/L   LCS % Rec   88.3   % Rec   LCSD % Rec   93.1   % Rec   LCS/LCSD RPD   5.39 % RPD   MS % Rec   WA   % Rec   MSD % Rec   1% Rec   MS/MSD RPD   1% RPD   REP RPD   1% RPD   10.0/4.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IAnalyst !Date/Time |
| 9 10C 10 R32151-20C 11 05C 12 03C 13 04C 15 05C 16 DUP O(LP)-07C 17 DUPL-20 -08C 18 19 20 120                                 | Sample ID   Result   Units   Method Blk   WA   NJ/L   LCS % Rec   88.3   % Rec   LCSD % Rec   93.1   % Rec   LCS/LCSD RPD   5.39 % RPD   MS % Rec   WA   % Rec   MSD % Rec   1% Rec   MS/MSD RPD   1% RPD   REP RPD   1% RPD   1% RPD   10.0/4.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IAnalyst !Date/Time |
| 9 10C 10 R32151-20C 11 05C 12 03C 13 04C 15 05C 16 DUP O(LP)-07C 17 DUPL-20 -08C 18 19 20 120                                 | Sample ID   Result   Units   Method Blk   WA   n3/L   LCS % Rec   88.3   % Rec   LCSD % Rec   93.1   % Rec   LCS/LCSD RPD   5.39 % RPD   MS % Rec   WA   % Rec   MSD % Rec   1% Rec   MSD % Rec   1% Rec   MS/MSD RPD   1% RPD   REP RPD   1% RPD   10.0/4.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IAnalyst !Date/Time |

|                   |                                                            | INSTRUMENT ID: SET (BATCH) #:                                         |                                                                                                  |
|-------------------|------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                   |                                                            |                                                                       | Lab Sample TU'S                                                                                  |
| DL: PQL: 100      | 12.6.10                                                    | MB ID: 17  MS ID: 6  MSD ID: 8  MSD ID: 8  C REP ID: 6  C Batch QC Re | 1 B312147-GC<br>2 -200<br>3 B312078-015<br>4 B312151-020<br>5 -030<br>6 -040<br>7 -050<br>8 -060 |
| nalyst !Date/Time | Result Units Analyst                                       | Sample ID                                                             | 9 -090                                                                                           |
|                   |                                                            | Method Blk                                                            | :1                                                                                               |
|                   |                                                            | LCS % Rec                                                             | 12                                                                                               |
|                   |                                                            | LCSD % Rec                                                            | 13                                                                                               |
|                   |                                                            |                                                                       |                                                                                                  |
|                   | 19.7                                                       |                                                                       |                                                                                                  |
| ·                 |                                                            |                                                                       |                                                                                                  |
| ,                 |                                                            |                                                                       |                                                                                                  |
|                   |                                                            | INFP HPI                                                              | 16                                                                                               |
|                   | 1.15 th por 12/27                                          |                                                                       | 19                                                                                               |
|                   | 98.5 % Rec<br>98.5 % Rec<br>97.0 1% Rec<br>RPD (.53 1% RPD | LCSD % Rec LCS/LCSD R MS % Rec MSD % Rec MS/MSD RPE REP RPD           | 13<br>14<br>15<br>16<br>17                                                                       |

QC BATCH ID FOR WET CHEM - Test Code. CLIC



# ANALYTICAL SERVICES



## CERTIFICATE OF ANALYSIS

IT CORPORATION
1250 CAPITAL OF TX HWY
BLDG. 3, SUITE 200
AUSTIN, TX 78746-6443
TIM JENNINGS

Date: 01/11/94

Work Order: B3-12-246

This is the Certificate of Analysis for the following samples:

Client Work ID: D.O.5001
Date Received: 12/18/93
Number of Samples: 8
Sample Type: WATER

409832-003-01

#### Introduction

Samples were labeled as follows:

| LABORATORY # |
|--------------|
| B3-12-246-01 |
| B3-12-246-02 |
| B3-12-246-03 |
| B3-12-246-04 |
| B3-12-246-05 |
| B3-12-246-06 |
| B3-12-246-07 |
| B3-12-246-08 |
|              |

Reviewed and Approved:

Jon Bartell

Daboratory Director

Page: 2 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-246

## II. QA/QC

The results presented in this report meet the statement of work requirements in accordance with Quality Control and Quality Assurance protocol except as noted in Section IV or in an optional sample narrative at the end of Section III.

In the presented analytical data, 'ND' or '<' indicates that the compound is not detected at the specified limit.

## III. Analytical Data

The following page(s) supply results for requested analyses performed on the samples listed above.

The test results relate to tested items only. ITAS-Austin reserves the right to control report production except in whole.

Page: 3 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-246

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1646
SAMPLE DATE: 12/02/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/29/93
DILUTION FACTOR: 1.0

UNITS: UG/L

| ·                        |            | Re | eporting |                           |        |     | Re | eporting |
|--------------------------|------------|----|----------|---------------------------|--------|-----|----|----------|
|                          | Result Qua | al | Limit    |                           | Result | Qua | 1  | Limit    |
| Chloromethane            | 10         | U  | 10       | 1,2-Dichloropropane       |        | 5   | U  | 5        |
| Bromomethane             | 10         | U  | 10       | trans-1,3-Dichloropropene |        | 5   | U  | 5        |
| Vinyl chloride           | 10         | U  |          | Trichloroethene           |        | 5   | U  | 5        |
| Chloroethane             | 10         | U  | 10       | Chlorodibromomethane      | 1      | . 6 | J  | 5        |
| Methylene chloride       | 1.6        | JB |          | 1,1,2-Trichloroethane     |        | 5   | U  | 5        |
| Acetone                  | 100        | U  |          | Benzene                   |        | 5   | U  | 5        |
| Carbon disulfide         | 5          | U  | 5        | cis-1,3-Dichloropropene   |        | 5   | U  | 5        |
| 1,1-Dichloroethene       | 5          | U  |          | 2-Chloroethylvinyl ether  |        | 10  | U  | 10       |
| 1,1-Dichloroethane       | 5          | U  |          | Bromoform                 |        | 5   | U  | 5        |
| trans-1,2-Dichloroethene | 5          | U  | _        | 2-Hexanone                |        | 50  | U  | 50       |
| cis-1,2-Dichloroethene   | 5          | U  | 5        | 4-Methyl-2-pentanone      |        | 50  | U  | 50       |
| Chloroform               | 5          | Ū  | -        | Tetrachloroethene         |        | 5   | U  | 5        |
| 1,2-Dichloroethane       | 5          | Ū  | 5        | 1,1,2,2-Tetrachloroethane |        | 5   | U  | 5        |
| 2-Butanone               | 100        | Ū  | 100      | Toluene                   |        | 5   | U  | 5        |
| 1,1,1-Trichloroethane    | 5          | Ū  | 5        | Chlorobenzene             |        | 5   | U  | 5        |
| Carbon tetrachloride     | 5          | บ  | 5        | Ethylbenzene              |        | 5   | U  | 5        |
| Vinyl acetate            | 10         | Ū  | 10       | Styrene                   |        | 5   | U  | 5        |
| Dichlorobromomethane     | 5          | U  | 5        | Xylenes, total            |        | 5   | U  | 5        |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 98         | 88 - 110 |
| BROMOFLUOROBENZENE    | 96         | 86 - 115 |
| 1,2-DICHLOROETHANE-D4 | 106        | 76 - 114 |

## Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 4 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

(512) 892-6684 409832-003-01 Work Order: B3-12-246

SAMPLE ID: A1647

SAMPLE DATE: 12/17/93 10:15:00

SAMPLE MATRIX: WATER

|                         | Note |             | Reporting |       | Date            | Method    |
|-------------------------|------|-------------|-----------|-------|-----------------|-----------|
| Test Name               | Ref  | Result      | Limit     | Units | <u>Analyzed</u> | Reference |
| Alkalinity, Titrimetric |      | 260         | 10        | MG/L  | 12/27/93        | EPA310_1  |
| TPH - IR                |      | 1.00        | 1.0       | MG/L  | 12/28/93        | EPA418_1  |
| Phenolics               |      | 0.0100      | 0.010     | MG/L  | 01/06/94        | EPA9066   |
| Chloride by Ion Chrom.  |      | 280         | 25        | MG/L  | 01/10/94        | EPA300_0  |
| Chemical Oxygen Demand  |      | 25 <b>U</b> | 25        | MG/L  | 12/28/93        | EPA410_4  |
| Chromium VI             |      | 0.0100      | 0.010     | MG/L  | 12/18/93        | EPA7196   |
| Nitrate and Nitrite     |      | 10          | 0.50      | MG/L  | 01/05/94        | EPA353_2  |
| Silica                  |      | 8.0         | 2.0       | MG/L  | 12/29/93        | 370_1     |
| Sulfate by Ion Chrom.   |      | 150         | 25        | MG/L  | 01/10/94        | EPA300_0  |
| Total Dissolved Solids  |      | 1000        | 10        | MG/L  | 12/22/93        | EPA160_1  |
| Total Kjeldahl Nitrogen |      | 0.250       | 0.25      | MG/L  | 01/10/94        | EPA351_3  |
| Total Organic Carbon    |      | 1.7         | 1.0       | MG/L  | 12/29/93        | EPA415_1  |
| Total Suspended Solids  |      | 56          | 20        | MG/L  | 12/22/93        | EPA160_2  |
| Total Phosphorus        |      | 0.100       | 0.10      | MG/L  | 01/10/94        | EPA365_3  |

Page: 5 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1647

SAMPLE DATE: 12/17/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/29/93
DILUTION FACTOR: 1.0

UNITS: UG/L

| ·                        |           | Re | eporting |                           |        |      | Re | porting |
|--------------------------|-----------|----|----------|---------------------------|--------|------|----|---------|
|                          | Result Qu | al | Limit    |                           | Result | Qual |    | Limit   |
| Chloromethane            | 10        | U  | 10       | 1,2-Dichloropropane       |        | 5    | U  | 5       |
| Bromomethane             | 10        | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U  | 5       |
| Vinyl chloride           | 10        | U  | 10       | Trichloroethene           | !      | 50   |    | 5       |
| Chloroethane             | 10        | U  | 10       | Chlorodibromomethane      |        | 5    | U  | 5       |
| Methylene chloride       | 10        | U  | 10       | 1,1,2-Trichloroethane     |        | 5    | U  | 5       |
| Acetone                  | 100       | U  | 100      | Benzene                   |        | 5    | U  | 5       |
| Carbon disulfide         | 5         | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | Ū  | 5       |
| 1,1-Dichloroethene       | 5         | U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U  | 10      |
| 1,1-Dichloroethane       | 5         | U  | 5        | Bromoform                 |        | 5    | U  | 5       |
| trans-1,2-Dichloroethene | 5         | U  | 5        | 2-Hexanone                | !      | 50   | U  | 50      |
| cis-1,2-Dichloroethene   | 1.0       | J  | 5        | 4-Methyl-2-pentanone      | !      | 50   | U  | 50      |
| Chloroform               | 5         | U  | 5        | Tetrachloroethene         | •      | 46   |    | 5       |
| 1,2-Dichloroethane       | 5         | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U  | 5       |
| 2-Butanone               | 100       | U  | 100      | Toluene                   |        | 5    | U  | 5       |
| 1,1,1-Trichloroethane    | 5         | U  | 5        | Chlorobenzene             |        | 5    | U  | 5       |
| Carbon tetrachloride     | 5         | U  | 5        | Ethylbenzene              |        | 5    | U  | 5       |
| Vinyl acetate            | 10        | Ū  | 10       | Styrene                   |        | 5    | U  | 5       |
| Dichlorobromomethane     | 5         | U  | 5        | Xvlenes, total            |        | 5    | U  | 5       |

| Surrogates            | % Recovery | Limits   |  |  |  |  |
|-----------------------|------------|----------|--|--|--|--|
| TOLUENE-D8            | 99         | 88 - 110 |  |  |  |  |
| BROMOFLUOROBENZENE    | 95         | 86 - 115 |  |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 108        | 76 - 114 |  |  |  |  |

## Data Qualifier Key:

U - none detected

J - estimated value (less than the sample quantitation limit)

B - analyte is found in the associated blank as well as in the sample

'blank' - positive result

\* - Surrogate recovery is outside QC limit

D - compound identified at a secondary dilution factor

E - concentration exceeds calibration range

Page: 6 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1647 SAMPLE DATE: 12/17/93 SAMPLE MATRIX: WATER

EXTRACTION DATE: 01/05/94
ANALYSIS DATE: 01/06/94
DILUTION FACTOR: 1.0

Reportin UNITS: UG/L Reporting Limit Result Qual Result Qual Limit 10 IJ 10 Phenol 10 U 10 2,6-Dinitrotoluene bis(2-Chloroethyl)ether 10 U 10 3-Nitroaniline 25 U 25 U 2-Chlorophenol 10 U 10 Acenaphthene 10 10 1,3-Dichlorobenzene 25 U 25 10 Ħ 10 2,4-Dinitrophenol U 25 1,4-Dichlorobenzene 10 U 10 4-Nitrophenol 25 10 U 10 Benzyl alcohol 10 17 10 Dibenzofuran 1,2-Dichlorobenzene 10 11 10 2,4-Dinitrotoluene 10 U 10 10 U 10 2-Methylphenol 10 U 10 Diethylphthalate 10 U 10 bis(2-Chloroisopropyl)ether 10 U 10 4-Chlorophenyl-phenylether U 10 10 4-Methylphenol 10 U 10 Fluorene 10 U 10 N-Nitroso-di-n-propylamine 10 Ħ 10 4-Nitroaniline 25 Hexachloroethane 10 U 10 4,6-Dinitro-2-methylphenol 25 U Nitrobenzene 10 10 U 10 10 TT N-Nitrosodiphenylamine (1) 10 10 U Isophorone 10 10 4-Bromophenyl-phenylether IJ 10 TT 10 2-Nitrophenol 10 TT 10 Hexachlorobenzene 25 U 25 2,4-Dimethylphenol 10 U 10 Pentachlorophenol Benzoic Acid 10 U 10 Phenanthrene 10 U 10 U 10 bis(2-Chloroethoxy)methane 10 Ħ 10 Anthracene 10 2,4-Dichlorophenol 10 U 10 10 U 10 Di-n-butylphthalate U 10 1,2,4-Trichlorobenzene 10 U 10 10 Fluoranthene 10 U 10 Naphthalene 10 U 10 Pvrene 10 4-Chloroaniline 10 10 Butylbenzylphthalate 10 U Hexachlorobutadiene 10 U 10 10 Ħ 10 3,3'-Dichlorobenzidine 4-Chloro-3-methylphenol 10 TT 10 Benzo(a) anthracene 10 U 10 2-Methylnaphthalene 10 U 10 10 U 10 Chrysene Hexachlorocyclopentadiene 1.1 J 10 10 U 10 bis(2-Ethylhexyl)phthalate 10 U 10 2,4,6-Trichlorophenol 10 U 10 Di-n-octylphthalate 2,4,5-Trichlorophenol 10 U 10 Benzo(b) fluoranthene 10 U 10 2-Chloronaphthalene 10 U 10 10 10 П Benzo(k)fluoranthene 2-Nitroaniline 25 U 25 10 U 10 Benzo(a)pyrene Dimethylphthalate 10 U 10 10 U 10 Indeno(1,2,3-cd)pyrene U Acenaphthylene 10 10 10 Ħ 10 Dibenzo(a,h)anthracene 10 10 Benzo(g,h,i)perylene

Page: 7 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: RPA8270

SAMPLE ID: A1647 SAMPLE DATE: 12/17/93 SAMPLE MATRIX: WATER

| Surrogates ·         | % Recovery | Limits   |
|----------------------|------------|----------|
| Nitrobenzene-D5      | 90         | 35 - 114 |
| 2-Fluorobiphenyl     | 83         | 43 - 116 |
| Terphenyl-D14        | 105        | 33 - 141 |
| Phenol-D5            | 34         | 10 - 94  |
| 2-Fluorophenol       | 53         | 21 - 100 |
| 2,4,6-Tribromophenol | 86         | 10 - 123 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

## Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

## Referenced notes for these results:

Sample was originally extracted 12/22/93 and analyzed 12/31/93. The Blank Spike and the Matrix Spike Duplicate were outside acceptance limits. Sample was re-extracted 1/5/94 and reanalyzed 1/6/94. Results are reported from the reanalysis.

Page: 8 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1647

UNITS:

SAMPLE DATE: 12/17/93
SAMPLE MATRIX: WATER
PREP DATE: 12/28/93
ANALYSIS DATE: 12/29/93
DILUTION FACTOR: 1.00000

| MG/L      |        |      | Reporting |
|-----------|--------|------|-----------|
|           | Result | Qual | Limit     |
| Aluminum  | 2.2    |      | 0.20      |
| Barium    | 0.20   | U    | 0.20      |
| Cadmium   | 0.0050 | U    | 0.0050    |
| Calcium   | 95     |      | 5.0       |
| Chromium  | 0.052  |      | 0.010     |
| Copper    | 0.025  | U    | 0.025     |
| Iron      | 1.9    |      | 0.10      |
| Magnesium | 78     |      | 5.0       |
| Manganese | 0.040  |      | 0.015     |
| Nickel    | 0.040  | U    | 0.040     |
| Potassium | 5.0    | U    | 5.0       |
| Selenium  | 0.010  | U    | 0.010     |
| Silver    | 0.010  | U    | 0.010     |
| Sodium    | 160    |      | 5.0       |
| Zinc      | 0.020  | U    | 0.020     |

## Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 9 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-246

SAMPLE ID: A1648

SAMPLE DATE: 12/17/93 10:30:00

SAMPLE MATRIX: WATER

|                         | Note |              | Reporting |       | Date            | Method    |
|-------------------------|------|--------------|-----------|-------|-----------------|-----------|
| Test Name               | Ref  | Result       | Limit     | Units | <u>Analyzed</u> | Reference |
| Alkalinity, Titrimetric |      | 390          | 10        | MG/L  | 12/27/93        | EPA310_1  |
| TPH - IR                |      | ០.96ប        | 0.96      | MG/L  | 12/28/93        | EPA418_1  |
| Phenolics               |      | 0.0100       | 0.010     | MG/L  | 01/06/94        | EPA9066   |
| Chloride by Ion Chrom.  |      | 9.9          | 5.0       | MG/L  | 01/10/94        | EPA300_0  |
| Chemical Oxygen Demand  |      | 2 <b>5</b> U | 25        | MG/L  | 12/28/93        | EPA410_4  |
| Chromium VI             |      | 0.0100       | 0.010     | MG/L  | 12/18/93        | EPA7196   |
| Nitrate and Nitrite     |      | 5.3          | 0.50      | MG/L  | 01/05/94        | EPA353_2  |
| Silica                  |      | 11           | 5.0       | MG/L  | 12/29/93        | 370_1     |
| Sulfate by Ion Chrom.   |      | 17           | 5.0       | MG/L  | 01/10/94        | EPA300_0  |
| Total Dissolved Solids  |      | 450          | 10        | MG/L  | 12/22/93        | EPA160_1  |
| Total Kjeldahl Nitrogen |      | 0.250        | 0.25      | MG/L  | 01/10/94        | EPA351_3  |
| Total Organic Carbon    |      | 1.00         | 1.0       | MG/L  | 12/29/93        | EPA415_1  |
| Total Suspended Solids  |      | 45           | 10        | MG/L  | 12/22/93        | EPA160_2  |
| Total Phosphorus        |      | 0.100        | 0.10      | MG/L  | 01/10/94        | EPA365_3  |

Page: 10 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1648
SAMPLE DATE: 12/17/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/29/93
DILUTION FACTOR: 1.0

UNITS: UG/L

|                          |            | _  |          |                           |        |      | _ |         |
|--------------------------|------------|----|----------|---------------------------|--------|------|---|---------|
|                          |            | Re | eporting |                           |        |      |   | porting |
|                          | Result Qua | 1  | Limit    |                           | Result | Qua] | L | Limit   |
| Chloromethane            | 10         | บ  | 10       | 1,2-Dichloropropane       |        | 5    | U | 5       |
| Bromomethane             | 10         | U  | 10       | trans-1,3-Dichloropropene |        | 5    | U | 5       |
| Vinyl chloride           | 10         | U  | 10       | Trichloroethene           |        | . 5  | J | 5       |
| Chloroethane             | 10         | U  | 10       | Chlorodibromomethane      |        | 5    | U | 5       |
| Methylene chloride       | 10         | U  | 10       | 1,1,2-Trichloroethane     |        | 5    | U | 5       |
| Acetone                  | 100        | U  | 100      | Benzene                   |        | 5    | U | 5       |
| Carbon disulfide         | 5          | U  | 5        | cis-1,3-Dichloropropene   |        | 5    | U | 5       |
| 1,1-Dichloroethene       | 5          | U  | 5        | 2-Chloroethylvinyl ether  |        | 10   | U | 10      |
| 1,1-Dichloroethane       | 5          | U  | 5        | Bromoform                 |        | 5    | U | 5       |
| trans-1,2-Dichloroethene | 5          | U  | 5        | 2-Hexanone                |        | 50   | U | 50      |
| cis-1,2-Dichloroethene   | 5          | U  | 5        | 4-Methyl-2-pentanone      |        | 50   | U | 50      |
| Chloroform               | 5          | U  | 5        | Tetrachloroethene         |        | 5    | U | 5       |
| 1,2-Dichloroethane       | 5          | U  | 5        | 1,1,2,2-Tetrachloroethane |        | 5    | U | 5       |
| 2-Butanone               | 100        | U  | 100      | Toluene                   |        | 5    | U | 5       |
| 1,1,1-Trichloroethane    | 5          | U  | 5        | Chlorobenzene             |        | 5    | U | 5       |
| Carbon tetrachloride     | 5          | U  | 5        | Ethylbenzene              |        | 5    | U | 5       |
| Vinyl acetate            | 10         | U  | 10       | Styrene                   |        | 5    | U | 5       |
| Dichlorobromomethane     | 5          | U  | 5        | Xylenes, total            |        | 5    | U | 5       |
|                          |            |    |          | =                         |        |      |   |         |

| Surrogates            | % Recovery | Limits   |  |  |  |  |
|-----------------------|------------|----------|--|--|--|--|
| TOLUENE-D8            | 99         | 88 - 110 |  |  |  |  |
| BROMOFLUOROBENZENE    | 94         | 86 - 115 |  |  |  |  |
| 1,2-DICHLOROETHANE-D4 | 105        | 76 - 114 |  |  |  |  |

## Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 11 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001 409832-003-01 Work Order: B3-12-246

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1648
SAMPLE DATE: 12/17/93
SAMPLE MATRIX: WATER

EXTRACTION DATE: 01/05/94
ANALYSIS DATE: 01/06/94
DILUTION FACTOR: 1.0

| UNITS: UG/L                               |        | R          | eporting |                                  |        | 1            | Reportin |
|-------------------------------------------|--------|------------|----------|----------------------------------|--------|--------------|----------|
| Res                                       | ult    | Qual       | Limit    |                                  | Result | Qual         | Limit    |
| Phone                                     | -      |            |          | 0.6.01.11.004.1.000              |        |              | 10       |
| Phenol                                    | 1      | -          | 10       | 2,6-Dinitrotoluene               | _      | .0 U         | 10       |
| bis(2-Chloroethyl)ether                   | 1      |            | 10       | 3-Nitroaniline                   |        | .5 U         | 25       |
| 2-Chlorophenol                            | 1      |            | 10       | Acenaphthene                     |        | υ 0.         | 10       |
| 1,3-Dichlorobenzene                       | 1      |            | 10       | 2,4-Dinitrophenol                |        | !5 บ<br>!5 บ | 25<br>25 |
| 1,4-Dichlorobenzene                       | 1      |            | 10       | 4-Nitrophenol                    | _      | .5 U         | 25<br>10 |
| Benzyl alcohol                            | 1      |            | 10       | Dibenzofuran                     | _      | -            |          |
| 1,2-Dichlorobenzene                       | 1      |            | 10       | 2,4-Dinitrotoluene               |        |              | 10       |
| 2-Methylphenol                            | 1      |            | 10       | Diethylphthalate                 | _      | -            | 10       |
| bis(2-Chloroisopropyl)ether               | 1      |            | 10       | 4-Chlorophenyl-phenylether       |        | .0 บ<br>บ 0. |          |
| 4-Methylphenol N-Nitroso-di-n-propylamine | 1      |            | 10       | Fluorene                         |        | .0 U         | 10       |
| Hexachloroethane                          | 1      | _          | 10       | 4-Nitroaniline                   | _      | -            | 25       |
| Nitrobenzene                              | 1      |            |          | 4,6-Dinitro-2-methylphenol       |        | .0 U         | 25<br>10 |
| Isophorone                                | 1      |            |          | N-Nitrosodiphenylamine (1)       | ·      | .0 ช.        | 10       |
| 2-Nitrophenol                             | 1      |            |          | 4-Bromophenyl-phenylether        |        | .ט ט         | 10       |
| 2,4-Dimethylphenol                        | 1<br>1 | -          |          | Hexachlorobenzene                | _      | 25 T         |          |
| Benzoic Acid                              | 1      | _          |          | Pentachlorophenol Phenanthrene   |        | .5 U         |          |
| bis(2-Chloroethoxy)methane                | 1      |            | 10<br>10 |                                  | _      | ט סו         |          |
| 2,4-Dichlorophenol                        | 1      |            |          | Anthracene                       | -      | .0 U         |          |
| 1,2,4-Trichlorobenzene                    | 1      |            | 10<br>10 | Di-n-butylphthalate Fluoranthene | _      | .0 U         | 10       |
| Naphthalene                               | 1      |            | 10       |                                  | _      | .0 ט         | 10       |
| 4-Chloroaniline                           | 1      | -          | 10       | Pyrene                           | _      | .0 ป.        | 10       |
| Hexachlorobutadiene                       | 1      |            | 10       | Butylbenzylphthalate             | _      | .0 U         | 10       |
| 4-Chloro-3-methylphenol                   | 1      | _          | 10       | 3,3'-Dichlorobenzidine           | _      | .0 U         |          |
| 2-Methylnaphthalene                       | 1      |            | 10       | Benzo(a)anthracene               |        | .O U         | 10       |
| Hexachlorocyclopentadiene                 | 1      |            | 10       | Chrysene                         | -      | -            | 10       |
| 2,4,6-Trichlorophenol                     | 1      | _          | 10       | bis(2-Ethylhexyl)phthalate       |        | .0 U         | 10       |
| 2,4,5-Trichlorophenol                     | 1      | -          | 10       | Di-n-octylphthalate              | _      | .0 U         | 10       |
| 2-Chloronaphthalene                       | 1      | _          |          | Benzo(b)fluoranthene             | -      | .0 U         | 10       |
| 2-Nitroaniline                            | 2      | _          | 10       | Benzo(k)fluoranthene             | _      | .0 ט         | 10       |
| Dimethylphthalate                         | 1      | -          | 25<br>10 | Benzo(a)pyrene                   | _      | .0 U         |          |
| Acenaphthylene                            | 1      |            | 10       | Indeno(1,2,3-cd)pyrene           |        | .0 บ         | 10       |
| ncenaphony tene                           | 1      | <b>0</b> U | 10       | Dibenzo(a,h)anthracene           | _      | .0 U         | 10       |
|                                           |        |            |          | Benzo(g,h,i)perylene             | 1      | .0 0         | 10       |

Page: 12 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1648
SAMPLE DATE: 12/17/93
SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |  |  |
|----------------------|------------|----------|--|--|
| Nitrobenzene-D5      | 69         | 35 - 114 |  |  |
| 2-Fluorobiphenyl     | 66         | 43 - 116 |  |  |
| Terphenyl-D14        | 78         | 33 - 141 |  |  |
| Phenol-D5            | 26         | 10 - 94  |  |  |
| 2-Fluorophenol       | 44         | 21 - 100 |  |  |
| 2,4,6-Tribromophenol | 66         | 10 - 123 |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

## Data Qualifier Key:

U - none detected

J - estimated value (less than the sample quantitation limit)

B - analyte is found in the associated blank as well as in the sample

'blank' - positive result

\* - Surrogate recovery is outside QC limit

D - compound identified at a secondary dilution factor

E - concentration exceeds calibration range

## Referenced notes for these results:

Sample was originally extracted 12/22/93 and analyzed 12/31/93. The Blank Spike and the Matrix Spike Duplicate were outside acceptance limits. Sample was re-extracted 1/5/94 and reanalyzed 1/6/94. Results are reported from the reanalysis.

Page: 13 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1648

SAMPLE DATE: 12/17/93
SAMPLE MATRIX: WATER
PREP DATE: 12/28/93
ANALYSIS DATE: 12/29/93
DILUTION FACTOR: 1.00000

UNITS: MG/L

| MG/L      |        |      | Reporting |  |
|-----------|--------|------|-----------|--|
|           | Result | Qual | Limit     |  |
| Aluminum  | 1.5    |      | 0.20      |  |
| Barium    | 0.56   |      | 0.20      |  |
| Cadmium   | 0.0050 | U    | 0.0050    |  |
| Calcium   | 68     |      | 5.0       |  |
| Chromium  | 0.021  |      | 0.010     |  |
| Copper    | 0.025  | U    | 0.025     |  |
| Iron      | 1.1    |      | 0.10      |  |
| Magnesium | 42     |      | 5.0       |  |
| Manganese | 0.016  |      | 0.015     |  |
| Nickel    | 0.040  | U    | 0.040     |  |
| Potassium | 5.0    | U    | 5.0       |  |
| Selenium  | 0.010  | U    | 0.010     |  |
| Silver    | 0.010  | Ū    | 0.010     |  |
| Sodium    | 45     |      | 5.0       |  |
| Zinc      | 0.020  | U    | 0.020     |  |
|           |        |      |           |  |

## Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 14 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

SAMPLE ID: A1648-MS

SAMPLE DATE: 12/17/93 10:30:00

SAMPLE MATRIX: WATER

|                         | Note |        | Reporting |       | Date     | Method    |
|-------------------------|------|--------|-----------|-------|----------|-----------|
| Test Name               | Ref  | Result | Limit     | Units | Analyzed | Reference |
| Alkalinity, Titrimetric | 1    | 390    |           | MG/L  | 12/27/93 | EPA310_1  |
| TPH - IR                |      | 87     |           | % REC | 12/28/93 | EPA418_1  |
| Phenolics               |      | 95     |           | % REC | 01/06/94 | EPA9066   |
| Chloride by Ion Chrom.  |      | 93     |           | % REC | 01/10/94 | EPA300_0  |
| Chemical Oxygen Demand  |      | 101    |           | % REC | 12/28/93 | EPA410_4  |
| Chromium VI             |      | 102    |           | % REC | 12/18/93 | EPA7196   |
| Nitrate and Nitrite     |      | 90     |           | % REC | 01/05/94 | EPA353_2  |
| Silica                  |      | 126    | 5.0       | % REC | 12/29/93 | 370_1     |
| Sulfate by Ion Chrom.   |      | 84     |           | % REC | 01/10/94 | EPA300_0  |
| Total Dissolved Solids  | 2    | 440    | 10        | MG/L  | 12/22/93 | EPA160_1  |
| Total Kjeldahl Nitrogen |      | 100    |           | % REC | 01/10/94 | EPA351_3  |
| Total Organic Carbon    |      | 102    |           | % REC | 12/29/93 | EPA415_1  |
| Total Suspended Solids  | 3    | 47     | 10        | MG/L  | 12/22/93 | EPA160_2  |
| Total Phosphorus        |      | 105    |           | % REC | 01/10/94 | EPA365_3  |

## Referenced notes for these results:

- 1 Duplicate analysis performed in lieu of a matrix spike.
- 2 Duplicate analysis performed in lieu of a matrix spike.
- 3 Duplicate analysis performed in lieu of a matrix spike.

Page: 15 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1648-MS
SAMPLE DATE: 12/17/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/29/93
DILUTION FACTOR: 1.0

UNITS: % REC

|                    | Result      |    |             |          | Result |
|--------------------|-------------|----|-------------|----------|--------|
| 1,1-Dichloroethene | 8           | 38 | Trichloroet | hene     | 88     |
|                    |             |    | Benzene     |          | 91     |
|                    |             |    | Toluene     |          | 100    |
|                    |             |    | Chlorobenze | ene      | 100    |
|                    | Surrogates  | \$ | Recovery    | Limits   |        |
|                    | TOI HENE-DO |    | 100         | 99 - 110 |        |

| Surrogaces            | * vecovery | TIMITES  |  |  |
|-----------------------|------------|----------|--|--|
| TOLUENE-D8            | 100        | 88 - 110 |  |  |
| BROMOFLUOROBENZENE    | 97         | 86 - 115 |  |  |
| 1,2-DICHLOROETHANE-D4 | 104        | 76 - 114 |  |  |

### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 16 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: KPA8270

SAMPLE ID: A1648-MS
SAMPLE DATE: 12/17/93
SAMPLE MATRIX: WATER

EXTRACTION DATE: 01/05/94
ANALYSIS DATE: 01/06/94
DILUTION FACTOR: 2.2

UNITS: % REC

| R                          | Result |                    |     |
|----------------------------|--------|--------------------|-----|
| Phenol                     | 38     | Acenaphthene       | 102 |
| 2-Chlorophenol             | 92     | 4-Nitrophenol      | 36  |
| 1,4-Dichlorobenzene        | 85     | 2,4-Dinitrotoluene | 94  |
| N-Nitroso-di-n-propylamine | 103    | Pentachlorophenol  | 90  |
| 1,2,4-Trichlorobenzene     | 80     | Pyrene             | 123 |
| 4-Chloro-3-methylphenol    | 94     | -                  |     |

| Surrogates           | <pre>% Recovery</pre> | Limits   |
|----------------------|-----------------------|----------|
| Nitrobenzene-D5      | 97                    | 35 - 114 |
| 2-Fluorobiphenyl     | 82                    | 43 - 116 |
| Terphenyl-D14        | 113                   | 33 - 141 |
| Phenol-D5            | 40                    | 10 - 94  |
| 2-Fluorophenol       | 58                    | 21 - 100 |
| 2,4,6-Tribromophenol | 90                    | 10 - 123 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

#### Referenced notes for these results:

Sample was originally extracted 12/22/93 and analyzed 12/31/93. The Blank Spike and the Matrix Spike Duplicate were outside acceptance limits. Sample was re-extracted 1/5/94 and reanalyzed 1/6/94. Results are reported from the reanalysis.

Page: 17 of 35

Company: IT CORPORATION

Date: 01/11/94

UNITS:

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1648-MS
SAMPLE DATE: 12/17/93
SAMPLE MATRIX: WATER
PREP DATE: 12/28/93
ANALYSIS DATE: 12/29/93
DILUTION FACTOR: 1.00000

| % REC     | Result |
|-----------|--------|
| Aluminum  | 101    |
| Barium    | 97     |
| Cadmium   | 97     |
| Calcium   | 109    |
| Chromium  | 97     |
| Copper    | 96     |
| Iron      | 99     |
| Magnesium | 104    |
| Manganese | 94     |
| Nickel    | 94     |
| Potassium | 111    |
| Selenium  | 99     |
| Silver    | 95     |
| Sodium    | 65     |
| Zinc      | 96     |

### Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

### Referenced notes for these results:

Matrix spike outside control limits due to matrix interference on sodium and calcium analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

Page: 18 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX

(512) 892-6684

409832-003-01 Work Order: B3-12-246

SAMPLE ID: A1648-MSD

SAMPLE DATE: 12/17/93 10:30:00

SAMPLE MATRIX: WATER

|                         | Note |        | Reporting |       | Date     | Method    |
|-------------------------|------|--------|-----------|-------|----------|-----------|
| Test Name               | Ref  | Result | _         | Units | Analyzed | Reference |
| Alkalinity, Titrimetric |      | 390    | 10        | MG/L  | 12/27/93 | EPA310_1  |
| TPH - IR                |      | 88     |           | % REC | 12/28/93 | EPA418_1  |
| Phenolics               |      | 87     |           | % REC | 01/06/94 | EPA9066   |
| Chloride by Ion Chrom.  |      | 89     |           | % REC | 01/10/94 | EPA300_0  |
| Chemical Oxygen Demand  |      | 104    |           | % REC | 12/28/93 | EPA410_4  |
| Chromium VI             |      | 98     |           | % REC | 12/18/93 | EPA7196   |
| Nitrate and Nitrite     |      | 91     |           | % REC | 01/05/94 | EPA353 2  |
| Silica                  |      | 126    | 5.0       | % REC | 12/29/93 | 370 1     |
| Sulfate by Ion Chrom.   |      | 81     |           | % REC | 01/10/94 | EPA300 0  |
| Total Dissolved Solids  | 2    | 440    | 10        | MG/L  | 12/22/93 | EPA160 1  |
| Total Kjeldahl Nitrogen |      | 102    |           | % REC | 01/10/94 | EPA351 3  |
| Total Organic Carbon    |      | 99     |           | % REC | 12/29/93 | EPA415 1  |
| Total Suspended Solids  | 3    | 48     | 10        | MG/L  | 12/22/93 | EPA160 2  |
| Total Phosphorus        | _    | 104    |           | % REC | 01/10/94 | EPA365_3  |

### Referenced notes for these results:

- 1 Duplicate analysis performed in lieu of a matrix spike.
- 2 Duplicate analysis performed in lieu of a matrix spike.
- 3 Duplicate analysis performed in lieu of a matrix spike.

Page: 19 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

88 - 110

86 - 115

76 - 114

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: A1648-MSD
SAMPLE DATE: 12/17/93
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/29/93
DILUTION FACTOR: 1.0

UNITS: % REC

|                    | Result     |                   | Result |
|--------------------|------------|-------------------|--------|
| 1,1-Dichloroethene | 84         | Trichloroethene   | 84     |
|                    |            | Benzene           | 88     |
|                    |            | Toluene           | 96     |
|                    |            | Chlorobenzene     | 97     |
|                    | Surrogates | % Recovery Limits |        |

### Data Qualifier Key:

U - none detected

TOLUENE-D8

BROMOFLUOROBENZENE

1,2-DICHLOROETHANE-D4

- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample

98

93

107

- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 20 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

Pegul+

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: A1648-MSD SAMPLE DATE: 12/17/93 SAMPLE MATRIX: WATER

EXTRACTION DATE: 01/05/94
ANALYSIS DATE: 01/06/94
DILUTION FACTOR: 2.2

UNITS: % REC

| Res                        | REBUIL |                    |     |
|----------------------------|--------|--------------------|-----|
| Phenol                     | 39     | Acenaphthene       | 102 |
| 2-Chlorophenol             | 90     | 4-Nitrophenol      | 37  |
| 1,4-Dichlorobenzene        | 91     | 2,4-Dinitrotoluene | 94  |
| N-Nitroso-di-n-propylamine | 101    | Pentachlorophenol  | 92  |
| 1,2,4-Trichlorobenzene     | 84     | Pyrene             | 124 |
| 4-Chloro-3-methylphenol    | 97     |                    |     |

| <pre>% Recovery</pre> | Limits                      |
|-----------------------|-----------------------------|
| 97                    | 35 - 114                    |
| 84                    | 43 - 116                    |
| 114                   | 33 - 141                    |
| 40                    | 10 - 94                     |
| 61                    | 21 - 100                    |
| 92                    | 10 - 123                    |
|                       | 97<br>84<br>114<br>40<br>61 |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- $\mbox{\ensuremath{B}}\mbox{\ensuremath{-}}$  analyte is found in the associated blank as well as in the sample 'blank' positive result
  - \* Surrogate recovery is outside QC limit
    - D compound identified at a secondary dilution factor
    - E concentration exceeds calibration range

### Referenced notes for these results:

Sample was originally extracted 12/22/93 and analyzed 12/31/93. The Blank Spike and the Matrix Spike Duplicate were outside acceptance limits. Sample was re-extracted 1/5/94 and reanalyzed 1/6/94. Results are reported from the reanalysis.

Page: 21 of 35

Company: IT CORPORATION

Date: 01/11/94

UNITS:

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: A1648-MSD **SAMPLE DATE: 12/17/93** SAMPLE MATRIX: WATER PREP DATE: 12/28/93 ANALYSIS DATE: 12/29/93 DILUTION FACTOR: 1.00000

| % REC     | Result |
|-----------|--------|
| Aluminum  | 101    |
| Barium    | 100    |
| Cadmium   | 98     |
| Calcium   | 130    |
| Chromium  | 97     |
| Copper    | 96     |
| Iron      | 100    |
| Magnesium | 117    |
| Manganese | 94     |
| Nickel    | 95     |
| Potassium | 113    |
| Selenium  | 99     |
| Silver    | 95     |
| Sodium    | 77     |
| Zinc      | 96     |

### Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA < 0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

#### Referenced notes for these results:

Matrix spike duplicate outside control limits due to matrix interference on sodium and calcium analysis by ICPES. LCS / LCSD results and method Quality Control were acceptable.

Page: 22 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 Work Order: B3-12-246 409832-003-01

SAMPLE ID: A1649

SAMPLE DATE: 12/17/93 12:00:00

SAMPLE MATRIX: SOIL

|                    | Note |        | Reporting |       | Date Method        |  |
|--------------------|------|--------|-----------|-------|--------------------|--|
| Test Name          | Ref  | Result | Limit     | Units | Analyzed Reference |  |
| 9071/418.1 for TPH |      | 1700   | 250       | MG/KG | 12/30/93 EPA9071   |  |

Page: 23 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: BTEX - Purge and Trap

METHOD REFERENCE: EPA8020

SAMPLE ID: A1649

SAMPLE DATE: 12/17/93
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/23/93
DILUTION FACTOR: 50

| UNITS: UG/KG |                 | Result | Reporting<br>Limit |
|--------------|-----------------|--------|--------------------|
|              |                 | Kebuit |                    |
|              | Benzene         | ND     | 50                 |
|              | Ethylbenzene    | ND     | 50                 |
|              | Toluene         | ND     | 50                 |
|              | Xylenes (total) | ND     | 50                 |

Total BTEX concentration: Not Detected

Page: 24 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-246

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: WATER

|                         | Note |             | Reporting |       | Date            | Method          |
|-------------------------|------|-------------|-----------|-------|-----------------|-----------------|
| Test Name               | Ref  | Result      | Limit     | Units | <u>Analyzed</u> | Reference       |
| Alkalinity, Titrimetric |      | 100         | 10        | MG/L  | 12/27/93        | EPA310_1        |
| TPH - IR                |      | 1.00        | 1.0       | MG/L  | 12/28/93        | EPA418_1        |
| Phenolics               |      | 0.0100      | 0.010     | MG/L  | 01/06/94        | EPA9066         |
| Chloride by Ion Chrom.  |      | 1.00        | 1.0       | MG/L  | 01/10/94        | <b>EPA300_0</b> |
| Chemical Oxygen Demand  |      | 25 <b>U</b> | 25        | MG/L  | 12/28/93        | EPA410_4        |
| Chromium VI             |      | 0.0100      | 0.010     | MG/L  | 12/18/93        | EPA7196         |
| Nitrate and Nitrite     |      | 0.0500      | 0.050     | MG/L  | 01/05/94        | EPA353_2        |
| Silica                  |      | 0.20U       | 0.20      | MG/L  | 12/29/93        | 370_1           |
| Sulfate by Ion Chrom.   |      | 1.00        | 1.0       | MG/L  | 01/10/94        | EPA300_0        |
| Total Dissolved Solids  |      | 100         | 10        | MG/L  | 12/22/93        | EPA160_1        |
| Total Kjeldahl Nitrogen |      | 0.250       | 0.25      | MG/L  | 01/10/94        | EPA351_3        |
| Total Organic Carbon    |      | 1.00        | 1.0       | MG/L  | 12/29/93        | EPA415_1        |
| Total Suspended Solids  |      | 100         | 10        | MG/L  | 12/22/93        | EPA160_2        |
| Total Phosphorus        |      | 0.100       | 0.10      | MG/L  | 01/10/94        | EPA365_3        |

Page: 25 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: Hazardous Substance Vols.

METHOD REFERENCE: EPA8240

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: WATER
ANALYSIS DATE: 12/29/93
DILUTION FACTOR: 1.0

UNITS: UG/L

| ORIIS. OG/L              |        |      | _   |         |                           |        |      | Do. | porting |
|--------------------------|--------|------|-----|---------|---------------------------|--------|------|-----|---------|
|                          |        |      |     | porting |                           | D1+    |      |     | Limit   |
|                          | Result | Qual | 1   | Limit   |                           | Result | Quar | •   | TIMIT   |
| Chloromethane            | 1      | LO ' | U . | 10      | 1,2-Dichloropropane       |        | 5    | U   | 5       |
| Bromomethane             | 1      | LO   | U   | 10      | trans-1,3-Dichloropropene |        | 5    | U   | 5       |
| Vinyl chloride           |        | LO   | U   | 10      | Trichloroethene           |        | 5    | U   | 5       |
| Chloroethane             |        | LO   | U   | 10      | Chlorodibromomethane      |        | 5    | U   | 5       |
| Methylene chloride       | 1.     | . 0  | J   | 10      | 1,1,2-Trichloroethane     |        | 5    | U   | 5       |
| Acetone                  | 10     | 00   | U   | 100     | Benzene                   |        | 5    | U   | 5       |
| Carbon disulfide         |        | 5    | U   | 5       | cis-1,3-Dichloropropene   |        | 5    | U   | 5       |
| 1,1-Dichloroethene       |        | 5    | U   | 5       | 2-Chloroethylvinyl ether  |        | 10   | U   | 10      |
| 1,1-Dichloroethane       |        | 5    | U   | 5       | Bromoform                 |        | 5    | U   | 5       |
| trans-1,2-Dichloroethene |        | 5    | U   | 5       | 2-Hexanone                |        | 50   | U   | 50      |
| cis-1,2-Dichloroethene   |        | 5    | U   | 5       | 4-Methyl-2-pentanone      |        | 50   | U   | 50      |
| Chloroform               |        | 5    | U   | 5       | Tetrachloroethene         |        | 5    | U   | 5       |
| 1,2-Dichloroethane       |        | 5    | U   | 5       | 1,1,2,2-Tetrachloroethane |        | 5    | U   | 5       |
| 2-Butanone               | 10     | 00   | U   | 100     | Toluene                   |        | 5    | U   | 5       |
| 1,1,1-Trichloroethane    |        | 5    | U   | 5       | Chlorobenzene             |        | 5    | U   | 5       |
| Carbon tetrachloride     |        | 5    | U   | 5       | Ethylbenzene              |        | 5    | U   | 5       |
| Vinyl acetate            |        | 10   | U   | 10      | Styrene                   |        | 5    | U   | 5       |
| Dichlorobromomethane     |        | 5    | U   | 5       | Xylenes, total            |        | 5    | U   | 5       |

| Surrogates            | % Recovery | Limits   |
|-----------------------|------------|----------|
| TOLUENE-D8            | 101        | 88 - 110 |
| BROMOFLUOROBENZENE    | 99         | 86 - 115 |
| 1,2-DICHLOROETHANE-D4 | 100        | 76 - 114 |

### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

Page: 26 of 35

Company: IT CORPORATION

Date: 01/11/94

2,4,5-Trichlorophenol

2-Chloronaphthalene

Dimethylphthalate

2-Nitroaniline

Acenaphthylene

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1 SAMPLE DATE: not spec SAMPLE MATRIX: WATER EXTRACTION DATE: 01/05/94

ANALYSIS DATE: 01/06/94

|                            | 01/06/94 |      |          |                            |        |      |        |
|----------------------------|----------|------|----------|----------------------------|--------|------|--------|
| DILUTION FACTOR:           | 1.0      |      |          |                            |        | T    | eporti |
| UNITS: UG/L                | Dag. 14  |      | eporting |                            | Result | Qual | Limit  |
|                            | Result   | Quar | Limit    |                            | VERGIC | Quul | 2220   |
| Phenol                     | 1        | υ 0  | 10       | 2,6-Dinitrotoluene         | 10     | _    | 10     |
| bis(2-Chloroethyl)ether    | 1        | U 0  | 10       | 3-Nitroaniline             | 25     | 5 U  | 25     |
| 2-Chlorophenol             | 1        | υ 0  | 10       | Acenaphthene               | 10     | ט כ  | 10     |
| 1,3-Dichlorobenzene        | 1        | υ 0  | 10       | 2,4-Dinitrophenol          | 2      | ט 5  | 25     |
| 1,4-Dichlorobenzene        | 1        | υ 0  | 10       | 4-Nitrophenol              | 2      | 5 U  | 25     |
| Benzyl alcohol             | 1        | 0 U  | 10       | Dibenzofuran               | 10     | ט ס  | 10     |
| 1,2-Dichlorobenzene        | 1        | 0 U  | 10       | 2,4-Dinitrotoluene         | 10     | υ 0  | 10     |
| 2-Methylphenol             | 1        | υ 0  | 10       | Diethylphthalate           | 10     | 0 0  | 10     |
| bis(2-Chloroisopropyl)ethe | er 1     | 0 U  | 10       | 4-Chlorophenyl-phenylether | : 10   | 0 0  | 10     |
| 4-Methylphenol             | 1        | 0 U  | 10       | Fluorene                   | 10     | o o  | 10     |
| N-Nitroso-di-n-propylamine | e 1      | 0 U  | 10       | 4-Nitroaniline             | 10     | υ 0  | 10     |
| Hexachloroethane           | 1        | 0 U  | 10       | 4,6-Dinitro-2-methylphenol | L 2!   | 5 U  | 25     |
| Nitrobenzene               | 1        | 0 U  | 10       | N-Nitrosodiphenylamine (1) | 10     | 0 U  | 10     |
| Isophorone                 | 1        | 0 U  | 10       | 4-Bromophenyl-phenylether  | 10     | 0 U  | 10     |
| 2-Nitrophenol              | 1        | 0 U  | 10       | Hexachlorobenzene          | 10     | υ 0  | 10     |
| 2,4-Dimethylphenol         | 1        | 0 υ  | 10       | Pentachlorophenol          | 2      | 5 ซ  | 25     |
| Benzoic Acid               | 1        | 0 U  | 10       | Phenanthrene               | 10     | υ 0  | 10     |
| bis(2-Chloroethoxy)methan  | e 1      | ο υ  | 10       | Anthracene                 | 10     | υ 0  | 10     |
| 2,4-Dichlorophenol         | 1        | υ 0  | 10       | Di-n-butylphthalate        | 10     | 0 υ  | 10     |
| 1,2,4-Trichlorobenzene     | 1        | 0 U  | 10       | Fluoranthene               | 1      | υ 0  | 10     |
| Naphthalene                | 1        | 0 υ  | 10       | Pyrene                     | 1      | υ 0  | 10     |
| 4-Chloroaniline            | 1        | ο υ  | 10       | Butylbenzylphthalate       | 1      | υ 0  | 10     |
| Hexachlorobutadiene        | 1        | 0 υ  | 10       | 3,3'-Dichlorobenzidine     | 1      | o u  | 10     |
| 4-Chloro-3-methylphenol    | 1        | o u  | 10       | Benzo(a)anthracene         | 1      | υ 0  | 10     |
| 2-Methylnaphthalene        | 1        | υ 0  | 10       | Chrysene                   | 1      | 0 υ  | 10     |
| Hexachlorocyclopentadiene  | 1        | ט ס  | 10       | bis(2-Ethylhexyl)phthalate | e 1    | υ 0  | 10     |
| 2,4,6-Trichlorophenol      | 1        | 0 U  | 10       | Di-n-octylphthalate        | 1      | o u  | 10     |

10

10

25

10

10

U

U

U

U

U

10

10

25

10

10

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenzo(a,h)anthracene

Benzo(g,h,i)perylene

Benzo(a)pyrene

U

U

U

U

U

U

10

10

10

10

10

10

10

10

10

10

10

10

Page: 27 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: ABN HSL GC/MS Extractables

METHOD REFERENCE: EPA8270

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: WATER

| Surrogates           | % Recovery | Limits   |  |  |  |  |  |
|----------------------|------------|----------|--|--|--|--|--|
| Nitrobenzene-D5      | 80         | 35 - 114 |  |  |  |  |  |
| 2-Fluorobiphenyl     | 75         | 43 - 116 |  |  |  |  |  |
| Terphenyl-D14        | 103        | 33 - 141 |  |  |  |  |  |
| Phenol-D5            | 32         | 10 - 94  |  |  |  |  |  |
| 2-Fluorophenol       | 58         | 21 - 100 |  |  |  |  |  |
| 2,4,6-Tribromophenol | 82         | 10 - 123 |  |  |  |  |  |

(1) N-Nitrosodiphenylamine cannot be separated from diphenylamine.

### Data Qualifier Key:

- U none detected
- J estimated value (less than the sample quantitation limit)
- B analyte is found in the associated blank as well as in the sample
- 'blank' positive result
  - \* Surrogate recovery is outside QC limit
  - D compound identified at a secondary dilution factor
  - E concentration exceeds calibration range

### Referenced notes for these results:

Sample was originally extracted 12/22/93 and analyzed 12/31/93. The Blank Spike and the Matrix Spike Duplicate were outside acceptance limits. Sample was re-extracted 1/5/94 and reanalyzed 1/6/94. Results are reported from the reanalysis.

Page: 28 of 35

Company: IT CORPORATION

Date: 01/11/94

UNITS:

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: Metals

METHOD REFERENCE: EPA6010

SAMPLE ID: LAB BLANK #1

SAMPLE DATE: not spec

SAMPLE MATRIX: WATER

PREP DATE: 12/28/93

ANALYSIS DATE: 12/29/93

DILUTION FACTOR: 1.0

| MG/L      |        |      | Reporting |
|-----------|--------|------|-----------|
|           | Result | Qual | Limit     |
| Aluminum  | 0.20   | υ    | 0.20      |
| Barium    | 0.20   | U    | 0.20      |
| Cadmium   | 0.0050 | U    | 0.0050    |
| Calcium   | 5.0    | U    | 5.0       |
| Chromium  | 0.010  | U    | 0.010     |
| Copper    | 0.0250 | U    | 0.0250    |
| Iron      | 0.10   | U    | 0.10      |
| Magnesium | 5.0    | U    | 5.0       |
| Manganese | 0.0150 | U    | 0.0150    |
| Nickel    | 0.040  | บั   | 0.040     |
| Potassium | 5.0    | U    | 5.0       |
| Selenium  | 0.010  | U    | 0.010     |
| Silver    | 0.010  | U    | 0.010     |
| Sodium    | 5.0    | U    | 5.0       |
| Zinc      | 0.020  | U    | 0.020     |
|           |        |      |           |

### Data qualifier key:

- E estimated value (see cover page)
- M duplicate injection precision not met
- N spike recovery not within control limits
- S determined by MSA
- W post-digestion spike for Furnace AA is out of control limits (85-115%), while sample absorbance is <50% of spike absorbance
- \* duplicate analysis outside control limits
- + Correlation coefficient for the MSA <0.995
- B < CRDL but >= IDL
- U none detected
- 'blank' positive result

Page: 29 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

SAMPLE ID: LAB BLANK #1

SAMPLE DATE:

SAMPLE MATRIX: SOIL

|                    | Note |        | Reporting |       | Date     | Method    |
|--------------------|------|--------|-----------|-------|----------|-----------|
| Test Name          | Ref  | Result | Limit     | Units | Analyzed | Reference |
| 9071/418.1 for TPH |      | 100    | 10        | MG/KG | 12/30/93 | EPA9071   |

Page: 30 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME: BTEX - Purge and Trap

METHOD REFERENCE: EPA8020

SAMPLE ID: LAB BLANK #1
SAMPLE DATE: not spec
SAMPLE MATRIX: SOIL
ANALYSIS DATE: 12/22/93
DILUTION FACTOR: 1.0

UNITS: UG/KG Reporting Result Limit

| Benzene                    | ND | 1 |
|----------------------------|----|---|
| Ethylbenzene               | ND | 1 |
| Toluene                    | ND | 1 |
| <pre>Xylenes (total)</pre> | ND | 1 |

Total BTEX concentration: Not Detected

 Page: 31 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX

(512) 892-6684 409832-003-01 Work Order: B3-12-246

IV. Methodology

Requested analyses were performed according to the following methods.

TEST NAME Alkalinity, Titrimetric TEST CODE 310\_1

Alkalinity EPA 310.1 - Chemical Analysis of Water and Wastewater.

Titrimetric with sulfuric acid.

TEST NAME TPH - IR TEST CODE 418\_1

418 1 Method 418.1: Total Recoverable Petroleum Hydorcarbons,

infrared spectrophotmetric method. Methods for the

chemical analysis of water and wastes. USEPA.

TEST NAME ICP Metals TEST CODE 6010

Metals by ICP Inductively coupled emission spectroscopy according to

Method 6010, "Test Methods for Evaluating Solid Waste

Physical/Chemical Methods", SW-846, Third Edition.

TEST NAME Hazardous Substance Vols. TEST CODE 8240TK

Hazardous Substance Method 8240, SW-846, Test Methods for Evaluating Solid

List Volatiles Wastes, Third Edition. GC/MS Purge and Trap analysis.

TEST NAME ABN HSL GC/MS Extractables TEST CODE 8270TK

Hazardous Substance Method 8270, SW-846, Test Methods for Evaluating Solid

List Extractables Waste, Third Edition. Acid/Base-Neutral extraction

followed by GC/MS analysis.

TEST NAME Phenolics TEST CODE 9066

Phenolics SW-846 Method 9066. Total Recoverable Phenolics.

Colorimetric, Automated 4-AAP with Distillation.

Equivalent to EPA Method 420.2.

TEST NAME 9071/418.1 for TPH TEST CODE 9071IR

Page: 32 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME 9071/418.1 for TPH

TEST CODE 9071IR

TEST CODE BTEX

9071 Prep and IR Analysis

Method 9071, SW846, Test Methods for Evaluating Solid Waste, Third Edition. Soxhlet extraction from Method 9071 using freon and infrared analysis of the extract using Method 418.1.

TEST NAME Arsenic - Graphite Furnace TEST CODE AS\_GF

Arsenic

Graphite Furnace

TEST NAME BTEX - Purge and Trap

Method 7060, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. EPA 206.2-Technical Additions to Methods for Chemical Analysis of Water and Wastes, EPA-600/4-82-055, December 1982.

BTEX

Method 8020, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. This technique uses a purge and trap with gas chromatography (GC) and photo ionization detection (PID) with a five point curve. This method exceeds the requirement of Method 602. Prep method is 5030.

TEST NAME Chloride by Ion Chron. TEST CODE CL\_IC

Chloride USEPA 300.0 - The determination of inorganic anions in

water by ion chromatography.

TEST NAME Chemical Oxygen Demand TEST CODE COD

COD EPA 410.4 - Chemical Analysis of Water and Wastewater.

Colorimetric analysis for Chemical Oxygen Demand.

TEST NAME Chromium VI TEST CODE CR\_VI

Chromium VI Method 7196, SW-846, Test Methods for Evaluating Solid

Page: 33 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME Chromium VI

TEST CODE CR VI

Wastes, Third Edition. Colorimetric analysis. Equivalent to Standard Methods 3500-Cr D.

TEST NAME Mercury

TEST CODE HG AA

Mercury

Method 7471, SW-846, Test Methods for Evaluating Solid Wastes, Third Edition. Cold vapor atomic absorption.

Method 7470 is used for water.

Method 245.5-"Technical Additions to Methods for

Chemical Analysis of Water and Wastes,"

EPA-600/4-82-055, December 1982.

TEST NAME Metals

TEST CODE ICPTK4

Method not available.

TEST NAME Mitrate and Mitrite

TEST CODE MO3NO2

Nitrate + Nitrite

Method 353.2-Chemical Analysis of Water and Wastewater. Colorimetric Automated Cadmium Reduction method using

Lachat autoanalyzer for NO3 and NO2 as N.

TEST NAME Lead - Graphite Furnace

TEST CODE PB GF

Lead

EPA 7421, SW-846, Test Methods for Evaluating Solid

Graphite Wastes, Third Edition.

Furnace

EPA 239.2-Technical Additions to Methods for Chemical

Analysis of Water and Wastes," EPA-600/4-82-055,

December 1982.

TEST NAME Silica

TEST CODE SIO2

Page: 34 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME Silica

TEST CODE SIO2

Silica

Method 370.1-Chemical Analysis of Water and Wastewater. Colorimetric Analysis. This is equal to ASTM D859B.

TEST NAME Sulfate by Ion Chron.

TEST CODE SO4\_IC

Sulfate

USEPA Method 300.0 - The Determination of Inorganic

Anions in Water by Ion Chromatography.

TEST NAME Total Dissolved Solids

TEST CODE TDS

Total Dissolved

Solids

Method 160.1-Chemical Analysis of Water and Wastewater.

Gravimetric analysis.

TEST NAME Total Kjeldahl Nitrogen

TEST CODE TEN\_N

Kjeldahl Nitrogen

Method 351.3-Chemical Analysis of Water and Wastewater.

Digestion and colorimetric analysis.

TEST NAME Total Organic Carbon

TEST CODE TOC

Total Organic

Carbon

Method 415.1-Chemical Analysis of Water and Wastewater.

Chemical oxidation and nondispersive

infrared analysis. Equivalent to SW-846 Method 9060. Sample prep is instrument manufacturer specific.

TEST NAME Total Suspended Solids

TEST CODE TSS

Total Suspended

Solids

Method 160.2-Chemical Analysis of Water and Wastewater. Filtration and gravimetric analysis of non-filterable

residue.

TEST NAME Total Phosphorus

TEST CODE T\_P

Total Phosphorus

Method 365.3-Chemical Analysis of Water and Wastewater.

Page: 35 of 35

Company: IT CORPORATION

Date: 01/11/94

Client Work ID: D.O.5001

IT ANALYTICAL SERVICES

AUSTIN, TX (512) 892-6684

409832-003-01 Work Order: B3-12-246

TEST NAME Total Phosphorus

TEST CODE T\_P

Digestion and colorimetric analysis.

TEST NAME ICPES Digestion - Water TEST CODE 23005

Water Digestion Method 3005A, SW-846, Test Methods for Evaluating Solid

Wastes, Third Edition. Digestion procedure for the preparation of surface and ground water samples for analysis by flame atomic absorption spectroscopy and inductively coupled plasma spectroscopy. The procedure

determines total recoverable or dissolved metals.

TEST NAME GFAA Digestion - Water TEST CODE 23020

Water Digestion Method 3020, SW-846, Test Methods for Evaluating Solid

Wastes, Third Edition. Acid digestion technique for

Graphite Furnace.



**CHAIN OF CUSTODY RECORD\* ANALYSIS REQUEST AND** 

6312276 Reference Document No. 423305 Page 1 of Z

Bill to:5 409832-03.0

Samples Shipment Date 7 12-17-93

ITAS AUSTIN Lab Destination <sup>8</sup> Lab Contact <sup>9</sup>

Sample Team Members 2 Kripschenand MAN Profit Center No. 3 M. Wilsen 352 7

Project Name/No. 1717KV - 500/

Project Manager 4 Timmy Taylor

KARMON DEAMB Project Contact/Phone 12 D. m. Great

Report to: 10 1 Jun Jennings

White: To accompany sample

| Purchase Order No. <sup>6</sup> ゲのをガス・ひう | Carrier/Waybill No. 13 Fed Ex 8460755892 | 382 IT- AUSTIN |
|------------------------------------------|------------------------------------------|----------------|
| Required Report Date 11 Norma            | ONE CONTAINES PER LINE                   | -              |

|                                                                                  |                                                                              |                                                     |                   |                      |                                         |                                                                   | -                       |                    |                                      | 5        |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|-------------------|----------------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------|--------------------|--------------------------------------|----------|
| Sample <sup>14</sup><br>Number                                                   | Sample <sup>15</sup><br>Description/Type                                     | Date/Time <sup>16</sup> Container<br>Collected Type | Container<br>Type | Sample 18            | Pre- <sup>19</sup><br>servative         | Requested Testing $^{20}$<br>Program                              | Condition on<br>Receipt | <b>n</b> 21        | Disposal <sup>22</sup><br>Record No. | 5        |
| M/646                                                                            | Trip Blank                                                                   | 17-2-93                                             | Cleor             | 40ml                 | Hel                                     | 8240                                                              | 6 00 4 1 5 Se           | 1. R.A.S           | 83271020A                            | Yellow   |
| 4/647                                                                            | Water                                                                        |                                                     | Amber             | C.                   | 7000                                    | 8270                                                              |                         |                    |                                      | : Field  |
|                                                                                  |                                                                              | -                                                   | 1                 | 16                   | Hzzon                                   | TR8H-418.1                                                        |                         |                    |                                      | d copy   |
|                                                                                  |                                                                              |                                                     |                   | JM025                | H2504                                   | 9066 - phenols                                                    |                         |                    |                                      | /        |
|                                                                                  |                                                                              |                                                     |                   | Tuss                 | 4204                                    | 410.4, 415.1                                                      |                         |                    |                                      |          |
|                                                                                  |                                                                              |                                                     | 7                 | 7422                 | H2504                                   | 351.3, 353.2                                                      |                         |                    |                                      | *S       |
|                                                                                  |                                                                              |                                                     | Poly              | 77                   | 7000                                    | Standard Graind Water                                             | re v                    |                    |                                      | ee ba    |
|                                                                                  |                                                                              | 7                                                   | 7                 | Juas                 | 14103                                   | metals                                                            | $ \uparrow $            |                    |                                      | ck of    |
| Special Instructions: <sup>23</sup>                                              | ns: <sup>23</sup>                                                            |                                                     |                   |                      |                                         |                                                                   |                         |                    |                                      | form     |
| Possible Hazard Identification: <sup>24</sup> Non-hazard J Flammable <b>J</b> Sk | l Identification: <sup>24</sup><br>Flammable <b>」</b> Skin Irritant <b>」</b> |                                                     | Poison B          | Unknown              |                                         | Sample Disposal: <sup>25</sup><br>Return to Client <b>」</b> Dispo | Disposal by Lab         | Archive            | (mas.)                               | for spe  |
| Turnaround Time Required: 26 Normal A Rush _                                     | Bequired: 26                                                                 |                                                     | SZ                | Level: <sup>27</sup> | <b>□</b>                                | Project Specific (specify);                                       |                         |                    |                                      | cial ins |
| 1. Relinquished by <sup>28</sup> , (Signature/Affiliation)                       | 28/h W                                                                       | Date:<br>Time:                                      |                   | 743                  | 1. Received by (Signature/Affiliation). | 1. Received by 28 [Signature/Affiliation]                         | is IT                   | Date: / .<br>Time: | 2/18/27                              | structio |
| 2. Relinquished by                                                               |                                                                              | Date:                                               | in.               |                      | 2. Received by                          | ved by                                                            |                         | Date.              |                                      | ns.      |

Date. Time: Date: Time:

2. Received by (Signature/Affiliation) 3. Received by (Signature/Affiliation) (Signature/Affiliation) Date: Time: Time: Date: Time: 1. Relinquished by <sup>28</sup> 2. Relinquished by (Signature/Affiliation) 3. Relinquished by (Signature/Affiliation) (Signature/Affiliation)

Comments: 29

MCA 3-15.9

6312246

| Reference Document No.30 4233<br>Page 2 of 2       | 18-17-83              |                   | Disposal 23                        |                    | 8 3 24 70 2 0 B | fed 40:015 |       |         |             |             |             |        |        |               |            |           |  |   |  |  |
|----------------------------------------------------|-----------------------|-------------------|------------------------------------|--------------------|-----------------|------------|-------|---------|-------------|-------------|-------------|--------|--------|---------------|------------|-----------|--|---|--|--|
| ence Documen                                       | Samples Shipment Date |                   | Condition on 21<br>Receipt         | 60, 4 1°C See RURS |                 |            |       |         |             |             |             |        |        |               |            | Ŋ         |  |   |  |  |
|                                                    |                       | ER LINE           | Requested Testing 20<br>Program    | Crlot              | OHXB            | 8240       | BAFO  | 418.1   | 906¢        | 410.4,415.1 | 3573,353.2  | SCŃ    | metals | CrbF          | 8240-BTEX  | 4181-TRPH |  |   |  |  |
| INALYSIS REQUEST AND<br>OF CUSTODY RECORD (cont.)* | 108832-03.0           | ONE CONTAINER PER | nple 18 Pre-19<br>ume servative    | 125ml cool         | 40ml HCR        | FOR HER    | 7090  | 16 1204 | 50ml 14,504 | 250nl Hosog | 250nl 16504 |        |        | 125ml cool    | 7000 745   | 7         |  | / |  |  |
| ANALYSIS F<br>OF CUSTOR                            | Project No.           | ONE CO            | Container 17 Sample 18 Type Volume | Poly 1/2           | cleas 4         |            | Amber | 7       | 8 / B       | 1 38        | 1 38        | Poly 1 |        | 1 / 120       | Clear 125m | 71        |  |   |  |  |
| CHAIN O                                            | <i>\</i>              |                   | Date/Time 113<br>Collected         | 12-17-93           | 7               | 12-17-93   |       |         |             |             |             |        |        | Ī             | 12-17-93   | 7         |  |   |  |  |
| IONAL<br>OGY<br>TION                               | TIMKER -SOO,          |                   | Sample 15<br>Description/Type      | Water              | 1               |            |       |         |             |             |             |        |        | $\rightarrow$ | 56:1       | ブ         |  |   |  |  |
| INTERNATIONAL TECHNOLOGY CORPORATION               | Project Name          |                   | Sample 14<br>Number                | 17/647             | 71              | 4/648      |       |         |             |             |             |        |        |               | 141649     | 71        |  |   |  |  |

Yellow: Field copy

White: To accompany samples

\*See back of form for special instructions

## Auxiliary Data Summary 01/11/94

Work order : B312246

Sample ID : A1647

| FRAC | Tests                                                                                                   | Blank<br>Reference                                                                                                                                          | Batch<br>ID                                                                                                                          | Prep<br>Date                     | Analysis<br>Date                                                                                                     | Dil.<br>Factor                                    |
|------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 02B  | 418_1                                                                                                   | B312246-07B                                                                                                                                                 | 1222TPHIR1                                                                                                                           | 12/22/93                         | 12/28/93                                                                                                             | 1.0                                               |
| 02C  | 310_1<br>9066<br>CL_IC<br>COD<br>CR_VI<br>NO3NO2<br>SIO2<br>SO4_IC<br>TDS<br>TKN_N<br>TOC<br>TSS<br>T_P | B312246-07C B312246-07C B312246-07C B312246-07C B312246-07C B312246-07C B312246-07C B312246-07C B312246-07C B312246-07C B312246-07C B312246-07C B312246-07C | 1227310_11 1 122790663 0110CL_IC1 1228C0D2D 1218CR_VI1 0105N03N02 1229SI022 110S04_IC 1222TDS1 0108TKN_N1 1229TOC1 1222TSS1 0108T_P1 | 12/27/93<br>01/10/94<br>12/28/93 | 01/10/94<br>12/28/93<br>12/18/93<br>01/05/94<br>12/29/93<br>01/10/94<br>12/22/93<br>01/10/94<br>12/29/93<br>12/22/93 | 25.0<br>1.0<br>10.0<br>10.0<br>25.0<br>1.0<br>1.0 |
| 02D  | AS_GF<br>HG_AA<br>PB_GF                                                                                 | B312246-07D<br>B312246-07D<br>B312246-07D                                                                                                                   | 122830202<br>1229HG_AA2<br>122830202                                                                                                 | 12/28/93<br>12/29/93<br>12/28/93 | 12/29/93                                                                                                             | 1.0                                               |

## Auxiliary Data Summary 01/11/94

Work order : B312246

Sample ID : A1648

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID  | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|--------------|--------------|------------------|----------------|
| 03B  |        |                    |              |              |                  |                |
|      | 418_1  | в312246-07В        | 1222TPHIR1   | 12/22/93     | 12/28/93         | 1.0            |
| 03C  | 310 1  | B312246-07C        | 1227310 11 1 | 2/27/93      | 12/27/93         | 1.0            |
|      | 9066   | B312246-07C        | 122790663    | 12/27/93     | 01/06/94         | 1.0            |
|      | CL IC  | B312246-07C        | 0110CL_IC1   | 01/10/94     | 01/10/94         | 5.0            |
|      | COD    | B312246-07C        | 1228COD2D    | 12/28/93     | 12/28/93         |                |
|      | CR VI  | B312246-07C        | 1218CR_VI1   | 12/18/93     | 12/18/93         | 1.0            |
|      | NO3NO2 | B312246-07C        | 0105NO3NO2   | 01/05/94     | 01/05/94         | 10.            |
|      | SIO2   | B312246-07C        | 122951022    | 12/29/93     | 12/29/93         | 25.0           |
|      | SO4 IC | B312246-07C        | 0110SO4_IC   | 01/10/94     | 01/10/94         | 5.0            |
|      | TDS    | B312246-07C        | 1222TDS1     | 12/22/93     | 12/22/93         | 1.0            |
|      | TKN_N  | B312246-07C        | 0108TKN_N1   | 01/08/94     | 01/10/94         | 1.0            |
|      | TOC    | B312246-07C        | 1229TOC1     | 12/29/93     | 12/29/93         | 1.0            |
|      | TSS    | B312246-07C        | 1222TSS1     | 12/29/93     | 12/22/93         | 1.0            |
|      | T_P    | B312246-07C        | 0108T_P1     | 01/08/94     | 01/10/94         | 1.0            |
| 03D  |        |                    |              |              |                  |                |
|      | AS_GF  | B312246-07D        | 122830202    | 12/28/93     | 01/07/94         | 1.0            |
|      | HG AA  | B312246-07D        | 1229HG AA2   | 12/29/93     | 12/29/93         | 1.0            |
|      | PB_GF  | B312246-07D        | 122830202    | 12/28/93     | 12/31/93         | 1.0            |

## Auxiliary Data Summary

Work order : B312246

## Sample ID : A1648-MS

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID  | Prep Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|--------------|-----------|------------------|----------------|
| 04B  |        |                    |              |           | 45 455 455       |                |
|      | 418_1  | B312246-07B        | 1222TPHIR1   | 12/22/93  | 12/28/93         | 1.0            |
| 04C  | 310_1  | B312246-07C        | 1227310_11 1 | 2/27/93   | 12/27/93         | 1.0            |
|      | 9066   | B312246-07C        | 122790663    | 12/27/93  | 01/06/94         | 1.0            |
|      | CL_IC  | B312246-07C        | 0110CL_IC1   | 01/10/94  |                  |                |
|      | COD    | B312246-07C        | 1228COD2D    | 12/28/93  |                  |                |
|      | CR_VI  | B312246-07C        | 1218CR_VI1   | 12/18/93  | 12/18/93         | 1.0            |
|      | NO3NO2 | B312246-07C        | 0105NO3NO2   | 01/05/94  | 01/05/94         | 10.0           |
|      | SIO2   | B312246-07C        | 122951022    | 12/29/93  | 12/29/93         | 25.0           |
|      | SO4_IC | B312246-07C        | 0110SO4_IC   | 01/10/94  | 01/10/94         | 5.0            |
|      | TDS    | B312246-07C        | 1222TDS1     | 12/22/93  | 12/22/93         | 1.0            |
|      | TKN_N  | B312246-07C        | 0108TKN_N1   | 01/08/94  | 01/10/94         | 1.0            |
|      | TOC    | B312246-07C        | 1229TOC1     | 12/29/93  | 12/29/93         | 1.0            |
|      | TSS    | B312246-07C        | 1222TSS1     | 12/29/93  | 12/22/93         | 1.0            |
|      | T_P    | B312246-07C        | 0108T_P1     | 01/08/94  | 01/10/94         | 1.0            |
| 04D  |        |                    |              |           |                  |                |
|      | AS GF  | B312246-07D        | 122830202    | 12/28/93  | 01/07/94         | 1.0            |
|      | HG AA  | B312246-07D        | 1229HG AA2   | 12/29/93  | •                |                |
|      | PB_GF  | B312246-07D        | 122830202    | 12/28/93  | 12/31/93         |                |

## Auxiliary Data Summary 01/11/94

Work order: B312246

## Sample ID : A1648-MSD

| FRAC | Tests  | Blank<br>Reference | Batch<br>ID  | Prep<br>Date | Analysis<br>Date | Dil.<br>Factor |
|------|--------|--------------------|--------------|--------------|------------------|----------------|
| 05B  |        |                    |              |              |                  |                |
|      | 418_1  | B312246-07B        | 1222TPHIR1   | 12/22/93     | 12/28/93         | 1.0            |
| 05C  | 310_1  | B312246-07C        | 1227310_11 1 | .2/27/93     | 12/27/93         | 1.0            |
|      | 9066   | B312246-07C        | 122790663    | 12/27/93     | 01/06/94         | 1.0            |
|      | CL_IC  | B312246-07C        | 0110CL_IC1   |              |                  |                |
|      | COD    | B312246-07C        | 1228COD2D    | 12/28/93     | 12/28/93         | 1.0            |
|      | CR_VI  | B312246-07C        | 1218CR_VI1   | 12/18/93     | 12/18/93         | 1.0            |
|      | NO3NO2 | B312246-07C        | 0105N03N02   | 01/05/94     | 01/05/94         | 10.0           |
|      | SIO2   | B312246-07C        | 1229SI022    | 12/29/93     | 12/29/93         | 25.0           |
|      | SO4_IC | B312246-07C        | 0110SO4_IC   | 01/10/94     | 01/10/94         | 5.0            |
|      | TDS    | B312246-07C        | 1222TDS1     | 12/22/93     | 12/22/93         | 1.0            |
|      | TKN_N  | B312246-07C        | 0108TKN_N1   | 01/08/94     | 01/10/94         | 1.0            |
|      | TOC    | B312246-07C        | 1229TOC1     | 12/29/93     | 12/29/93         | 1.0            |
|      | TSS    | B312246-07C        | 1222TSS1     | 12/29/93     | 12/22/93         | 1.0            |
|      | T_P    | B312246-07C        | 0108T_P1     | 01/08/94     | 01/10/94         | 1.0            |
| 05D  |        |                    |              |              |                  |                |
|      | AS GF  | B312246-07D        | 122830202    | 12/28/93     | 01/07/94         | 1.0            |
|      | HG AA  | B312246-07D        | 1229HG AA2   | 12/29/93     |                  | 1.0            |
|      | PB GF  | B312246-07D        | 122830202    | 12/28/93     | •                | 1.0            |
|      |        | D312240 07D        | 122030202    | 12/20/55     | 12,01,00         | 2.0            |

Work order : B312246

## Sample ID : LAB BLANK #1

|      |        | Blank                      | Batch        | Prep     | Analysis | Dil.   |
|------|--------|----------------------------|--------------|----------|----------|--------|
| FRAC | Tests  | Reference                  | ID           | Date     | Date     | Factor |
|      |        |                            |              |          |          |        |
| 07B  |        |                            |              |          |          |        |
|      | 418_1  | B312246-07B                | 1222TPHIR1   | 12/22/93 | 12/28/93 | 1.0    |
| 07C  | 310_1  | B312246-07C                | 1227310_11 1 | 2/27/93  | 12/27/93 | 1.0    |
|      | 9066   | B312246-07C                | 122790663    | 12/27/93 |          | 1.0    |
|      | CL_IC  | B312246-07C                | 0110CL IC1   | 01/10/94 | • •      |        |
|      | COD    | B312246-07C                | 1228COD2D    | 12/28/93 |          |        |
|      | CR_VI  | B312246-07C                | 1218CR VI1   | 12/18/93 |          |        |
|      | NO3NO2 | B312246-07C                | 0105NO3NO2   | 01/05/94 | • •      |        |
|      | SIO2   | B312246-07C                | 122951022    | 12/29/93 | •        |        |
|      | SO4_IC | B312246-07C                | 0110SO4 IC   | 01/10/94 | • •      | 1.0    |
|      | TDS    | B312246-07C                | 1222TDS1     | 12/22/93 | •        | 1.0    |
|      | TKN_N  | B312246-07C                | 0108TKN N1   | 01/08/94 | •        | 1.0    |
|      | TOC    | B312246-07C                | 1229TOC1     | 12/29/93 | •        | 1.0    |
|      | TSS    | B312246-07C                | 1222TSS1     | 12/29/93 | •        | 1.0    |
|      | T_P    | B312246-07C                | 0108T_P1     | 01/08/94 |          | 1.0    |
| 07D  |        |                            |              |          |          |        |
| 0,0  | AS GF  | B312246-07D                | 12222222     | 10/00/03 | 01/07/04 |        |
|      | HG AA  | B312246-07D<br>B312246-07D | 122830202    | 12/28/93 | • •      | 1.0    |
|      | PB GF  | B312246-07D                | 1229HG_AA2   | 12/29/93 |          | 1.0    |
|      | r n_Gr | B312246-U/D                | 122830202    | 12/28/93 | 12/31/93 | 1.0    |

|                                        |              |                                        |                                                                                                                                                                                                                                | 1115     | 2.           | en<br>Herri           |
|----------------------------------------|--------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|-----------------------|
|                                        |              | 5.70 <b>5</b>                          |                                                                                                                                                                                                                                | N. S. S. |              | Ger vile.<br>Agtail € |
| A OP D                                 | ATER SAMPLES | ့                                      |                                                                                                                                                                                                                                |          |              |                       |
|                                        |              |                                        |                                                                                                                                                                                                                                | 3        |              |                       |
| # OF S                                 | OIL SAMPLES_ | ***                                    |                                                                                                                                                                                                                                |          |              |                       |
|                                        | 1.00         |                                        | , <del>, , ,</del> , , , ;                                                                                                                                                                                                     |          |              |                       |
|                                        | Mark .       |                                        |                                                                                                                                                                                                                                |          |              | ء . ڊ                 |
| ************************************** |              |                                        | •                                                                                                                                                                                                                              |          |              |                       |
| 8240                                   |              | •                                      |                                                                                                                                                                                                                                | S102     |              |                       |
| 48.7                                   |              | 38                                     |                                                                                                                                                                                                                                |          |              | 11.                   |
| 8270                                   |              | <del></del> 3b                         |                                                                                                                                                                                                                                | TDS      |              |                       |
| IR.                                    | $\sqrt{f}$   | ·<br>// 23.                            |                                                                                                                                                                                                                                |          |              |                       |
| -                                      | 13/          | - 4 1 for 1                            | 7                                                                                                                                                                                                                              | *        | <del>-</del> |                       |
| TAS                                    |              |                                        |                                                                                                                                                                                                                                | TOC      |              | V                     |
| CRIV                                   |              | •                                      |                                                                                                                                                                                                                                | TSS :    | V            | 1                     |
| ر (در العالم المعالم                   | 11           | /                                      |                                                                                                                                                                                                                                |          | 1            |                       |
| <b>E</b> G                             |              |                                        |                                                                                                                                                                                                                                | T_P      | V-           | A same.               |
| : ICP                                  |              |                                        | · : - j                                                                                                                                                                                                                        | BTEX:    | · /-/        |                       |
|                                        | [ ]          |                                        |                                                                                                                                                                                                                                |          |              |                       |
| PB                                     | 7/           |                                        |                                                                                                                                                                                                                                |          |              |                       |
| SO4_IC                                 | - VV         | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                                                |          |              |                       |
| 310 1                                  |              |                                        |                                                                                                                                                                                                                                |          |              |                       |
|                                        | - //         |                                        |                                                                                                                                                                                                                                |          |              |                       |
| 9066                                   |              | <u> </u>                               | er distribution                                                                                                                                                                                                                |          |              |                       |
| CL_IC                                  |              |                                        | 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964<br>1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 |          |              |                       |
|                                        |              |                                        | ,                                                                                                                                                                                                                              |          |              |                       |
| COD                                    |              |                                        | 37.5                                                                                                                                                                                                                           | 7        | -            |                       |
| NO3NO2                                 |              |                                        |                                                                                                                                                                                                                                |          |              |                       |
| 203202                                 |              | rite in                                | •                                                                                                                                                                                                                              |          |              | •                     |
|                                        |              |                                        |                                                                                                                                                                                                                                |          |              |                       |
|                                        |              | • '                                    |                                                                                                                                                                                                                                |          |              |                       |

Pale : 2

## APPENDIX A

## DEFINITIONS

| ND(U) | - | Analyte was analyzed for, but not detected. The value given after the ND or "U" is the detection limit for that compound.                                    |
|-------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A     | - | The compound denoted with an "A" indicates a suspected aldol condensation product.                                                                           |
| В     | - | Indicates the compound was also detected in the blank, but at levels less than 5X the detection limit. Values for this compound may be suspect.              |
| J     | - | Indicates the compound was detected in the sample, but at levels less than the detection limit, but above the MDL. Results snould be requarded as estimated. |
| D     | - | Indicates that the compound was identified in an analysis at a secondary dilution factor.                                                                    |
| И     | - | Indicates presumptive evidence of a compound. This flag is used for tentatively identified compounds.                                                        |

| MS  | - | Matrix Spike                | / -   |   | Micrograms/Liter    |
|-----|---|-----------------------------|-------|---|---------------------|
| MSD | - | Matrix Spike Duplicate      | UG/KG | _ | Micrograms/Kilogram |
| RPD | _ | Relative Percent Difference | MG/KG | - | Milligrams/Kilogram |
|     |   | Detection limit             | MG/L  | _ | Milligrams/Liter    |
| עט  |   | becection limit             | %REC  | _ | Percent Recovery    |

## OC Acceptance Limits

| Method 8240                                                                         | Water                                          | 3011                                           | Method 8270                                                                                                                                                                                            | Water                                                                                                             | Soil                                           |
|-------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Surrogate & Recover<br>BFB<br>Dichloroethane<br>Toluene-d8                          | 86-115<br>76-114                               | 74-121<br>70-120<br>31-117                     | Surrogate & Recoveries Nitrobenzene-d5 2-Fluorobiphenyi Terpnenyi-d14 Phenoi-d5 2-Fluorophenoi 2,4,6-Tribromophenoi                                                                                    | 35 - 114<br>43 - 116<br>33 - 141<br>10 - 94<br>21 - 100<br>10 - 123                                               | 30 - 1 $18 - 1$                                |
| Matrix Spike Limits 1,1-Dichloroethene Trichloroethene Benzne Toluene Chlorobenzene | 61-145<br>71-120<br>76-127<br>76-125<br>75-130 | 59-172<br>62-137<br>66-142<br>59-139<br>60-133 | Matrix Spike Limits(%) Phenol Chlorophenol 1,4-Dichloropenzene N-Nitroso-di-propylamine 1,2,4-Trichloropenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol | 14 - 99<br>19 - 107<br>18 - 101<br>32 - 108<br>24 - 109<br>31 - 111<br>33 - 110<br>1 - 141<br>35 - 106<br>1 - 147 | 17 - 1<br>30 - 1<br>21 - 1<br>34 - 1<br>30 - 1 |

### METALS CONTROL LIMITS

ICP: ± 20% for MS/MSD & Duplicate

GF: Control Charts for MS/MSD; ± 20% for Dup

## ICV/CCV

GF ICV ± 20% GF CCV ± 20% ICP ICV/CCV ± 10% HG AA ± 20%

# CONTROL LIMITS GRAPHITE FURNACE/MERCURY

| ANALYTE | MATRIX | LIMITS               | COMMENTS                 |
|---------|--------|----------------------|--------------------------|
| Hg      | water  | 21 - 170             | Control Charts (B inst.) |
| Hg      | soil   | 44 - 150             | Control Charts (B)       |
| As      | water  | 59 - 150             | D                        |
| As      | soil   | 75 - 125             | D                        |
| As      | water  | 52 - 140             | С                        |
| As      | soil   | 35 - 142             | С                        |
| Pb      | water  | 48 - 153             | ٥                        |
| Pb      | soil   | <sup>-</sup> 5 - 125 | C                        |
| Pb      | water  | 33 - 163             | C                        |
| Pb      | soil   | 75 - 125             | С                        |
| Se      | water  | 37 - 136             | D                        |
| Se      | soil   | 27 - 118             | D ·                      |
| Se      | water  | 20 - 147             | С                        |
| Se      | soil   | 2.6 - 139            | С                        |

| 30                                                       | BATCH ID FOR WE                                                             | ET CHEM                                 | - Test C                                               | cae. <u>TD</u> | _          |
|----------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|----------------|------------|
| PREPRE                                                   | EP METHOD:                                                                  |                                         |                                                        |                |            |
|                                                          | P METHOD:                                                                   |                                         |                                                        |                |            |
|                                                          | S METHOD: T                                                                 | )5                                      |                                                        |                |            |
|                                                          | ATCH DATE.                                                                  | 12293                                   |                                                        |                |            |
| INST                                                     | RUMENT ID: 1                                                                | \                                       |                                                        |                |            |
| SET                                                      | (BATCH) #:                                                                  |                                         |                                                        |                |            |
| <del></del>                                              |                                                                             |                                         |                                                        |                |            |
| Work Orders/Fractions                                    | Associated With                                                             | Batch                                   |                                                        |                |            |
| Lad Samble TU'S                                          | Batch QC ID's                                                               |                                         | -                                                      |                |            |
| : B312246-02c                                            | _LCS ID: LCS 1                                                              | 22293                                   | - /                                                    |                |            |
| 2 03C<br>3 Rupot / D4C                                   | LCSD ID: NA                                                                 |                                         | _                                                      |                |            |
|                                                          | MB ID:                                                                      |                                         | _                                                      |                |            |
| - + b3C 65C                                              | MS ID:                                                                      |                                         | -                                                      |                |            |
| 5B312247-010                                             | MSD ID:                                                                     |                                         | _                                                      |                |            |
| 6 B312263-DID                                            | REP ID: B312                                                                |                                         |                                                        |                |            |
| 8 B3(2276-23D                                            |                                                                             | P46 -05                                 | 5 C                                                    |                | ( h        |
| 9 - 050                                                  | Batch QC Result                                                             | S                                       |                                                        | MDL:           | PQL: 10    |
|                                                          |                                                                             |                                         |                                                        |                |            |
| 10                                                       | Sample ID                                                                   | Postula                                 | Linita                                                 | 18-04          | 15         |
|                                                          |                                                                             | Result                                  | Units                                                  | Analyst        | !Date/Time |
| 10                                                       | Method Blk                                                                  | AU                                      | ms/L                                                   | Analyst        | Date/Time  |
| 10                                                       | Method Blk !                                                                | NA<br>95.4                              | ms/L<br> % Rec                                         | Analyst        |            |
| 10 :1 :2                                                 | Method Blk LCS % Rec LCSD % Rec                                             | AU                                      | MS/L<br> % Rec<br> % Rec                               | Analyst        |            |
| 10<br>:1<br>:2<br>:3                                     | Method Blk !                                                                | NA<br>95.4                              | 1% Rec<br>1% Rec<br>% RPD                              | Analyst        |            |
| 10<br>11<br>12<br>13                                     | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RPD                                | NA<br>95.4                              | % Rec<br>% RPD<br>% Rec                                | Analyst        |            |
| 10<br>:1<br>:2<br>:3<br>:2<br>:5<br>16                   | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RPD: MS % Rec                      | P. 20<br>P. 20<br>P. 40                 | 1% Rec<br>1% Rec<br>% RPD                              | Analyst        |            |
| 10<br>:1<br>:2<br>:3<br>:2<br>:5<br>16<br>17<br>18       | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD | Analyst        |            |
| 10<br>11<br>12<br>13<br>15<br>16<br>17<br>18<br>19       | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | P. 20<br>P. 20<br>P. 40                 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD | Analyst        |            |
| 10<br>:1<br>:2<br>:3<br>:2<br>:5<br>16<br>17<br>18       | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD | Analyst        |            |
| 10<br>11<br>12<br>13<br>15<br>16<br>17<br>18<br>19<br>20 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD | Analyst        |            |
| 10<br>11<br>12<br>13<br>15<br>16<br>17<br>18<br>19       | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD | Analyst        |            |
| 10<br>11<br>12<br>13<br>15<br>16<br>17<br>18<br>19<br>20 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD | Analyst        |            |
| 10<br>11<br>12<br>13<br>15<br>16<br>17<br>18<br>19<br>20 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD | Analyst        |            |
| 10<br>11<br>12<br>13<br>15<br>16<br>17<br>18<br>19<br>20 | Method Blk LCS % Rec LCSD % Rec LCS/LCSD RPD: MS % Rec MSD % Rec MS/MSD RPD | A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1% Rec<br>1% Rec<br>% RPD<br>% Rec<br>1% Rec<br>1% RPD | Analyst        |            |

|               |               |               |            |                 | - AI                |                 |   |
|---------------|---------------|---------------|------------|-----------------|---------------------|-----------------|---|
|               | QC B          | ATCH ID FOR   | WET CHE    | M - Test C      | :00=: <del>70</del> | - 125           |   |
|               |               | P METHOD:     |            |                 |                     |                 |   |
| -             | PREP METHOD:  |               |            |                 |                     |                 |   |
|               |               | METHOD:       | 55         |                 |                     |                 |   |
| <u>-</u>      |               | TCH DATE. N   |            |                 |                     |                 |   |
| _             |               | RUMENT ID:    | 1          |                 |                     | -               |   |
| _             | SET (         | (BATCH) #: /  |            |                 |                     |                 |   |
|               |               | Aintend NA    | ith Batah  |                 |                     |                 |   |
| Work Orders/  | ractions      | Associated W  | itii batch |                 |                     |                 |   |
| Lab Samble IL | )'S           | Batch QC ID's | 5          |                 |                     |                 |   |
| 182004L       | .096          | LCS ID:LCS    | 122193-    | _1              |                     |                 |   |
| 2 ,           | 030           | LCSD ID: NA   |            |                 |                     |                 |   |
| 7 ans         | D4C           | MB ID: NA     |            | <del></del>     |                     |                 |   |
| 436 4(        | 05C           | MS ID: NA     |            |                 |                     |                 |   |
| 5             |               | MSD ID: NA    |            |                 |                     |                 |   |
| <u>6</u> 7    | <del></del>   | REP ID: B3/   | 2946-04    | 10              |                     |                 |   |
| 8             |               | Botton CO B   | 17916 02   |                 |                     | <sub>1</sub> /\ | ~ |
| 9             |               | Batch QC Res  | ults       |                 | MDL:                | PQL: 10         |   |
| 10            |               | Sample ID     | 10 11      |                 |                     |                 | _ |
| 11            |               | Method Blk    | Result     | Units           | <del></del>         | !Date/Time      | ! |
| 12            |               | LCS % Rec     | I UA       | 18/ Dag         | SAT                 | 19/29 10:00     | _ |
| 13/           |               | LCSD % Rec    | 95.5<br>NA | 1% Rec          |                     |                 | _ |
| 1900          | <del>''</del> | LCS/LCSD RP   |            | 1% Rec<br>% RPD |                     |                 | _ |
| 15            | <del></del>   | MS % Rec      | -          | % Rec           |                     |                 | _ |
| 16 120        |               | MSD % Rec     |            | 1% Rec          |                     |                 | - |
| 17            |               | MS/MSD RPD    |            | 1% RPD          |                     |                 | - |
| 18            |               | REP RPD       | 430/14     | 7% RPD          | /                   |                 | - |
| 19            |               |               | 123/6/     |                 |                     | <del></del>     | • |
| /20           |               |               |            |                 |                     |                 |   |
|               |               |               |            |                 |                     |                 |   |
| Comments:     |               |               |            |                 |                     |                 |   |
|               |               |               |            |                 |                     |                 |   |
|               |               |               |            |                 |                     |                 |   |
|               |               |               |            |                 |                     |                 |   |

Tig-14: 10/01/10

Code: MLA

| QC BATCH ID FOR ( | GFAA/CVAA - Test Code: |
|-------------------|------------------------|
| PREPREP METHOD:   |                        |
| PREP METHOD:      |                        |
| ANALYSIS METHOD:  | 7470                   |
| BATCH DATE:       | 12/29/93               |
| INSTRUMENT ID:    | · A                    |
| SET (BATCH) #:    | (5)                    |

# Work Orders/Fractions Associated With Batch

| Lab Sample ID's                         | Batch QC ID's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | •     |                  |                         |   |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------------------|-------------------------|---|
| 1 B312214 - O1B 2 02B 3 03B 4 04B 5 65B | LCS ID: TCV LCSD ID: CCU-1 MB ID: TCB MS ID: B312 MSD ID: REP ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 050    | M5    |                  |                         |   |
| 7 07G<br>8 09G                          | Batch QC Resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ts     |       | MDL: <u>0.</u> ( | 0.00 PQL: <u>0.02</u> 0 | ک |
| 9 53                                    | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result | Units | Analyst          | Date/Time               |   |
| 10 113<br>11 12B                        | Method Blk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60     | mg/L  | MLA              | 12/09/9322:0            | ပ |
| 12 130                                  | LCS % Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113    | % Rec |                  |                         |   |
| 13 14/5                                 | LCSD % Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120    | % Rec |                  |                         |   |
| 14 831226-020                           | LCS/LCSD RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | % RPD |                  |                         |   |
| 15   03h                                | MS % Rec 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | % Rec |                  |                         |   |
| 16 042                                  | MSD % Rec 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | % Rec |                  |                         |   |
| 17 V OSD                                | MS/MSD RPD     MS/MSD RPD    MS/MSD RPD    MS/MSD RPD    MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD  MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD  MS/MSD RPD   MS/MSD RPD   MS/MSD RPD   MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RPD  MS/MSD RP | 815.68 | % RPD |                  |                         |   |
| 18                                      | REP RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | % RPD | 1 0              |                         |   |
| 19 MLA 18/07                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |                  | •                       |   |
| 20                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |                  |                         |   |
| Comments                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |                  |                         |   |
| Comments:                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |                  |                         |   |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |                  |                         | _ |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |                  |                         | _ |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |       |                  |                         | _ |

| QC BATCH ID FOR GFAA/CVAA - Test Code: Phocae |
|-----------------------------------------------|
| PREPREP METHOD:                               |
| PREP METHOD: 23020                            |
| ANALYSIS METHOD: 7421                         |
| BATCH DATE: 12-28-93                          |
| INSTRUMENT ID: C                              |
| SET (BATCH) #: 2                              |

## Work Orders/Fractions Associated With Batch

| Lab Sample ID's |
|-----------------|
|                 |
| 1 B312245-08B   |
| 2 B312246-02D   |
| 3 √ -03D        |
| 4 B312266-12B   |
| 5               |
| 6               |
| 7               |
| 8               |
| 9               |
| 10              |
| 11              |
| 12 TON          |
| 13 /12-22-93    |
| 14              |
| 15              |
| 16              |
| 17              |
| 18              |
| 19              |
| 20              |

| Batch | QC | ID's |
|-------|----|------|
|-------|----|------|

LCS ID: LCS20 1228-2

LCSD ID: LCS0201228-2

MB ID: PB201228-2

MS ID: B312246-040 MS

MSD ID: 1 - 050MS

REP ID: V -030 DUP

**Batch QC Results** 

Analyst Date/Time Result Units Sample ID 12-31-93 12:28 Method Blk ⟨0.0030 36 LCS % Rec % Rec 107 % Rec LCSD % Rec 1)1 % RPD LCS/LCSD RPD 3.67 % Rec MS % Rec 96.0 % Rec MSD % Rec 76.5 % RPD MS/MSD RPD 0.52 % RPD REP RPD 0

MDL: @ 2.9% PQL: 0.0030

| Comments: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |

| QC BATCH ID FOR WET CHEM - Test Code: To( |  |
|-------------------------------------------|--|
| PREPREP METHOD:                           |  |
| PREP METHOD:                              |  |
| ANALYSIS METHOD: TOC                      |  |
| BATCH DATE: 12/29 12:00                   |  |
| INSTRUMENT ID: N                          |  |
| SET (BATCH) #: \                          |  |

### Lab Sample ID's 1B312245-08B 2 B312246-00C 5 B312248-01C 6 B312202-81D **¥**7 0 10-E0CE1E 8 8 10 B312266-12B 11 12 13 14 15 16 17 18 19

20

### Batch QC ID's

LCS ID: LCS 122993-1
LCSD ID: LCSD 122993-1
MB ID: MB 122993-1
MS ID: B312246-04C
MSD ID: B312246-05C
REP ID: LCSD 122993-1

### **Batch QC Results**

| Sample ID    | Result                  | Units | Analyst     | Date/Time  |
|--------------|-------------------------|-------|-------------|------------|
| Method Blk   | 0                       | ms/   | SAT         | 00:61 PCKI |
| LCS % Rec    | 108 101                 | % Rec |             |            |
| LCSD % Rec   | 3 pt 1 100              |       |             |            |
| LCS/LCSD RPD | 0.995 <del>2.74</del> 9 | % RPD |             |            |
| MS % Rec     | 102                     | % Rec |             | ·-         |
| MSD % Rec    | 99.0                    | % Rec |             |            |
| MS/MSD RPD   | 2,99                    | % RPD |             |            |
| REP RPD      | 2,74                    | % RPD | $\bigcup V$ | V          |

MDL:

PQL: 1. 0 Mg

| Comments: \$ B312202-020 WAS PERON 13/94 |
|------------------------------------------|
| Pesult: ND                               |
| LCS 1/3/94: 108 % 100 0/0 Per            |
| LCS 1 3 54: H2 / Rocar 103 % loc         |
| 2.74% RPD 50,976 (4)                     |

|                  | QC BATCH ID FOR ICPES |
|------------------|-----------------------|
| PREPREP METHOD:  | N/.3                  |
| PREP METHOD:     | 230 T                 |
| ANALYSIS METHOD: | 6010                  |
| BATCH DATE:      | 12-26-93              |
| INSTRUMENT ID:   | B                     |
| SET (BATCH) #:   | 2                     |

| Lab   | Sampi | e ID's   |     |
|-------|-------|----------|-----|
|       | ? ¬ • |          | •   |
| 1) '  | 5312. | 214-01.4 |     |
| 2)    |       | 02.4     |     |
| 3)    |       | ∂.3.0    |     |
| 4)    | J     | 04,4     |     |
| 5) (  | 3122  | 45 -08 A |     |
| 6) (  | 33122 | 46-020   |     |
| 7)    |       | c39      |     |
| 8)    |       | 030      | برد |
| 9)    |       | 040      | MI  |
| 10)   | V     | UŚD      | mil |
| 11) 0 | 3122  | 47-01C   |     |
| 12) ( | 53122 | 266-12B  |     |
|       |       | 9-014    |     |
| 14)   |       | 0217     |     |
| 15)   | B312  | 270-014  |     |
| 16) ( | 33122 | 76 - USC |     |
| 17)   | 1     | りざし      |     |
| 18) 3 | 312 ( | 071 -023 |     |
| 19)   |       | 038      |     |
| 20)   |       | 043      |     |

| LCS ID: LCS 05127893 - 1 |
|--------------------------|
| LCSD ID: LCSDCS 122893-1 |
| MB ID: PGOS122893-1      |
| MS ID: B312246-049       |
| MSD ID: 3312246-050      |
| REP ID: 6312246-039      |
| PBD05122893-/            |
|                          |
|                          |

Batch QC Samples

### ANALYTES REQUIRED FOR BATCH:

Ag Al As B Ba Be Ca Cd Co Cr Cu Fe K Mg Mn Mo Na  $\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{\cancel{\bot}}\stackrel{\times}{$ 

| QC Batch ID      |          |
|------------------|----------|
| Preprep Method:  |          |
| Prep Method:     | 3005     |
| Analysis Method: | 6010     |
| Batch Date:      | 12/28/93 |
| Instrument ID:   | В        |
| Batch (Set) #:   | 1        |

| Batch QC Information |                      |
|----------------------|----------------------|
| Matrix: WATER        | Data Reported to PQL |
| Units: MG/L          |                      |
|                      | Corr. Fact.          |
| Method Blk ID:       | PB05122893-1 1       |
| LCS ID:              | LCS05122893-1 1      |
| LCSD ID:             | LCSD05122893-1 1     |
| MS Sample ID:        | B312246-04D MS 1     |
| MSD Sample ID:       | B312246-05D MSD 1    |
| Rep Sample ID:       | B312246-03D DUP 1    |

Page 1 of 2

|         | Replicate  | Sample Da | ta    |   | Blank / | LCS | S Batch QC  |        |        |   |       |        |  |              |
|---------|------------|-----------|-------|---|---------|-----|-------------|--------|--------|---|-------|--------|--|--------------|
|         | Original   |           |       | П | Metho   | od  |             | LCS    |        | Γ | LCSD  |        |  | % RPD for    |
| 1       | Result for | Replicate |       |   | Blank   |     | LCS true    | Conc.  | LCS    |   | Conc. | LCSD   |  | LCS/LCSD     |
| Analyte | Replicate  | Result    | % RPD | d | Result  |     | Value (mg/L | Found  | % Rec. | a | Found | % Rec. |  | Recoveries Q |
| Ag      | ND         | ND        | N/A   |   | < 0.0   | 10  | 1           | 0.9358 | 94     |   | 0.94  | 94     |  | 0.30         |
| Al      | 1.469      | 1.391     | 5.45  |   | < 0.3   | 20  | 10          | 10.15  | 102    |   | 10.17 | 102    |  | 0.20         |
| As      |            |           |       |   | < 0.    | 10  | 1           | 1.04   | 104    |   | 1.06  | 106    |  | 1.53         |
| В       |            |           |       |   | < 0.2   | 20  | 1           | 0.9016 | 90     |   | 0.92  | 92     |  | 2.02         |
| Ba      | 0.5558     | 0.5674    | 2.07  |   | < 0.5   | 20  | 1           | 0.993  | 99     |   | 0.99  | 99     |  | 0.72         |
| Ве      | ND         | ND        | N/A   |   | < 0.00  | 50  | 1           | 0.9713 | 97     |   | 0.98  | 98     |  | 0.71         |
| Ca      | 67.74      | 69.09     | 1.97  |   | < 5     | 0.0 | 20          | 20.3   | 102    |   | 20.41 | 102    |  | 0.54         |
| Cd      | ND         | ND        | N/A   |   | < 0.00  | 50  | 1           | 0.9619 | 96     |   | 0.97  | 97     |  | 0.73         |
| Co      |            |           |       |   | < 0.0   | 50  | 1           | 0.9393 | 94     |   | 0.94  | 94     |  | 0.49         |
| Cr      | 0.0213     | 0.019     | 11.41 |   | < 0.0   | 10  | 1           | 0.9762 | 98     |   | 0.98  | 98     |  | 0.49         |
| Cu      | ND         | ND        | N/A   |   | < 0.02  | 25  | 1           | 0.9408 | 94     |   | 0.94  | 94     |  | 0.12         |
| Fe      | 1.085      | 1.075     | 0.93  |   | < 0.    | 10  | 10          | 10.34  | 103    |   | 10.37 | 104    |  | 0.29         |
| K       | ND         | ND        | N/A   |   |         | .0  | 20          | 19.64  | 98     |   | 19.50 | 98     |  | 0.72         |
| Mg      | 41.56      | 42.51     | 2.26  |   | < 5     | .0  | 20          | 20.18  | 101    |   | 20.20 | 101    |  | 0.10         |
| Mn      | 0.0156     | 0.0156    | 0.00  |   | < 0.0   | 15  | 1           | 0.9361 | 94     |   | 0.94  | 94     |  | 0.50         |
| Мо      |            |           |       |   | < 0.1   | 10  | 1           | 0.9318 | 93     |   | 0.94  | 94     |  | 0.83         |
| Na      | 45.23      | 46.03     | 1.75  |   | < 5     | .0  | 20          | 20.4   | 102    |   | 20.40 | 102    |  | 0.00         |
| Ni      | ND         | ND        | N/A   |   | < 0.04  | 40  | 1           | 0.9269 | 93     |   | 0.94  | 94     |  | 1.20         |
| РЬ      | ND         | ND        | N/A   |   | < 0.05  | 50  | 1           | 0.9286 | 93     |   | 0.96  | 96     |  | 3.02         |
| Sb      | ND         | ND        | N/A   |   | < 0.06  | 60  | 1           | 0.9896 | 99     |   | 1.00  | 100    |  | 0.99         |
| Se      | ND         | ND        | N/A   |   | < 0.1   | 10  | 1           | 0.9278 | 93     |   | 0.97  | 97     |  | 4.27         |
| Si      |            |           |       |   | < 1     | .0  | 10          | 10.04  | 100    |   | 10.23 | 102    |  | 1.87         |
| Sn      |            |           |       |   | < 0.1   | 10  | 1           | 0.9643 | 96     |   | 0.93  | 93     |  | 3.75         |
| Ti      |            |           |       |   | < 0.1   | 10  | 1           | 0.9902 | 99     |   | 0.99  | 99     |  | 0.29         |
| П       |            |           |       |   | < 0.2   | 20  | 1           | 0.982  | 98     |   | 1.00  | 100    |  | 1.69         |
| V       |            |           |       |   | < 0.05  | 50  | 1           | 0.9406 | 94     |   | 0.94  | 94     |  | 0.38         |
| Zn      | ND         | ND        | N/A   |   | < 0.02  | 20  | 1           | 0.9484 | 95     |   | 0.96  | 96     |  | 0.81         |

| QC Data Review | ved By: | KmB Date/Time: 12/29/93 2300 |   |
|----------------|---------|------------------------------|---|
| Comments:      | All     | ac within control limits     |   |
|                |         |                              | _ |

Qualifiers:

N - LCS % Recovery was outside method limits of 80-120 %.

R - % RPD for LCS/LCSD was outside control limit of 20 %.

<sup>\*</sup> Replicate RPD was outside method control limit of 20 %

1

Batch (Set) #:

| Batch QC Information |                 |               |
|----------------------|-----------------|---------------|
| Matrix: WATER        | Data Rep        | ported to PQL |
| Units: MG/L          |                 |               |
|                      | _               | Corr. Factor  |
| Method Blk ID:       | PB05122893-1    | 1             |
| LCS ID:              | LCS05122893-1   | 1             |
| LCSD ID:             | LCSD05122893-1  | 1             |
| MS Sample ID:        | B312246-04D MS  | 1             |
| MSD Sample ID:       | B312246-05D MSD | 1             |
| Rep Sample ID:       | B312246-03D DUP | 1             |

Page 2 of 2

|           | Spike Sam                                        | ple Data     |                   |              |   |               |                    |               |          |                                   |   |                                             |   |
|-----------|--------------------------------------------------|--------------|-------------------|--------------|---|---------------|--------------------|---------------|----------|-----------------------------------|---|---------------------------------------------|---|
| Anabaa    | Original<br>Result for<br>MS/MSD                 | MS<br>Result | MS Spike<br>Added | MS<br>% Rec. | Q | MSD<br>Result | MSD Spike<br>Added | MSD<br>% Rec. |          | % RPD for<br>MS/MSD<br>Recoveries |   | % RPD for<br>MS/MSD Result<br>As Replicates | a |
| Analyte   | ND ND                                            | 0.9506       | 1.00              | % Nec.       | H | 0.9509        | 1.00               | 95            | 7        | 0.03                              | ۲ | As Neplicates                               | ۲ |
| Ag<br>Al  | 1.469                                            | 11.52        | 10.00             | 101          | Н | 11.59         | 10.00              | 101           | $\vdash$ | 0.69                              |   |                                             | ┝ |
| As        | 1.405                                            | 11.02        | 10.00             | 101          | Н | 11.55         | 10.00              | 101           | $\vdash$ | 0.00                              |   |                                             | ⊢ |
|           | <del>                                     </del> |              | <b></b>           |              | Н |               | f                  |               |          |                                   |   |                                             | ┢ |
| Ba        | 0.5558                                           | 1.525        | 1.00              | 97           | Н | 1.556         | 1.00               | 100           |          | 3.15                              | Н |                                             | H |
| Be        | ND                                               | 1.004        | 1.00              | 100          | Н | 1.005         | 1.00               | 100           | Н        | 0.10                              | П |                                             | 一 |
| Ca        | 67.74                                            | 89.59        | 20.00             | 109          | П | 93.65         | 20.00              | 130           | Z        | 17.00                             | П |                                             | Γ |
| Cd        | ND                                               | 0.972        | 1.00              | 97           | П | 0.9758        | 1.00               | 98            |          | 0.39                              |   |                                             | Г |
| Co        |                                                  |              |                   |              | П |               |                    |               |          |                                   |   |                                             | Γ |
| Cr        | 0.0213                                           | 0.9908       | 1.00              | 97           | П | 0.9911        | 1.00               | 97            |          | 0.03                              |   |                                             |   |
| Cu        | ND                                               | 0.9565       | 1.00              | 96           |   | 0.9612        | 1.00               | 96            |          | 0.49                              |   |                                             | Γ |
| Fe        | 1.085                                            | 11.03        | 10.00             | 99           |   | 11.05         | 10.00              | 100           |          | 0.20                              |   |                                             |   |
| K         | ND                                               | 22.27        | 20.00             | 111          |   | 22.57         | 20.00              | 113           |          | 1.34                              |   |                                             |   |
| Mg        | 41.56                                            | 62.33        | 20.00             | 104          |   | 64.94         | 20.00              | 117           |          | 11.82                             |   |                                             |   |
| Mn        | 0.0156                                           | 0.9508       | 1.00              | 94           |   | 0.9518        | 1.00               | 94            |          | 0.11                              |   |                                             |   |
| Мо        |                                                  |              |                   |              |   |               |                    |               |          |                                   | Ц |                                             |   |
| Na        | 45.23                                            | 58.19        | 20.00             |              | N | 60.59         | 20.00              |               | Z        |                                   | Ц |                                             |   |
| Ni        | ND                                               | 0.9421       | 1.00              | 94           | Ц | 0.9464        | 1.00               | 95            |          | 0.46                              |   |                                             |   |
| Pb        | ND                                               | 0.9767       | 1.00              | 98           | Ц | 0.9653        | 1.00               | 97            |          | 1.17                              | Ц |                                             |   |
| Sb        | ND                                               | 1.014        | 1.00              | 101          | Ц | 1.015         | 1.00               | 101           |          | 0.10                              | Ц |                                             |   |
| Se        | ND                                               | 0.9859       | 1.00              | 99           | Ц | 0.9937        | 1.00               | 99            | Ц        | 0.79                              |   |                                             |   |
| Si        |                                                  |              |                   |              | Ц |               |                    |               |          |                                   | Ц |                                             | Ц |
| Sn        |                                                  |              |                   |              | Ц |               |                    |               | Ц        |                                   |   |                                             | Ц |
| <u>Ti</u> |                                                  |              |                   |              | Н |               |                    |               | Ц        |                                   |   |                                             | Н |
| TI        |                                                  |              |                   |              | Н |               |                    |               | Ц        |                                   |   |                                             | Н |
| V         | 1                                                | 0.0000       | 1.00              |              | Н | 0.0500        | 4.00               | 00            | $\dashv$ | 0.00                              | 4 |                                             | Н |
| Zn        | ND                                               | 0.9608       | 1.00              | 96           | Ш | 0.9583        | 1.00               | 96            |          | 0.26                              |   |                                             |   |

| Comments: | % Rec    | بعر   | Na           | in   | MS/MS  | SD outsa | de control | limits | due 1   | •   |   |
|-----------|----------|-------|--------------|------|--------|----------|------------|--------|---------|-----|---|
| matri     | x unterf | يروبر | <u>u</u> / . | مريه | سيمامي | + same   | she matr   | ix . % | Rec for | Ca  | ż |
| MSD       | outsi    | de c  | ontre        | و د  | emet.  | for sam  | e reason   | AQQ    | other ( | લેC |   |
|           | vether   | Con   | Ine          | lu   | mts.   |          |            |        |         |     |   |

Qualifiers (Q):

- H Sample concentration was greater than five times the spike level.
- N Spike recovery was outside method control limits of 80-120 %.
- R Percent RPD for MS/MSD recoveries was outside method control limit of 20 %.
- D Sample concentration was greater than five times the spike level.

  The RPD was calculated between the MS and MSD results as replicates.

## Method BTEX Batch QC summary

| Reviewed      | Batch Date      | Instrument ID | Analyst            |
|---------------|-----------------|---------------|--------------------|
|               | 12/22/93        | GCF1          | -                  |
| Sample Spiked | 12/22/93 Method | Client        | SAM Number         |
| BLK SPIKE     | втех            |               |                    |
| Comments      | Set (Batch)     | Units         | Matrix: Water/Soil |
| 읒             | <u>*</u>        | ug/L          | water              |

|        | 1,3 CL2 Benzene | 1,4 CL2Benzene | 1,2 CL2Benzene | O-xylene | M+P Xylene | Ethyl benzene | Toluene | Benzene | Surr (BFB) |       |        |         | Analyte              |
|--------|-----------------|----------------|----------------|----------|------------|---------------|---------|---------|------------|-------|--------|---------|----------------------|
|        | 0.00            | 0.00           | 0.00           | 0.00     | 0.10       | 0.00          | 0.04    | 0.00    | 98.28      |       |        |         | Lab Blank            |
|        | 0.00            | 0.00           | 0.00           | 0.00     | 0.10       | 0.00          | 0.04    | 0.00    | 0.00       |       |        | result  | Matrix               |
|        |                 |                |                | 41.40    | 83.10      | 20.70         | 61.10   | 20.80   | 100.00     |       | MS/MSD | amnt    | Spike                |
|        |                 |                |                | 41.40    | 83.10      | 20.70         | 61.10   | 20.80   | 100.00     | SPIKE | BLX    | amnt    | Spike                |
|        | 0.00            | 0.00           | 0.00           | 43.03    | 89.00      | 20.83         | 61.81   | 19.89   | 106.00     |       | Result | Spike   | Blank                |
|        | 0.00            | 0.00           | 0.00           | 43.63    | 89.77      | 21.57         | 63.56   | 20.55   | 103.00     |       |        |         | MS result            |
|        | 0.00            | 0.00           | 0.00           | 46.45    | 95.40      | 22.03         | 67.07   | 21.61   | 105.00     |       |        |         | MS result MSD result |
|        | #VALUE!         | #VALUE!        | #VALUE!        | 104%     | 107%       | 101%          | 101%    | 96%     | 106%       |       | Rec    | Spike % | Blank                |
|        | #VALUE!         | #VALUE!        | #VALUE!        | 105%     | 108%       | 104%          | 104%    | 99%     | 103%       |       |        | Rec     | MS %                 |
|        | #VALUE!         | <b>#VALUE!</b> | #VALUE!        | 112%     | 115%       | 106%          | 110%    | 104%    | 105%       |       |        | Rec     | MSD %                |
|        | #DIV/0!         | #DIV/0!        | #DIV/0!        | 6%       | 6%         | 2%            | 5%      | 5%      | 2%         |       |        |         | % rpd                |
| 70-130 | 70-130          | 70-130         | 70-130         | 70-130   | 70-130     | 70-130        | 70-130  | 70-130  | 70-130     |       |        | Limits  | Accept               |

matrix spike evaluation. A blank spike and blank spike duplicate were prepared instead. Comment: Insufficient sample was available for matrix and

# THIS QC APPLIES TO THE FOLLOWING SAMPLES:

| m      |
|--------|
| ·      |
| w      |
|        |
|        |
| N      |
|        |
| $\sim$ |
| C      |
|        |
| _      |
| =      |
| 0      |
| Ŭ      |
| ٠.     |
| _      |
| 8      |
| ፙ      |
| •      |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |

B312267 B312247 B312246 B312278

### **ACCEPTANCE LIMITS:**

LCS: MS/MSD: RPD: 85-115% 70-130%

SURROGATES: <30% 75-125%

| ITAS_Austin Volation  Date/Time: 12/29/0 | 11es QA Spike Lot Summary LOTI:  3                                                                                      |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Operator: SAB                            | Test/Hatrix: 8340/wacco                                                                                                 |
| GC Column: 502.2                         | (Rtx) Operator: SAB                                                                                                     |
| Type Lab Sample B3123 HSD UCS            | ample ID Lab File ID (Y or N)  46-03 > E2463  -04 7 E 2464  -05 7 E 3465  -65 > E6599  pplies to the following Samples: |
| Client *   Sample 10                     | Lab Sample   Lab File   1D                                                                                              |
| 01                                       | B312246-01                                                                                                              |
| <u> </u>                                 | -02<br>-03                                                                                                              |
| 04                                       | -04<br>-05                                                                                                              |
| 05                                       | -07                                                                                                                     |
| 87                                       |                                                                                                                         |
| 08                                       |                                                                                                                         |
| 18                                       |                                                                                                                         |
| 13                                       |                                                                                                                         |
| 13                                       |                                                                                                                         |
| 15                                       |                                                                                                                         |
| [6]                                      |                                                                                                                         |
| 181                                      |                                                                                                                         |
| 19                                       |                                                                                                                         |
| Compates                                 |                                                                                                                         |
| Comments:                                |                                                                                                                         |
| • - Field used on                        | y if necessary.                                                                                                         |

•

· -

| QC B           | Batch ID        |
|----------------|-----------------|
| Prep Code/Dat  | le:/            |
| Test Code/Date | 6: 8340 13/34/4 |
| Set #: 1       | Inst. ID: E     |
|                |                 |

### WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY AND BLANK SPIKE RECOVERY

Lab Name: ITAS - Austin Date Ran: 12/29/93

>E2464 >E2465 >EBS29

QC BATCH ID

Prep Code/Date:

Sample Names:

Test Code/Date: 8240

1 12/29/93

CLIENT ID:

Matrix Spike - SAM Sample No. B312246 Matrix: WATER Set 4: 0

Inst.ID: E1

( 5.000 ML TD 5 ML)

1.0 X DIL

| :<br>COMPOUND<br>: NAME                                                | SPIKE ADDED                                              |                                   | CONC<br>(ug/L)                   | : MS<br>: 1<br>: Rec # | : QC<br>:LIMITS<br>: REC.                                          | BLANK<br>    CONC<br>    (ug/L) | (ug/L)                                                    | BS   QC                                                         |
|------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|----------------------------------|------------------------|--------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|
| :1,1-Dichloroethene: Trichloroethene: Benzene: Toluene: Chlorobenzene: | _: 50.00<br>_: 50.00<br>_: 50.00<br>_: 50.00<br>_: 50.00 | : .00<br>: 1.52<br>: .00<br>: .00 | 44.24<br>44.13<br>45.25<br>50.02 | : 88<br>: 85           | : 61 - 145<br>: 71 - 120<br>: 76 - 127<br>: 76 - 125<br>: 75 - 130 |                                 | 0 : 43.40<br>0 : 40.9<br>0 : 44.3<br>0 : 48.1<br>0 : 47.4 | 5   82   71 - 120  <br>5   89   76 - 127  <br>9   96   76 - 125 |

| :<br>COMPOUND                           | : SPIKE     |       | MSD<br>CONC. | :     | MSD<br>Z | ;   | Z   | ; | 90  | LIM         | ITS |              |
|-----------------------------------------|-------------|-------|--------------|-------|----------|-----|-----|---|-----|-------------|-----|--------------|
| I NAME                                  | (ug/L       |       | (ug/L)       | 1     | REC      |     | RPD |   | RPD | <br> -!===: |     | EC.<br>===== |
| .====================================== | ===   ===== | :===; |              | - , = |          |     |     | , |     |             |     |              |
| 11,1-Dichloroethene_                    | ; 50.1      | 00 1  | 41.84        | ļ     | 84       | ;   | 6   | ; | 14  | : 61        | -   | 145          |
| :Trichloroethene                        | 50.0        | 00 1  | 43.48        | ;     | 84       | ;   | 2   | 1 | 14  | 1 71        | -   | 120          |
| Benzene                                 | 50.0        | 00 :  | 43.87        | :     | 88       | ;   | 3   | : | 11  | : 76        | -   | 127          |
|                                         | 50.4        |       | 47.88        |       | 96       | - 1 | 4   | 1 | 13  | ; 76        | -   | 125          |
| :Toluene<br>:Chlorobenzene              | 50<br>50    | -     | 48.30        |       | 97       | ;   | 3   | ; | 13  | : 75        | -   | 130          |
| I CHIOLOGENZENE                         |             | ;     |              | :     | -        |     | _   | 1 |     | _;          |     |              |

- # Column to be used to flag recovery and RPD values with an asterisk.
- \* Values outside of QC limits.

0 out of 5 outside limits.

Spike Recovery: 0 out of 10 outside limits.

| SURROGATE RECOVERIES     | >  | E2464 | > | E2465 | >EBS29     |         | LIMI | TS  |
|--------------------------|----|-------|---|-------|------------|---------|------|-----|
| Toluene - d8             | ļ. |       | - |       | 1 101      |         |      |     |
| :Brosofluorobenzene      |    |       | - |       | : 100      |         |      |     |
| 11,2-Dichloroethane - d4 |    | 104   | ; | 107   | : 101<br>: | ;<br>_; | 76 - | 114 |

ITAS - AUSTIN EXTRACTABLES QA LOT SUHVARY.

Prep Code/Date: 419.1 /12/12/9)
Test Code/Date: 7478 /12/12/9)
Set 1: \_\_\_\_\_\_Inst.ID: FT28

|             |               |        | Percent  |                   |
|-------------|---------------|--------|----------|-------------------|
| Type        | Lab Sample ID | Result | Recovery | QC fimits         |
|             | 1 02:224 44 1 | 4      | l ND     | < Reporting limit |
| Blank       | B312346.8K    | 4.8    | 95       | 70 to 130%        |
| Blank spike | BS            | 9.5    | - S      | 70 to 130%        |
| HS          | Others.       |        |          | Ra 70 to 130%     |
| HSD         | 05msD.        | 10     |          | RB 70 to 130%     |
| ,           |               |        |          | ' /3              |

This QA Spike Lot applies to the following Samples:

| •                                                                                                           | Client                        | Sam # + Fraction                                           | Date of Prep |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------|--------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | Tinter  IT Supposed  V  Tinke | B312246-62B  (32B  (31B)  (312180-650)  (30D)  (312246-12B | 12/12/93     |

| Comments: |  |
|-----------|--|
|           |  |

ITAS - AUSTIN EXTRACTABLES QA LOT SUHHARY:

QC Batch ID

| Prep  | Code/Date | I S-IRI   | 12/50/9 |
|-------|-----------|-----------|---------|
| Test  | Code/Date | ·/_       | 7       |
| Set ( | Ba        | Inst. ID: |         |

|             | 1                |        | Percent  |
|-------------|------------------|--------|----------|
| Type        | Lab Sample ID    | Result | Recovery |
| Blank       | 18312306 - BIK 1 | ~      | . I ND   |
| Blank spike | B.5              | 5,4    | 1 96     |
| HS          | 084              | 310    | 1 94     |
| HSD         | 1 084            | 310    | 1 94     |
|             |                  |        |          |

QC fimits < Reporting fimit 70 to 130% 70 to 130% 70 to 130%

This QA Spike Lot applies to the following Samples:

|                                                                                                       | Client                       | Sam # + Fraction                                                                     | Date of Prep |
|-------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------|--------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19 | IT - Hon  Tr - Slep.  Trixer | 10312300-01A 02A 03A 04A 05A 06A 07A 08A 09A 10A 02A 02A 02A 03A 04A 05A 06A 06A 07A | /2-30-93     |
| 20                                                                                                    | l                            |                                                                                      |              |

| Comments: |  |
|-----------|--|
|           |  |

| QC BATCH ID FOR  | WET CHEM | - Test Code: | NO 3 NO, / N | 3-PM<br>— |
|------------------|----------|--------------|--------------|-----------|
| PREPREP METHOD:  |          |              |              |           |
| PREP METHOD:     |          |              |              |           |
| ANALYSIS METHOD: | 353.2    |              |              |           |
| BATCH DATE:      | 1-5-94   |              |              |           |
| INSTRUMENT ID:   | A        |              |              |           |
| SET (BATCH) #:   | 3        |              |              |           |

| ab Sample ID's | Batch QC ID's  |         | _     |         |                |
|----------------|----------------|---------|-------|---------|----------------|
| 1 1312246-026  |                | 5 01059 |       |         |                |
| 2 03c          | LCSD ID: LCS   | 0 01059 | 4-1   |         |                |
| 3              | MB ID: m       | 3 01059 | 14-1  |         |                |
| 4              | MS ID: 133/2   |         |       |         |                |
| 5              |                | 246 -03 | _     |         |                |
| 6              | REP ID:        |         |       |         |                |
| 8              | Batch QC Resul | ts      |       | MDL:    | PQL: <u>o.</u> |
| 9              |                | •       |       | TA Luca | Data (Time     |
| 10             | Sample ID      | Result  | Units |         | Date/Time      |
| 11             | Method Blk     | ND      | mg/L  | D5B     | 1-5-54 10:35   |
| 12             | LCS % Rec      | 100     | % Rec |         |                |
| 13             | LCSD % Rec     | 98      | % Rec |         | ·              |
| 14             | LCS/LCSD RPD   | 2.0     | % RPD |         |                |
| 15             | MS % Rec       | 90 +10  | % Rec | ļ       |                |
| 16             | MSD % Rec      | 91-99   | % Rec |         |                |
| 17             | MS/MSD RPD     | 41      | % RPD |         |                |
| 18             | REP RPD        |         | % RPD |         |                |
| 19             |                |         |       |         |                |
| 20             |                |         |       |         |                |
| Comments:      |                |         |       |         |                |

| QC BATCH ID FOR V | WET CHEM - Test Code: 9066 |
|-------------------|----------------------------|
| PREPREP METHOD:   |                            |
| PREP METHOD:      |                            |
| ANALYSIS METHOD:  | 9066                       |
| BATCH DATE:       | 12 - 27 - 93               |
| INSTRUMENT ID:    | A                          |
| SET (BATCH) #:    | 3.                         |

| Lab Sample ID's        | Batch QC ID's  |                       |       |                                                  |               |
|------------------------|----------------|-----------------------|-------|--------------------------------------------------|---------------|
| 1 B312246-02C<br>2 03C | LCSD ID: LC    | S /2 279<br>SD /2 279 | 3- z  |                                                  |               |
| 3                      |                | 3 122793              |       |                                                  |               |
| 4                      |                | 2246-04               |       |                                                  |               |
| 5                      | MSD ID: B3/    | 2246-03               |       |                                                  |               |
| 6                      | REP ID: p3/    | 2246-02               | 2 2   |                                                  | O             |
| 8                      | Batch QC Resul | ts                    |       | MDL:_                                            | PQL: <u> </u> |
| 9                      |                |                       | 1     | Analys                                           | t Dete/Time   |
| 10                     | Sample ID      | Result                | Units |                                                  | t Date/Time   |
| 11                     | Method Blk     | ND                    | mg/L  | non                                              | 1-6-94 17:0   |
| 12                     | LCS % Rec      |                       | % Rec | -                                                | <del></del>   |
| 13                     | LCSD % Rec     |                       | % Rec |                                                  | <u> </u>      |
| 14                     | LCS/LCSD RPD   |                       | % RPD |                                                  |               |
| 15                     | MS % Rec       |                       | % Rec |                                                  |               |
| 16                     | MSD % Rec      |                       | % Rec | <del>                                     </del> |               |
| 17                     | MS/MSD RPD     |                       | % RPD |                                                  |               |
| 18                     | REP RPD        |                       | % RPD | <u> </u>                                         |               |
| 19                     |                |                       |       |                                                  |               |
| 20                     |                |                       |       |                                                  |               |
| Comments:              |                |                       |       |                                                  |               |

| QC BATCH ID FC   | OR WET CHEM - Test Code: <u>≤04-∓</u> C |
|------------------|-----------------------------------------|
| PREPREP METHOD:  |                                         |
| PREP METHOD:     |                                         |
| ANALYSIS METHOD: | 300,0                                   |
| BATCH DATE:      | 1-10-94                                 |
| INSTRUMENT ID:   | A                                       |
| SET (BATCH) #:   |                                         |

| <u></u>                                              | D 1.1. OC 10's                                                          |                                 |                                |         |                 |
|------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|--------------------------------|---------|-----------------|
| Lab Sample ID's                                      | Batch QC ID's                                                           |                                 | -                              |         |                 |
| 1 1312246-02c <sup>1</sup> 2 -035 <sup>1</sup> 3 4 5 | LCS ID: LCSO LCSD ID: LCSO MB ID: TCB MS ID: TS313 MSD ID: REP ID: LCSO | - PPOIL<br>- NPOIL<br>- 276 - 0 | L<br>L<br>Y c' ~s<br>5 c' ~s o |         |                 |
| 7                                                    | Batch QC Resul                                                          | lts                             |                                | MDL:    | PQL: <u>1-0</u> |
| 9                                                    |                                                                         |                                 |                                |         |                 |
| 10                                                   | Sample ID                                                               | Result                          | Units                          | Analyst | Date/Time       |
| 11                                                   | Method Blk                                                              | <1.0                            | molL                           | B9G-    | 1/1494 10.00    |
| 12                                                   | LCS % Rec                                                               | 48.8                            | % Rec                          |         |                 |
| 13                                                   | LCSD % Rec                                                              | 97.8                            | % Rec                          |         |                 |
| 14                                                   | LCS/LCSD RPD                                                            |                                 | % RPD                          |         |                 |
| 15                                                   | MS % Rec                                                                | 84.0                            | % Rec                          |         |                 |
| 16                                                   | MSD % Rec                                                               | 81,0                            | % Rec                          |         |                 |
| 17                                                   | MS/MSD RPD                                                              | 3.64                            | % RPD                          |         |                 |
| 18                                                   | REP RPD                                                                 | 1.02                            | % RPD                          |         |                 |
| 19                                                   |                                                                         |                                 |                                |         |                 |
| 20                                                   |                                                                         |                                 |                                |         |                 |
| Comments:                                            |                                                                         |                                 |                                |         |                 |
|                                                      |                                                                         |                                 |                                |         |                 |
|                                                      |                                                                         |                                 | •                              |         |                 |

| QC BATCH ID FC   | R WET CHEM - Test Code: CL-IC |
|------------------|-------------------------------|
| PREPREP METHOD:  |                               |
| PREP METHOD:     |                               |
| ANALYSIS METHOD: | 300.0                         |
| BATCH DATE:      | 1-10-94                       |
| INSTRUMENT ID:   | A                             |
| SET (BATCH) #:   |                               |

| LCS ID: (CS 011094-1) LCSD ID: 1CSD011094-1  MB ID: TC13 1/10/94  MS ID: B312246-04c1 ms of 03 C  MSD ID: LCS/LCSD  REP ID: LCS/LCSD |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PQL: 1.0 mg                                                                                                                          |  |  |  |  |
| st Date/Time                                                                                                                         |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
| - 160/24 10:02                                                                                                                       |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
|                                                                                                                                      |  |  |  |  |
|                                                                                                                                      |  |  |  |  |

| QC BATCH ID FOR WE | T CHEM - Test Code: TEN-N |
|--------------------|---------------------------|
| PREPREP METHOD:    |                           |
| PREP METHOD:       |                           |
| ANALYSIS METHOD:   | 351,2                     |
| BATCH DATE:        | 1-8-94                    |
| INSTRUMENT ID:     | A                         |
| SET (BATCH) #:     | 1                         |

| .ab | Sample ID's | Batch QC ID's  |          | -             |      |                 |
|-----|-------------|----------------|----------|---------------|------|-----------------|
| 1   | B312198-016 | LCS ID: IC     | V OLO    | 294-1         |      |                 |
| 2   | 020         | LCSD ID: LC    | 5 0108   | 24-1          |      |                 |
| 3   | B312246-02C | MB ID: M       | B 01089  | <u> 2</u> 4-1 |      |                 |
| 4   | 030         | MS ID: $\beta$ | 312246.  | 04 C          |      |                 |
| 5   | B312247-01B | MSD ID: B      | 312246 - | 050           |      |                 |
| 6   | B312276-03B | REP ID:        |          | -             |      |                 |
| 7   | 053         |                |          |               |      | 201             |
| 8   | B312327_010 | Batch QC Resul | ts       |               | MDL: | PQL: _ <i>_</i> |
| 9   | 020         |                | ·        | ·             |      | T               |
| 10  | 030         | Sample ID      | Result   | Units         |      | Date/Time       |
| 11  | 040         | Method Blk     | NO       | mg/L          | DSB  | 1/10/94 08:4    |
| 12  | 05H         | LCS % Rec      | 82.0     | % Rec         |      | ' '             |
| 13  |             | LCSD % Rec     | 97.2     | % Rec         |      | ·               |
| 14  |             | LCS/LCSD RPD   |          | % RPD         |      |                 |
| 15  |             | MS % Rec       | 10098:4  | % Rec         |      |                 |
| 16  |             | MSD % Rec      | 102      | % Rec         |      |                 |
| 17  |             | MS/MSD RPD     | 1.98     | % RPD         |      |                 |
| 18  |             | REP RPD        |          | % RPD         |      |                 |
| 19  |             |                |          |               |      |                 |
| 20  |             |                |          |               |      |                 |
| Con | nments:     |                |          |               |      |                 |

| OR WET CHEM - Test Code: TEP |
|------------------------------|
|                              |
| _                            |
| 365.4                        |
| 1-8-47                       |
| A                            |
|                              |
|                              |

| Lab Sample ID's                                                 | Batch QC ID's                                                                                                                                |        |       |         |               |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|---------|---------------|--|
| 1 B312241-026 2 L -036 3 B312327.010 4   -020 5   -030 6   -040 | LCS ID: LCS O108 94-1  LCS ID: LCS O108 94-1  MB ID: PRW 010894-1  MS ID: B312246-040 ms 2003C  MSD ID: -050 ms0 503C  REP ID: -050 ms0 503C |        |       |         |               |  |
| 7 - 05H                                                         | Batch QC Resul                                                                                                                               | lts    |       | MDL:    | PQL: (51)     |  |
| 9                                                               | Sample ID                                                                                                                                    | Result | Units | Analyst | Date/Time     |  |
| 10                                                              | Method Blk                                                                                                                                   | <0.10  | ML    | OSB     | 1/10/94 10:40 |  |
| 12                                                              | LCS % Rec                                                                                                                                    | 107    | % Rec | 1       |               |  |
| 13                                                              | LCSD % Rec                                                                                                                                   |        | % Rec |         |               |  |
| 14                                                              | LCS/LCSD RPD                                                                                                                                 |        | % RPD |         |               |  |
| 15                                                              | MS % Rec                                                                                                                                     | 105    | % Rec |         |               |  |
| 16                                                              | MSD % Rec                                                                                                                                    | 104    | % Rec |         |               |  |
| 17                                                              | MS/MSD RPD                                                                                                                                   | 0.96   | % RPD |         |               |  |
| 18                                                              | REP RPD % RPD V                                                                                                                              |        |       |         |               |  |
| 19                                                              |                                                                                                                                              |        |       |         |               |  |
| 20                                                              |                                                                                                                                              |        |       |         |               |  |
| Comments:                                                       |                                                                                                                                              |        |       |         | -             |  |
|                                                                 |                                                                                                                                              |        |       |         |               |  |
|                                                                 |                                                                                                                                              |        |       |         |               |  |

| Mork Orders/Fractions Associated With Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PREP METHOD:  ANALYSIS METHOD: 310_1  BATCH DATE. \$\frac{9}{2863}  2793  INSTRUMENT ID: \$\frac{1}{4}\$  SET (BATCH) #: |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------|
| 183 224 -030   LCS  D: LCS  J 27-93-    LCS  D: LCS  J 27-93-    LCS  J 27-93-    LCS  D: LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93-    LCS  J 27-93- | Work Orders/Fractions Associated with Batch                                                                              |      |
| CSD   D:   LCSD   D   D   D   D   D   D   D   D   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ead Sample ID's Batch QC ID's                                                                                            |      |
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                        |      |
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Batch QC Results MDL: PQ                                                                                                 | 1.17 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample ID                                                                                                                |      |

QC BATCH ID FOR WET CHEM - Test Code. 310\_

| QC BATCH ID FOR WET CHEM - Test Code: Sico |
|--------------------------------------------|
| PREPREP METHOD:                            |
| PREP METHOD:                               |
| ANALYSIS METHOD: STO                       |
| BATCH DATE: 12/29/53                       |
| INSTRUMENT ID: A                           |
| SET (BATCH) #: $\partial$                  |

| Lab Sample ID's |   |
|-----------------|---|
| 1 B312176-02C   |   |
| 2 -03(          |   |
| 3 -07-34        | 1 |
| 4 B312046-D2C   |   |
| <b>5</b> 3C     |   |
| 6 040           |   |
| 7 65 C          |   |
| 8               |   |
| 9               |   |
| 10              |   |
| 11 /            |   |
| 12              |   |
| 13 / A          |   |
| 14              |   |
| 15              |   |
| 16 / 0/23       |   |
| 17              |   |
| 18              |   |
| 19              |   |
| 20              |   |

### Batch QC ID's

LCS ID: 1\_CS 122993-2

LCSD ID: L(SD 122993-2

T MB ID: MB 122993-2

MS ID: B312176-DYC

MSD ID: B312176-DSC

REP ID: LCSD 122993

**Batch QC Results** 

|              |        |          |          | <del></del>  |
|--------------|--------|----------|----------|--------------|
| Sample ID    | Result | Units    | Analyst  | Date/Time    |
| Method Blk   | D      | ms/L     | SA       | 17/29        |
| LCS % Rec    | 900    | % Rec    |          |              |
| LCSD % Rec   | 96.0   | % Rec    |          |              |
| LCS/LCSD RPD | 6.45   | % RPD    |          |              |
| MS % Rec     | 92.0   | % Rec    |          |              |
| MSD % Rec    | / () / | % Rec    |          |              |
| MS/MSD RPD   | 12,2   | % RPD    | ]        |              |
| REP RPD      | 6.44   | % RPD    | <u> </u> |              |
| HEP NPU      | 6.95   | 70 111 0 | <u> </u> | <del>'</del> |

MDL:\_\_\_\_\_ PQL: <u>\(\int\_{\infty}\) \(\int\_{\infty}\).</u>

| Comments: |  |                                       |  |
|-----------|--|---------------------------------------|--|
|           |  |                                       |  |
|           |  |                                       |  |
|           |  | · · · · · · · · · · · · · · · · · · · |  |

| QC BATCH ID FC   | OR WET CHEM - Test Code: COD |
|------------------|------------------------------|
| PREPREP METHOD:  |                              |
| PREP METHOD:     |                              |
| ANALYSIS METHOD: | COD                          |
| BATCH DATE:      | 19/98/53                     |
| INSTRUMENT ID:   |                              |
| SET (BATCH) #:   | 20                           |

| Lab Sample ID's  | ı |
|------------------|---|
| 4 P2 122(1/2 N2) | ^ |
| 1 B312246-02     | • |
| 2 - 03           | ٠ |
| 3                |   |
| 4                |   |
| 5                |   |
| 6                |   |
| 7                |   |
| 8                |   |
| 9                |   |
| 10               | • |
| 11               |   |
| 12               |   |
| 13               | 1 |
| 14 00            | Ž |
| 15               | - |
| 16               | - |
| 17               | - |
| 18               | - |
| 19               | _ |
| 20               | _ |
|                  |   |

| Bato | h QC   | ID's |  |
|------|--------|------|--|
| Dan  | // Q U |      |  |

LCS ID: LCS 122893-2 LCSD ID: LC>p/22853-2 MBID: MB 122893-2 MS ID: 3312246-04C MSD ID: B312246-05C REP ID: LCSD 122853-2

Batch QC Results

|   | Ana | lyst |          | /Time    |
|---|-----|------|----------|----------|
|   | 3   | 27   | 12       | 08 1P.DI |
|   | 1   |      |          |          |
|   |     |      |          |          |
| ) |     |      | <u> </u> |          |
|   |     |      |          |          |
|   |     |      | ļ        |          |
| ) |     |      |          | 1/       |
|   | 1   | 17   | ı        | 1/       |

MDL:\_\_\_\_ PQL: 2505/

| Sample ID    | Result | Units    | Analyst | Date/Time   |
|--------------|--------|----------|---------|-------------|
| Method Blk   | 1      | MS/L     | SAT     | 12/08/16:00 |
| LCS % Rec    | 96,4   | % Rec    |         |             |
| LCSD % Rec   |        | % Rec    |         |             |
| LCS/LCSD RPD |        | % RPD    |         |             |
| MS % Rec     |        | % Rec    |         |             |
| MSD % Rec    | 1 1    | % Rec    |         |             |
| MS/MSD RPD   | 293    | % RPD    |         | /           |
| REP RPD      | 9 49   | % RPD    | V       | V           |
| 11111111     | I      | <u> </u> |         |             |

| Comments: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |

rest Code/Date: \$220 /12-22-Set 1: \_\_\_\_\_Inst. ID: \_\_\_\_

| Type                  | Lab Sample ID   Lab File ID   (Y or N) |
|-----------------------|----------------------------------------|
| Blank<br>Sample<br>HS | 18312246-8LA<br>18312246-4B 3MS        |
| ICS                   | 1                                      |

This QA Spike Lot applies to the following Samples:

|      | 4           | Client<br>  Sample ID | Lab Sample<br>  ID              | Lab file<br>  ID |
|------|-------------|-----------------------|---------------------------------|------------------|
| 10 1 | 3 4 5 6 7 8 | Sample ID             | B312246-2B<br>-30<br>B312245-8B |                  |

| Comments: |  |
|-----------|--|
|           |  |

### WATER SEMIVOLATILE BLANK SPIKE RECOVERY

Lab Name: ITAS - Austin CLIENT ID: QC BATCH ID

 Sample Names:
 FG2468S
 FG246BLK
 Prep Code/Date:
 3520
 1/5/94

 Date Ran:
 1/6/94
 1/6/94
 Test Code/Date:
 8270
 1/5/94

Time Ran: 16.09 15.33 Set #: 1 Inst.ID: F

Matrix Spike - SAM Sample No. B312246BLK Matrix: WATER

( 1000 ML TO 1 ML) 1.0 X DIL

| COMPOUND                                | SPIKE ADDED | BLANK<br>  CONC | BS CONC | BS<br>% | QC  <br>LIMITS                          | CLP LIMIT                               |              |
|-----------------------------------------|-------------|-----------------|---------|---------|-----------------------------------------|-----------------------------------------|--------------|
| NAME                                    | (ug/L)      | (ug/L)          | (ug/L)  | REC #   | REC.                                    | SPIKE                                   | <b>X</b> RPD |
| ======================================= | =======     | =======         | ======= | ======= | ======================================= | ======================================= | =====        |
| PHENOL                                  | 100.00      | 0               | 39.74   | 40      | 14 - 99                                 | 12 - 110                                | 42           |
| 2-CHLOROPHENOL                          | 100.00      | 0               | 90.61   | 91      | 19 - 107                                | 27 - 123                                | 40           |
| 1,4-DICHLOROBENZENE                     | 50.00       | 0               | 42.11   | 84      | 18 - 101                                | 36 - 97                                 | 28           |
| N-NITROSODI-N-PROPYLAMINE               | 50.00       | 0               | 52.38   | 105     | 32 - 108                                | 41 - 116                                | 38           |
| 1,2,4-TRICHLOROBENZENE                  | 50.00       | 0               | 39.43   | 79      | 24 - 99                                 | 39 - 98                                 | 28           |
| 4-CHLORO-3-METHYLPHENOL                 | 100.00      | 0               | 94.18   | 94      | 31 - 111                                | 23 - 97                                 | 42           |
| ACENAPHTHENE                            | 50.00       | 0               | 51.81   | 104     | 33 - 110                                | 46 - 118                                | 31           |
| 4-NITROPHENOL                           | 100.00      | 0               | 32.88   | 33      | 1 - 141                                 | 10 - 80                                 | 50           |
| 2,4-DINITROTOLUENE                      | 50.00       | 0               | 47.10   | 94      | 35 - 106                                | 24 - 96                                 | 38           |
| PENTACHLOROPHENOL                       | 100.00      | 0               | 88.54   | 89      | 1 - 147                                 | 9 - 103                                 | 50           |
| PYRENE                                  | 50.00       | . 0             | 58.79   | 118     | 42 - 119 1                              | 26 - 127                                | 51           |

<sup>#</sup> Column to be used to flag recovery and RPD values with an asterisk.

Spike Recovery: 0 out of 22 outside limits.

| SURROGATE RECOVERIES | FG246BS | FG246BLK | LIMITS |     |
|----------------------|---------|----------|--------|-----|
| D5-NITROBENZENE      | 92      | 80       | 35 -   | 114 |
| 2-FLUOROBIPHENYL     | 83      | 75       | 43 -   | 116 |
| D14-P-TERPHENYL      | 108     | 103      | 33 -   | 141 |
| D5-PHENOL            | 40      | 32       | 10 -   | 94  |
| 2-FLUOROPHENOL       | 63      | 58       | 21 -   | 100 |
| 2,4,6-TRIBROMOPHENOL | 103     | 82       | 10 -   | 123 |
| 1                    |         | _11_     |        |     |

FORM III SV-1

<sup>\*</sup> Values outside of QC limits.

Lab Name: ITAS - Austin QC BATCH ID

 Sample Names:
 FG24604
 FG24605
 Prep Code/Date:
 3520
 | 1/5/94

 Date Ran:
 1/2/94
 1/2/94
 Test Code/Date:
 8270
 | 1/5/94

 Time Ran:
 17.20
 17.56
 Set #: \* Inst.ID: F

Matrix Spike - SAM Sample No. B3122460 Matrix: WATER

( 450 ML TO 1 ML ) 1.0 X DIL

|                                         | SPIKE   | SAMPLE  | MS     | MS      | QC       |
|-----------------------------------------|---------|---------|--------|---------|----------|
| COMPOUND                                | ADDED   | CONC    | CONC   | 1 %     | LIMITS   |
| NAME                                    | (ug/L)  | (ug/L)  | (ug/L) | REC #   | REC.     |
| ======================================= | ======= | ======= |        |         |          |
| PHENOL                                  | 222.22  | .00     | 85.11  | 38      | 26 - 90  |
| 2-CHLOROPHENOL                          | 222.22  | .00     | 203.91 | 92      | 25 - 102 |
| 1,4-DICHLOROBENZENE                     | 111.11  | .00     | 94.07  | 85      | 28 - 104 |
| N-NITROSODI-N-PROPYLAMINE_              | 111.11  | .00     | 114.47 | 103     | 41 - 126 |
| 1,2,4-TRICHLOROBENZENE                  | 111.11  | .00     | 88.78  | 80      | 38 - 107 |
| 4-CHLORO-3-METHYLPHENOL                 | 222.22  | .00     | 208.47 | 94      | 26 - 103 |
| ACENAPHTHENE                            | 111.11  | .00     | 113.09 | 102     | 31 - 137 |
| 4-NITROPHENOL                           | 222.22  | .00     | 79.96  | 36      | 11 - 114 |
| 2,4-DINITROTOLUENE                      | 111.11  | .00     | 104.40 | 94 * 1  | 28 - 89  |
| PENTACHLOROPHENOL                       | 222.22  | .00     | 199.69 | 90      | 17 - 109 |
| PYRENE                                  | 111.11  | .00     | 137.11 | i 123 i | 35 - 142 |
|                                         | i<br>İ  | i       | •      | i i     |          |

| 1                                       | SPIKE   | MSD     | MSD      |         |        |                                         |
|-----------------------------------------|---------|---------|----------|---------|--------|-----------------------------------------|
| COMPOUND                                | ADDED   | CONC.   | %        | ×       | QC     | LIMITS                                  |
| NAME                                    | (Ug/L)  | (ug/L)  | REC #    | RPD #   | RPD    | REC.                                    |
| ======================================= | ======= | ======= | ======== | ======= | ====== | ======================================= |
| PHENOL                                  | 222.22  | 87.69   | 39       | 3       | 35     | 26 - 90                                 |
| 2-CHLOROPHENOL                          | 222.22  | 199.04  | 90       | 2       | 50     | 25 - 102                                |
| 1,4-DICHLOROBENZENE                     | 111.11  | 101.18  | 91       | 7       | 27     | 28 - 104                                |
| N-NITROSODI-N-PROPYLAMINE_              | 111.11  | 112.40  | 101      | 2       | 38     | 41 - 126                                |
| 1,2,4-TRICHLOROBENZENE                  | 111.11  | 93.47   | 84       | 5       | 23     | 38 - 107                                |
| 4-CHLORO-3-METHYLPHENOL                 | 222.22  | 215.93  | 97       | 4       | 33     | 26 - 103                                |
| ACENAPHTHENE                            | 111.11  | 113.38  | 102      | 0       | 19     | 31 - 137                                |
| 4-NITROPHENOL                           | 222.22  | 82.49   | 37       | 3       | 50     | 11 - 114                                |
| 2,4-DINITROTOLUENE                      | 111.11  | 104.73  | 94 *     | 0       | 47     | 28 - 89                                 |
| PENTACHLOROPHENOL                       | 222.22  | 205.16  | 92       | 3       | 47     | 17 - 109                                |
| PYRENE                                  | 111.11  | 137.53  | 124      | 0       | 36     | 35 - 142                                |
|                                         |         |         |          |         |        | i                                       |

<sup>#</sup> Column to be used to flag recovery and RPD values with an asterisk.

RPD: 0 out of 11 outside limits.

Spike Recovery: 2 out of 22 outside limits.

| SURROGATE RECOVERIES | FG24604 | FG24605 | LIMITS |     |
|----------------------|---------|---------|--------|-----|
| D5-NITROBENZENE      | 97      | 97      | 35 -   | 114 |
| 2-FLUOROBIPHENYL     | 82      | 84      | 43 -   | 116 |
| D14-P-TERPHENYL      | 113     | 114     | 33 -   | 141 |
| D5-PHENOL            | 40      | 40      | 10 -   | 94  |
| 2-FLUOROPHENOL       | 58      | j 61    | j 21 - | 100 |
| 2,4,6-TRIBROMOPHENOL | 90      | 92      | 10 -   | 123 |
|                      |         | _i      |        | i   |

<sup>\*</sup> Values outside of QC limits.

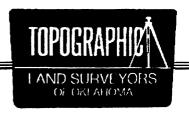
| QC BATCH ID FOR GFAA/CVAA - Test Code: 4.66 |          |
|---------------------------------------------|----------|
| PREPREP METHOD:                             |          |
| PREP METHOD: 23020                          |          |
| ANALYSIS METHOD: 7060                       |          |
| BATCH DATE: 12-28-93                        |          |
| INSTRUMENT ID: D                            | $\neg$   |
| SET (BATCH) #: 2                            | $\dashv$ |

| Lab | Sample ID's |
|-----|-------------|
|     |             |
| 1   | B312245-08B |
| _ 2 | B17246-02D  |
| _ 3 | -03D        |
| 4   | B312266-12B |
| 5   |             |
| 6   |             |
| 7   |             |
| _ 8 |             |
| 9   |             |
| 10  |             |
| 11  |             |
| 12  |             |
| 13  |             |
| 14  |             |
| 15  |             |
| 16  |             |
| 17  |             |
| 18  |             |
| 19  |             |
| 20  |             |
|     |             |

Comments:

| LCS ID: | LC520 122893-2  |
|---------|-----------------|
|         | LCSD20 122893-2 |
| MB ID:  | f320 r2893-2    |
| MS ID:  | B312246-04D     |
| MSD ID: | 1 -05D          |
| REP ID: | V, -OJD DUF     |

Batch QC ID's


| Batch QC Resul | 115    |       | MDL: <u>0</u> | <u>165</u> PQL: 0 |
|----------------|--------|-------|---------------|-------------------|
| Sample ID      | Result | Units | Analyst       | Date/Time         |
| Method Blk     | 10.010 |       | 36-           | 1-7-94 W:33       |
| LCS % Rec      | 701    | % Rec |               | 1                 |
| LCSD % Rec     | 99     | % Rec |               |                   |
| LCS/LCSD RPD   | 7.8    | % RPD |               |                   |
| MS % Rec       | 109    | % Rec |               |                   |
| MSD % Rec      | 108    | % Rec |               |                   |
| MS/MSD RPD     | 0.92   | % RPD |               |                   |
| REP RPD        | 0      | % RPD | 1 1           |                   |

| PREPREP METHOD: PREP METHOD: PREP METHOD: ANALYSIS METHOD: BATCH DATE. 19   16 / 3   INSTRUMENT ID: A SET (BATCH) #: 1  Work Orders/Fractions Associated With Batch  Lad Sample ID's  LCS ID: LCS 10 1893 - 1 LCS ID: LCS 10 1893 - 1 LCS ID: LCS 10 1893 - 1 MS ID: A) 1893 - 1 MS ID: B) 1893 - 1 MS ID: B) 1893 - 1 MS ID: B) 1893 - 1 MS ID: B) 19 24 4 DFC MSD ID: B3/004 6 DC REP ID: L CS 0 10 1893 - 1  Batch QC Results  MDL: PQL: 0 D)  Sample ID Result Units (Analyst (Date/Time) IMethod Blk D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                     |                           |                                       |                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------|---------------------------------------|-----------------------|
| ANALYSIS METHOD: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PREPRE                | P METHOD:                 |                                       |                       |
| BATCH DATE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                           |                                       | <del></del>           |
| BATCH DATE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ANALYSI               | S METHOD: CR_VH           |                                       |                       |
| NSTRUMENT ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                           |                                       | -                     |
| Batch QC ID's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INST                  | RUMENT ID: A              |                                       |                       |
| Batch QC ID's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SET                   | (BATCH) #:                |                                       |                       |
| Batch QC ID's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                           |                                       |                       |
| Batch QC ID's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Work Orders/Fractions | s Associated With Batch   |                                       |                       |
| LCS ID: LCS 13 1893-1  LCS ID: LCS 13 1893-1  MB ID: AD \$1893-1  MS ID: \$3 13346 DHC  MSD ID: \$23346 DHC  MDL: \$23010 DHC  MDL: \$23010 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$23346 DHC  MDL: \$2346 DHC  MDL: \$2346 DHC  MDL: \$2346 DHC  MDL: \$2346 DHC  MDL: \$2346 DHC  MDL: \$2346 DHC  MDL: \$2346 DHC  MDL: \$2346 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$246 DHC  MDL: \$24 |                       |                           |                                       |                       |
| CSD ID:   CSD   2 833-    MB ID:   N   D   893-    MS ID:   R3/2246 74C     MSD ID:   R3/2246 74C     REP ID:   L 2 50   2   895-    10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                     |                           |                                       |                       |
| CSD ID:   CSD   2 833-    MB ID:   N   D   893-    MS ID:   R3/2246 PMC     MSD ID:   R3/2246 PMC     REP ID:   L & SD   2   893-    Batch QC Results   MDL:   PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001     PQL:   0,001                                                                                                                                   | - B31224602C          | LCS ID: LCS 121893-1      |                                       |                       |
| MB ID:   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | LCSD ID: / CS D /2/843/   |                                       |                       |
| Batch QC Results   MDL:   PQL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                     | MBID: NN D1853-1          |                                       |                       |
| Batch QC Results   MDL:   PQL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                     | MS ID: B3 12246 140       |                                       |                       |
| Batch QC Results   MDL:   PQL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                     | MSD ID: B3/2246-D50       |                                       |                       |
| Batch QC Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                           |                                       |                       |
| Sample ID   Result   Units   Analyst   Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                           |                                       | ,                     |
| Sample ID   Result   Units   Analyst   Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | Batch QC Results          | MDL:                                  | _ PQL: <u>(),()</u> / |
| Method Bik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                           |                                       |                       |
| LCS % Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                           | Analyst  Da                           | te/Time               |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                           | 540 13                                | 1809:001              |
| LCS/LCSD RPD: 0 9,03 % RPD     MS % Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del></del>           | -////                     |                                       |                       |
| 15  16  18  18  19  10  11  11  11  11  11  11  11  11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | LCSD % Rec 98,00.0 1% Rec |                                       |                       |
| MSD % Rec   DOY   1% Rec   MS/MSD RPD   18   REP RPD   2.02   1% RPD   19   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                           |                                       |                       |
| 17   MS/MSD RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                           |                                       |                       |
| 18   REP RPD 2.02   1% RPD   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | ,00/3                     |                                       |                       |
| 19 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                           |                                       |                       |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | REP RPD 2.02 1% RPD       | <u> </u>                              | V                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                           |                                       |                       |
| Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>              |                           |                                       |                       |
| Comments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments:             |                           |                                       |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COMMENTS.             |                           | · · · · · · · · · · · · · · · · · · · |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                           |                                       |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                           |                                       |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                           |                                       |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                           |                                       |                       |

CC BATCH ID FOR WET CHEM - Test Code. AP-JE

### APPENDIX D SITE SURVEY REPORT

Phone: (405) 843-4847 WATS: (800) 854-3219 FAX: (406) 843-0975



### Surveying and Mapping for Oklahoma's Energy Industry

6709 N. Classen Blvd.

Oklahoma City, Oklahoma 73116

International Technology Corporation

Attn.: Joe Pacelli 312 Directors Drive Knoxville, Tn 37923

Reference: IT Subcontract No. 547295

IDO-5001 Bid 93116

(Survey Contract)

4.4 Documentation of Surveying Activities

### **Survey Contractor:**

Topographic Land Surveyors of Oklahoma 6709 N. Classen Blvd. Oklahoma City, Oklahoma 73116 Edward D. (Deral) Paulk, PLS President Harry McClintick, PLS Party Chief (405) 843-4847

### Instrumentation:

Work done was completed with a Topcon/Sokkisha Model C3E. Last calibration by the factory was done 10/10/1993 and was checked daily by standard survey methods to determine that the tolerance was within factory limits. The unique serial number for the instrument is # 153047. The data collector was a Hewlett-Packard 48SX using the TDS Survey card.

### Methods:

Standard mil-spec survey methods were employed during the survey and included.

Double sets of repetitive angles, both in horizontal and vertical.

Distance in Meters and Feet for double redundancy.

### **Control Points:**

All control points used were set by the Corps of Engineers and the coordinates were supplied to us in NAD-83 Meters, Oklahoma North Zone (3501) based upon the Lambert projection. Typical numbers were;

BM SE (secondary control points)

BM PR (Primary control points)

These points were established by Trimble 4000SE GPS receivers and are capable of obtaining accuracy in the centimeter range. During our survey we confirmed this accuracy and due to the nature of GPS usage, we did not balance our traverse of the monumentation. See explanation beginning on page three, this document.

### Tabulation of Vertical and Horizontal Coordinates:

In sheet form broken into per site information in three formats.

NAD-83 Meters

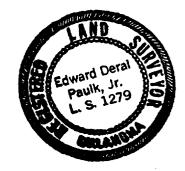
NAD-27 Feet

NAD-83 Feet

### Field Notes, Calculations and Reduction Techniques:

All field work was performed using Total Station and no reduction was necessary. Grid and Sea level factors used in the calculations are attached as part of this report. No paper field notes were kept, except diagrams explaining shot points. These are included as drawings and are part of the digital information supplied.

Actual closure of each particular site is disclosed within this document beginning on page 4.


This survey is true and accurate based upon monumentation supplied by Tinker Air Force Base.

Edward D. Paulk, PLS #12/9

Topographic Land Surveyors of Oklahoma

6709 N. Classen Blvd.

Oklahoma City, Oklahoma 73116



### **USAGE OF GPS MONUMENTATION**

### Qualifications:

We are a Trimble Navigation dealer for the Midwest and have had crews surveying using GPS for over two years. Edward D. Paulk, has attended training and seminars continually to maintain a level of experience and technical knowledge of GPS that exceeds specs of GPS surveys.

During the course of our preliminary survey, we had closures that exceeded specs and we were forced to continue surveys back to our point of beginning to check our accuracy. We continually proved our surveys by closures exceeding 1 in 10,000, but we could not achieve this using the provided GPS monumentation and closing on a third monument.

We contacted the base mapping department and learned that the monuments were set using 4000SE receivers (GPS) by the Corps of Engineers. The 4000SE is capable of accuracy on any point of +/- 1-3 Centimeters. After this determination, we were well within specs of their given coordinates.

Their survey closure was probably quite good given the distances that they monumented, however when you use relatively close monuments as our survey dictated and very few traverse points, the error looks poor. Had we shot a mile away, then back to add some footage to our survey, the closure would have been much better. Since this technique is only used to comply with a pure mathematical closure, not a better survey, and would not actually improve positional accuracy, we did not do this.

### Site by Site Report

File HM-A
HCL Tank
4 Soil Borings
IT Drawing #409832 Fig. 5.5
Horizontal and Vertical Control was establish for (4) four Soil Borings.
BM SE-33, SE-05 and PR-07 were used for control.

Upon first completion of traverse, we closed on PR-07 with 3.041' of error, but our vertical was with 0.05'. We made a closure back to SE-05 and closed within 0.4'. This site had the only apparent large discrepancy in their control. Since SE-33 and SE-05 agreed within limits we used these to determine closure.

Horizontal Accuracy 1 in 10,000 Vertical Accuracy 1 in 95,800

File HM-B
SPILL POND

2 Soil Borings

IT Drawing #409832 Fig. 5.6

Horizontal and Vertical Control was establish for (2) Soil Borings.

BM SE-33, SE-37 and SE-42 were used for control.

Horizontal Accuracy 1 in 5902 Vertical Accuracy 1 in 12,000

We closed back upon our first monument horizontally 1 in 25,000 as a check.

File HM-C

Sludge Drying Beds and Old Pesticide Area

13 Soil Borings 6 Monitor Wells

7 SG Points

IT Drawing # 409832 Fig. 5.3 and 5.7

Horizontal and Vertical Control was established for (13) Soil Borings, (6) Six Monitor wells and (7) SG Points.

BM SE-41, SE-45 and SE-47 were used for control.

Horizontal Accuracy 1 in 8725 Vertical Accuracy 1 in 390,000

We closed back upon BM SE-45 as a check and closed 1 in 14,000 Horizontally.

### FileHM-D

### **Fuel Truck**

- (8) Soil Borings
- (3) Monitor Wells
- (3) SG Points

IT Drawing #409832 Fig. 5.4

Horizontal and Vertical Control was established for (8) Soil Borings, (3) Monitor wells and (3) SG Points.

BM PR-02, SE-16 and PR-03 were used for control.

Horizontal Accuracy 1 in 22,586 Vertical Accuracy 1 in 20,000

### File HM-E

### Ordnance Disposal Area

(5) Soil Borings

(4) Corners of area as per staked and Dan McGregor's instructions.

IT Drawing #409832 Fig. 5.1

Horizontal and Vertical Control was established for (5) Soil Borings, (4) Corners of area. BM SE-19, PR-02 and SE-016 were used for control.

Horizontal Accuracy 1 in 10,000 Vertical Accuracy 1 in 20,000

File HM-F

### Fire Training Area 2

(8) Monitor Wells

1T Drawing #409832 Fig. 5.8

Horizontal and Vertical Control was established for (8) Monitor Wells.

BM SE-37, SE-33 and BM32 were used for control.

Horizontal Accuracy 1 in 34,800 Vertical Accuracy 1 in 95,000

### File HM-G

### **AFFF Fire Control Pond**

(4) Soil Borings

IT Drawing #409832 Fig. 5.2

Horizontal and Vertical Control was established for (4) Soil Borings.

BM SE-31, SE-22 and PR-01 were used for control.

Horizontal Accuracy 1 in 6500 Vertical Accuracy 1 in 58,000

### **Shots Typical**

Soil Borings-

One X,Y,Z placed center of drill hole, typically on top of concrete fill-in area.

(36) Total Soil Borings

Monitor Well-

(Flush mount) Three X,Y,Z,s were placed upon each well.

1: NW Corner of concrete pad.

2: Top of retaining casing, where well number was stamped into a milled area.

3: Top of well, under seal, (X,Y determined for center, and Z determined at north lip of well.

(Tower Mount) Three X,Y,Z,s were placed upon each well.

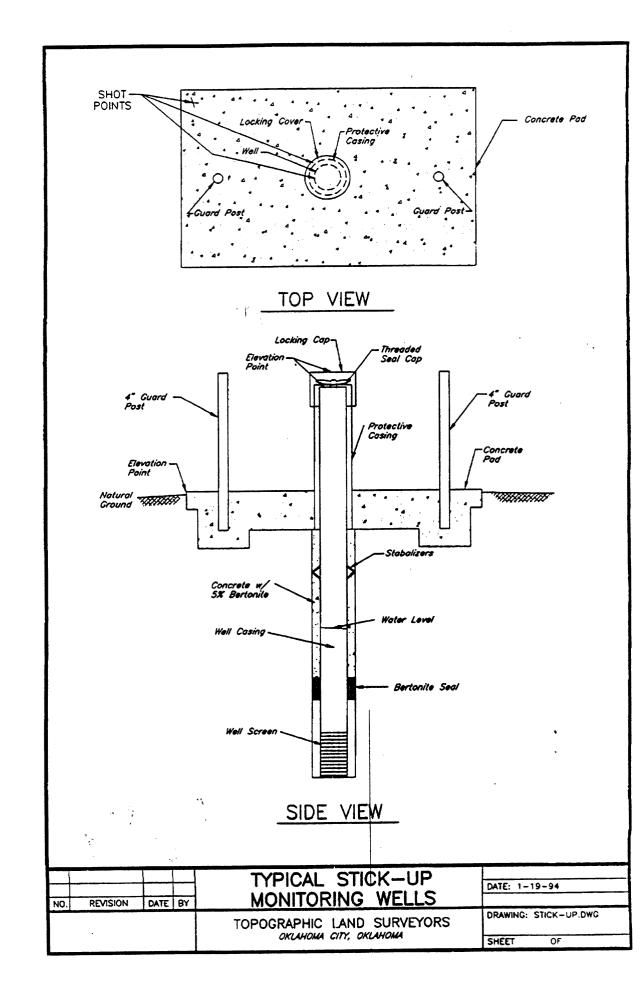
1: NW Corner of concrete pad.

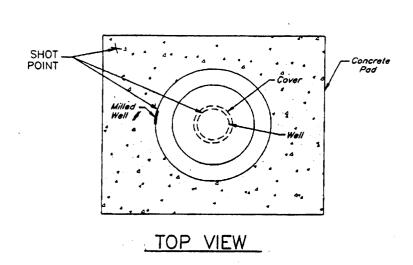
2: Top of square guard, center

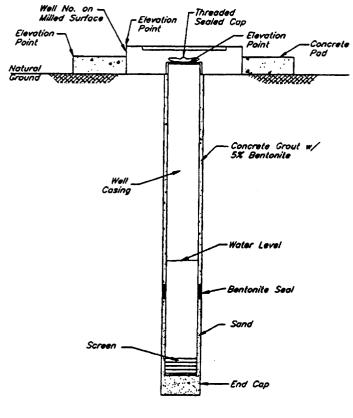
3: Screw cap removed, X and Y in Center and Z on the North lip of well.

(17) Total Monitoring wells. 51 points.

In addition, we determined X,Y and Z for a number of SG points. These were determined at center of dig point.


In addition; we determined X,Y and Z for four corners of an area in the Ordnance Disposal area as per Dan McGregor's instructions. These points were stakes set by previous contractor.


Included in this report are two drawings showing typical well layouts.


Drawing

Flush.Dwg

Tower.Dwg







SIDE VIEW

| NO. REVISION | DATE | BY | TYPICAL FLUSH MOUNT MONITORING WELLS               | DATE: 1-18-94               |
|--------------|------|----|----------------------------------------------------|-----------------------------|
| •            |      |    | TOPOGRAPHIC LAND SURVEYORS OKLAHOMA CITY, OKLAHOMA | DRAWING: FLUSH.DWG SHEET OF |

| Tinker AFB                              | Factors      |                  |
|-----------------------------------------|--------------|------------------|
|                                         | Factors.bd   |                  |
| Calculations for Grid Distance          |              | <u></u>          |
|                                         |              |                  |
| ormula Used 1-(1250)/(20,906,000)       | 0.9999402086 | Elevation Factor |
|                                         |              |                  |
| Elevation average is 1250               |              |                  |
|                                         |              |                  |
|                                         |              |                  |
| Grid Factor from USGS Tables            |              |                  |
|                                         |              |                  |
| Average Latitude is 35-25               | 1.0000306000 | Grid Factor      |
|                                         |              |                  |
|                                         |              |                  |
| Combination Factor is multiple of these | 0.9999708067 | Combo Factor     |
|                                         |              |                  |
|                                         |              | ·····            |
|                                         |              |                  |
|                                         |              |                  |
|                                         |              |                  |

### **Diskette Files**

Disk Labeled IDO-5001

#547295

Text Files and Final Reports

### **FILE NAME**

### DESCRIPTION

Report.WPS Microsoft Works file of final report

Report.TXT ASCII file of final report.

Finals. WB1 Quattro Pro for Windows data base

All areas, control and Factors

NAD-83, NAD-27

Finals, WK3 1-2-3 V.3.x database

All areas, control and Factors

Hcl.TXT ASCII of HCL Area Spill.TXT ASCII of Spill Pond

Sludge TXT ASCII of Sludge and Pesticide

Fuel.TXT ASCII of Fuel Truck
Ordance.TXT ASCII of Ordnance area
Fire.TXT ASCII of Fire Training
FireC.TXT ASCII of Fire Control

NAD83.TXT ASCII of X,Y,Z and Description NAD27.TXT ASCII of X,Y,Z and Description

Control TXT ASCII of X,Y,Z and Description of control monuments.

Factor TXT ASCII of grid/elevation factors used in calculations.

| State Plane Lambert Coordinate System | rdinata System                            | Ö                                        | Conversion used was  | The same of the same |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|---------------------------------------|-------------------------------------------|------------------------------------------|----------------------|----------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| Oldahoma North Zone                   | ******                                    |                                          | Meters X 3.280833337 |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| Values in Feet                        |                                           |                                          |                      | e e e                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nad 1927    |             |
| Control Coordinates from GPS          | Sd                                        | -                                        |                      |                      |            | Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|                                       | 88                                        | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                      | Meters               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feet        |             |
|                                       | Marker                                    |                                          |                      | Northing             | Easting    | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Northing    | Easting     |
| Fire Training Conter                  | SE24                                      | Ì                                        | E . C                | 45950.816            | 655952.839 | No. of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150730,584  | 2183669.404 |
|                                       | SE28                                      | Š                                        | 12.05                | 45604.798            | 655531.584 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 773 000057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 149595.353  | 2182287.332 |
|                                       | SE32                                      | Š                                        | X 0 1 1              | 45431.969            | 655045.990 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Assess 721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 149028.353  | 2180694.179 |
|                                       | SE43                                      |                                          | 27.15 K.78           | 46303.717            | 654817.311 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27 9 27 C 200 10 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 151888.413  | 2179943.944 |
|                                       | L                                         |                                          |                      |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| Bidg 1050 Spall Pond                  |                                           | 27.552 1,20 00                           | 8 8                  | 45788.902            | 654625.746 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150199.400  | 2179315.440 |
|                                       |                                           | 374.686                                  | £ 12323              | 46296.627            | 654526.676 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 151865.163  | 2178990.423 |
| *arx                                  |                                           |                                          | _                    |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| BIOG 978-AFF                          | SE22                                      |                                          |                      | 44861.607            | 655589.130 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2650 70.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 147157.075  | 2182476.110 |
| ***                                   | SE31                                      |                                          |                      | 44877.485            | 654833.045 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147208 198  | 2178985.530 |
|                                       | PR01                                      | ×                                        |                      | 44381.814            | 655603.420 | 会会(権) 大学 ステー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 145582 956  | 2182522.978 |
| •                                     |                                           |                                          |                      |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| Sludge Dropp Backs                    | SE45                                      |                                          | 10.00                | 46693.176            | 654086.696 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 153166 188  | 2177546.973 |
| *                                     | SE47                                      |                                          |                      | 47117.173            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 224 ESECT. 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 154557,245  | 2177426.496 |
|                                       | SE41                                      |                                          |                      | 46360.622            | 653942.053 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.7/257/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 152075-1-22 | 2177072.383 |
|                                       |                                           |                                          |                      |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| +Ct. Tank                             | SE05                                      |                                          | Take:                | 46999.293            | 656307.763 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1541/8415   | 2164833.8/0 |
| 7.                                    | SE08                                      |                                          | 77.6                 | 46012.200            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TATAL PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150931.017  | 2186473.977 |
|                                       | PR07                                      |                                          | 5,821                | 47640.475            | 656374.729 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 156274.017  | 2185053.591 |
|                                       | -                                         |                                          |                      |                      |            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 303 070070  |
| Ordinance Disposal                    | SE16                                      | 35.676                                   |                      | 44935.219            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 2180810.505 |
|                                       | PR02:                                     |                                          | (S) (S) (S)          | 44519.766            | _          | CA K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146035.506  | 2186309 369 |
|                                       | SE15                                      | 34.84                                    | 27.73                | 44874.549            | 656322.201 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S 1525512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 147199.504  | 2184861.167 |
| _\                                    |                                           |                                          |                      |                      |            | (Capple on the control of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the capple of the  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0405070 400 |
| Fuel Truck Main                       | SE10                                      |                                          |                      | 45484.255            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 656655.015 km.   A to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of | 148154      | 2103973.103 |
|                                       | PR03                                      | D8.291.1.30.73                           | 22.23                | 45229.480            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z155686.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148383 948  | 718/133 241 |
|                                       |                                           |                                          |                      |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
|                                       | -                                         |                                          |                      |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000        | 2404022 480 |
| Others                                | SE03                                      | Ę                                        | 22.23                | 47481.646            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133/3/2010  | 2104032.403 |
|                                       | SE19                                      | 2                                        | 287.80               | 44134.062            | İ          | ×.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 144770004   | 2100304.242 |
|                                       | SE33                                      | 381.161                                  | (200.37              | 45572.014            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOS PERSONAL PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 149487 524  | 2180041.702 |
|                                       | SE38                                      | 384.547.3,260.66                         | 88088                | 45560.105            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 149448 783  | 21//182.890 |
|                                       | S. C. C. C. C. C. C. C. C. C. C. C. C. C. | . T. C. S. S. S.                         |                      | 45726 54R            | 654009317  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 040.007/12  |

|                                         | 1-(1250)/(20,806,000) | 0.999402088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elevation Factor |
|-----------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                         | (0000'906'0           | 0.999402088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elevation Factor |
|                                         | (000'906'0            | 0.9998407088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Elevation Factor |
|                                         | (000'906'0            | ONTO A SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE |                  |
|                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| Davelor in 1280                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                |
|                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| Code Encloy from USGS Labors            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                         |                       | 4 0000308000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Grid Factor      |
|                                         |                       | CONTRACTOR I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| Averge Later to work                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                         |                       | 0.9999708067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Combo Factor     |
| Combination Factor is multiple of these |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |

|                                 |      |                     |             | -                 |                     |                          |                   |
|---------------------------------|------|---------------------|-------------|-------------------|---------------------|--------------------------|-------------------|
| _                               |      |                     |             |                   |                     |                          | 41                |
| Elevation                       | _    | Northing            |             | Easting Elevation | Northing            |                          | Easting Elevation |
| 153284 190 2153838 084 1275 110 | - 01 | 46721.114           | 656.429.578 | 388.654           | 153257.757          | 53257.757 2,185,233.520  | 1275.110          |
| 494 1275.92                     | 80   | 46890.088           | ı           | 388.919           | 153812.059          | 153812.059 2,185,218.954 | 1275.980          |
| 2153620.517 1276.230            | 8    | 46985.016           | 656,424.839 |                   | 154123.573          | 2,185,217.979            | 1 !               |
| 2153604.478 1275.830            | 30   | 47075.075           |             |                   | 154419.041          | 154419.041 2,185,201.941 | 1275.830          |
|                                 |      |                     |             |                   |                     |                          |                   |
| -                               |      | Conversion Factor   |             |                   | NAD-27 Derived with |                          |                   |
|                                 |      | Meters X 3.28083337 |             |                   | Corpscon Program    |                          |                   |
|                                 |      |                     |             |                   | _                   |                          |                   |
|                                 | -    | 3.28083337          |             |                   |                     |                          |                   |
| _                               |      |                     |             |                   |                     |                          |                   |
|                                 |      |                     |             |                   |                     |                          |                   |
|                                 |      |                     |             |                   |                     |                          |                   |
| _                               |      |                     |             |                   |                     |                          |                   |
|                                 |      |                     |             |                   |                     |                          |                   |
|                                 |      |                     |             | _                 |                     |                          | _                 |

**ЕВОМ ТОРОБЯРРИІС СОМРРИІЕ**S

| Topographic HM-B File | 1           | Spill Pond            |           |                     |             |           |                     |                          |                   |
|-----------------------|-------------|-----------------------|-----------|---------------------|-------------|-----------|---------------------|--------------------------|-------------------|
|                       | NAD-83 Feet |                       |           | NAD-83 Moleca       |             |           | NAD-Z7              | *1.                      |                   |
| Description Northing  | Northing    | Easting               | Elevation | Northing            | Easting     | Elevation | Northing            |                          | Easting Elevation |
| \$8-019               | 150763.571  | 50763.571 2148028.472 | 1227 435  | 45952.828           | 654,720.380 | 374.123   | 150737.212          | 150737.212 2,179,625.925 | 1227.435          |
| SB-020                | 150782.180  | 50782.180 2148011.904 |           | 45958.500           |             | 373.747   | 150755.821          | 150755.821 2,179,609.357 | 1226.202          |
|                       |             |                       |           |                     |             |           |                     |                          |                   |
|                       |             |                       |           |                     |             |           |                     |                          |                   |
|                       |             |                       |           | Conversion Factor   |             |           | NAD-27 Derived with |                          |                   |
|                       |             |                       | -         | Meters X 3.28083337 |             |           | Corpscon Program    |                          |                   |
|                       |             |                       |           |                     |             |           |                     |                          |                   |
|                       |             |                       |           | 3.28083337          |             |           |                     |                          |                   |
|                       |             |                       |           |                     |             |           |                     |                          |                   |
|                       |             |                       |           |                     |             |           |                     |                          | - 1               |

| Topographic     | HMC         | Sludge and Pesticide   | ticide               | Conversion                               | 3.60000       |                                         | No.             |                |            |
|-----------------|-------------|------------------------|----------------------|------------------------------------------|---------------|-----------------------------------------|-----------------|----------------|------------|
| and a Road      | NAM 93 Eggs |                        |                      | NAD 63 Helera                            |               |                                         |                 |                | acito, sol |
|                 | 3           | Faction                | Section Services     | Northing                                 | Easting       | Elevation                               | Northing        | Easting        | Elevation  |
| Description     | Nonmera     |                        |                      |                                          |               |                                         |                 | 97 7 700       | 000 900    |
|                 |             |                        | 000                  | 18729 667                                | 654006.782    | 373.969                                 | 153285.911      | 007/17         | 090 300    |
| SB-029          | 153312.251  | 2145687.276 1220.928   | 16.00 948            | 010 0101                                 | RS4005 748    | 373.673                                 | 153320.501      | 2177281.305    | 1223.800   |
| SB-030          | 153346.842  |                        | 1225.800             | 10/10/10/10/10/10/10/10/10/10/10/10/10/1 | AK 4005 870   | 373 730                                 | 153338.949      | 2177281.766    | 1226.145   |
| SB.031          | 153365,289  |                        | 1226 145             | 40/40.055                                | 0100000       | 272 803                                 | 153340,504      | 2177302.376    | 1226.028   |
| SD 033          | 153366 845  | 2145704.893 1226.026   | 1226.026             | 46/46.30/                                | 024012.132    | 975 748                                 | 153243 640      | 2177322.855    | 1226.205   |
| 7000            | C80 08004   | 1                      | 1226 205             | 46747.283                                |               | 2/2/40                                  | 2007            | 2177748 133    | 1225 884   |
| SHUSS           | 133303.906  |                        | 1225 884             | 46746.485                                | 654026.099    | 373.650                                 | 1000            | 24-1000        | 1227 087   |
| SB-034          | 153367.428  | _                      | 100.000              | 46724 316                                |               | 374.291                                 | 153301.164      | 21/1200344     | 30.00      |
| NWCorPad        | 153327.504  |                        | 122/.98/             | 707.00                                   | 1             | 374 372                                 | 153299.307      | 2177259.879    | 1228 252   |
| Brass Tao       | 153325.646  | _                      | 1228.252             | 40155.130                                |               | 974 259                                 | 153299.317      | 2177260.427    | 1227.880   |
| ANAM STA        | 153325 856  | 3 2145882.944 1227.880 | 1227.880             | 46/33/53                                 |               | 1                                       | 452208 454      | L              | 1227.942   |
| W4-017          | 462334 702  | -                      | 1227 942             | 46736.538                                |               | _1                                      | 4 E 2 2 C 2 A B | L              | 1228 136   |
| NWCOLFEG        | 133334.184  | 1                      | 1228 138             | 46735.865                                | _             |                                         | 133300.240      | 1              | 1227 749   |
| BrassTag        | 153352.500  |                        | 1222 740             | 46736.025                                | 653999.218    | لــــــــــــــــــــــــــــــــــــــ | 123300.771      |                | 4707 075   |
| MW2-67B         | 153333.109  | 1                      | 2001                 | 183 4CTAL                                | 653998.924    | 374.257                                 | 153267.920      |                | 1077       |
| SG-021          | 153294.259  |                        | 1221.0/3             | 10100000                                 |               | 374 128                                 | 153478.575      |                | 122/450    |
| 2000            | 153504 913  | 3                      | 1227.450             | 46/06.391                                |               | L                                       | 142458 818      | 2177266.025    | 1227.773   |
| 0-021           | 163785 158  | 1 00                   | 1227.773             | 46782.369                                |               | 1                                       | 450 AED 456 954 | L              | 1227,992   |
| NWCorrad        | 133403.13   | 1                      | 1227 002             | 46781.608                                |               |                                         | 133430.321      | - -            | 1          |
| BrassTag        | 153462.001  | -                      | 1227 630             | 46781.808                                | 854001.618    | 374.185                                 | 123426.977      | 1              | L          |
| MW2-68A         | 153483.317  | _                      | 1227.033             | 16786 384                                |               | 374.215                                 | 153471.990      |                | _          |
| NWCorPad        | 153498.329  |                        |                      | 46788 084                                |               | 374.234                                 | 153471.006      |                |            |
| BrassTao        | 153497.345  |                        | - 1                  | 20.00104                                 |               | L                                       | 153470.445      |                |            |
| MW2-68B         | 153496.783  |                        | _;                   | 40/03.91.                                |               | L                                       | 153486.704      |                |            |
| CD 036          | 153513 04   | 2145686.160            |                      | 46/90.869                                |               | 1                                       | 152/35 613      | 3 2177169.986  | 1226.184   |
| 200             | 157461 953  |                        | 1 1226.184           | 46775.296                                |               | .                                       | 452277 514      | L              | 1227.352   |
| 5 6             | 153403 851  | -                      | 1 1227 352           | 46757.587                                |               | [                                       | 163454 841      | 1_             | L          |
| 26-043          | 152478 151  | ļ.                     | 9 1227 388           | 46780.233                                |               |                                         | 10,10,10,1      | L              | Ľ.         |
| SG-043          | 1334/0.13   | 1                      |                      | 46767.542                                |               |                                         | 133410.17       | _              | 1          |
| SB-039          | 10.0000     |                        |                      | 46763.206                                | 6 653973.046  |                                         | 153395.840      | ]              | ١.         |
| SB-040          | 153422.28   | 1                      | 1.                   | 46793 080                                | 0 654013.431  | 1 373.505                               | 153493.958      |                | Ľ          |
| SB-036          | 153520.297  |                        | 004:0771 8           | 10794                                    | _             | 9 373.631                               | 153489.509      |                | 4          |
| SB-037          | 153515.84   |                        |                      | 46704 690                                | j.            |                                         | 153489.394      | _              | _          |
| SB-038          | 153515.73   | 1                      | . 1                  | 00.18/04                                 | _             | l.                                      | 153561.649      |                | _          |
| 89-030          | 153587.96   | 39 2145651 621         | - 1                  | 46613.712                                |               | 1_                                      | 153535.004      | 2177378.089    |            |
| SC 034          | 153561 34   | 46 2145780.604         | 4. 1228.528          | 46805.591                                |               | L                                       | 153503 281      | 717378.177     | 7 1228.755 |
| 00.00           | 153529 62   | 1                      | 2 1228.755           | 46795.922                                |               |                                         | 452477 A79      | L              | 8 1228.566 |
| 00-000          | 153603 83   | 1                      | 5 1228 566           | 46788.058                                |               | 1                                       | 2017 177 180    | 1.             | L_         |
| NWCorrad        | 100000      |                        | 1                    | 46787.357                                | _             |                                         | 133473.16       | .].            | 1_         |
| BrassTag        | 193901.9    |                        | 1                    | 46787.452                                |               | . !                                     | 1934/5.481      |                |            |
| MW2-66B         | 153501.8    |                        | 1                    |                                          | 56 654069.377 | 7 374.435                               | 153486.331      |                |            |
| <b>NWCorPad</b> | 153512.675  |                        | 1                    |                                          |               |                                         | 153485.081      |                | 70000      |
| BrassT80        | 153511.4.   |                        | 0000000              |                                          | _             | 13 374.359                              | 153484.356      | 56 217/491 /82 | 97         |
| 400             | OL 012021   |                        | 2145894 300 1226,208 |                                          |               |                                         |                 |                |            |

| 2155282.108 1295.444  |            |              |           |            |                      |                   |
|-----------------------|------------|--------------|-----------|------------|----------------------|-------------------|
| Eseting<br>5282.108   |            | 1            | 0017777   | Modhio     |                      | Easting Elevation |
| 5282.108              | Northing   | Easting      | ENDVARION |            |                      |                   |
| 5282.108              | 300 01031  | 658034 203   | 304 852   | 148749.089 | 2186879.522 1295.444 | 1295.444          |
| Ì                     | 45340.003  |              | 205 835   | 148747 163 | 2186881.208 1298.011 | 1298.011          |
| 2155283.795 1298.011  | 45,340,204 | 1            | 205 564   | 148747 160 | 2186881.244 1297.780 | 1297.780          |
|                       | 45346.283  | $\perp$      |           | 148654.478 | 2186731.015 1295.503 | 1295.503          |
| 2155133.601 1285.503  |            | 620000.UC0   |           | 148652 926 | 2186732.695          | 1297.910          |
|                       | 45317.500  |              |           | 148652.962 | 2186732.714 1297.669 | 1297.669          |
|                       |            | ١            | 394 292   | 148658.094 | 2186678.134 1293.608 | 1293.606          |
| 2155080.720 1293.606  | 43318.133  |              | 394 533   | 148657.198 | 2186767.383          | 1294.398          |
|                       | 1          | $\perp$      |           | 148682.056 | 2186750.834 1295.649 | 1295.649          |
| 5153.422              | ,          | 6.EE000 443  |           | 148688.959 | 2186731.291          | 1295.280          |
|                       | 45328.543  |              |           | 148718.136 | 2186723.049 1295.337 | 1295.337          |
|                       |            |              | 104 R55   | 148744.402 | 2186718.650 1295.452 | 1295.452          |
| 2155121.237 1295.452  |            |              | 304 012   | 148747.128 | 2186749.887          |                   |
| `                     |            |              | 304 820   | 148765.875 | 2186766.271          | 1295.340          |
| 2155168.857 1285.340  | 108.1000   | $\perp$      |           | 148763.832 | 2186704.005 1295.427 | 1295.427          |
|                       |            |              |           | 148740.941 | 2186693.033 1285.804 | 1295.804          |
| 5085.618              |            |              |           | 148681.693 |                      |                   |
|                       |            |              |           | 148718.373 |                      | 1295.791          |
| 5092.856              |            |              |           | 148717.506 |                      | 1295.890          |
| 155093.661 1295.890   | 1          |              |           | 148716 883 | 2186691.012 1295.587 | 1295.587          |
| 155093.599 1285.587   | 45337.048  | 8 6568/3.835 | 234.000   |            |                      |                   |
| Conversion 3.28083337 |            |              |           |            |                      |                   |
| Factor                |            |              | †         |            |                      |                   |

| - Constant            | -     |             |           |                                              |              |                   |            |                         |                   |
|-----------------------|-------|-------------|-----------|----------------------------------------------|--------------|-------------------|------------|-------------------------|-------------------|
| Topographic HM.F File | ł     | Ordnance    |           |                                              |              | _                 |            |                         |                   |
|                       | 13    |             | -         | N. C. S. S. S. S. S. S. S. S. S. S. S. S. S. |              |                   |            |                         |                   |
| NAD-83 reer           | 5     |             | 11        | Northing                                     |              | Easting Elevation | Northing   |                         | Easting Elevation |
| Description Northing  |       | Easting     | Elevation | ALL COLORS                                   |              |                   |            |                         |                   |
|                       |       |             |           | 133 96977                                    | ACCACT 1777  | 300 A12           | 146418.665 | L                       | 1311.061          |
| SB-014 146445.086     | 5.086 | 2154383 435 |           | 4600.33                                      |              | 200 241           | 148388 R51 | 1 2185952.828 1310.171  | 3 1310.171        |
| SB-013 146413.073     | 3.073 | 2154355.429 | 1310 171  | 44020 /83                                    |              |                   | 171 171    | L                       | 3 1310 433        |
| SP-011 14844          | 7.893 | 2154329.998 | 1310 433  | 104 / 104                                    |              | - 1               | 21013030   |                         | 1210 47           |
| CD 042 446465 811     | 5 811 | 2154321 959 | 1310 473  | 44642 868                                    |              | - 1               | 140408 CB  |                         | 4544              |
| 30-01                 | 0.00  | 2464242 840 |           | 44666 173                                    | 3 658645 299 | 399 691           | 148515.850 |                         | 1311.310          |
| SB-010 14034          | 1177  | 2134343.012 | 1         | 44720777                                     | 656638 810   | 399.232           | 146694.980 |                         | 1 1309.813        |
| NWCorSite 146721.400  | 8     | 2134325.320 | C10 80C1  | 677 66377                                    |              | L                 | 146424,969 | 9 2185785,474 1308,511  | 4 1308.511        |
| SWCorSite 146451.388  | 388   | 2154188.076 |           | 10000                                        |              | 1                 | 148779 439 | L                       | 1 1308.42         |
| CECOCHA 146305 859    | 5 859 | 2154478.943 | 1308.422  | 44594,115                                    |              | 1                 |            | I                       | 120g 20'          |
| NECocke 146573 205    | 3 205 |             | 1306.203  | 44675.602                                    | 2 656727.004 | 398.131           | 140340./01 | 11 2100203.200 1300.203 | 1300.40           |
| NECOSOR 1400          | -     |             | _         |                                              |              |                   |            | -                       | -                 |
|                       |       |             |           |                                              |              |                   |            |                         | +                 |
|                       | -     | 00:00       | 2 2808337 |                                              |              |                   |            |                         |                   |
|                       | נ     | CONCENSION  | 2.50000   |                                              |              |                   |            |                         | _                 |
|                       | u.    | Factor      | -         |                                              |              | -                 |            |                         |                   |
|                       |       |             |           |                                              |              |                   |            |                         | -                 |
|                       | -     |             |           |                                              |              | -                 |            |                         | -                 |

| Mathematical Residence   Monthling   Elevation   Monthling   Elevation   Monthling   Elevation   Monthling   Elevation   Monthling   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Elevation   Ele   | Topographic          |             | Fire Training |            | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |           | 27-CIM     |             |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|---------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|------------|-------------|-----------|
| 150409-212   2150062.314   1246.117   45872.251   6555431.377   370.857   150472.826   2181959.759   150409.222   2181959.759   150409.222   2181959.759   150409.223   1246.033   45871.425   6555431.617   370.875   150407.223   1246.0323   2181959.355   150409.232   1246.033   45871.425   6555431.617   370.875   150407.202   150407.202   150409.378   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   1246.032   |                      | NAD-83 Feet |               |            | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |            | Elevation | Northing   |             | Elevation |
| 150406-212   2150062-234   1246-117   45872-255   655431-470   376-871   150470-202   2181656-866   150406-710   150407-202   2181656-866   150406-710   150407-202   2181656-866   150406-710   150407-202   2181656-866   150406-710   150407-202   2181656-866   150406-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710   1245-710      |                      |             |               | Benetice   | Northing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Samo       | 5         |            |             |           |
| 150490.212   2150082.314   1246.134   45877.251   656431.410   378.882   150470.252   2161656.866   150460.203   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524   1246.0524     | and the same         |             |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 202 101    | 270 047   | 150477 878 | L.          | 1246.117  |
| 50496 716   2150361 243   1246 334   45871 426   655431 617   379 787   154470 205   218 1950 205   154696 362   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 022   1246 0   |                      | 1           | L             |            | 45872.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 655431.737 |           | 130414.040 |             | 1248 33   |
| 50466 510   2190001 429   1246 022   45871 452   655431 817   319 775   150470 205   2181987 840   150460 205   2181987 840   150460 205   2181987 840   150460 205   2181987 840   150460 205   2181987 840   150460 205   2181987 840   150460 205   2181987 840   150460 205   2181987 840   150460 205   2181987 840   150460 205   2181987 840   150460 205   2181987 840   150460 205   2181987 840   150460 205   2181987 840   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   2181987 740   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   120460 205   1   | WCorpa               |             | L             |            | 45871.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 655431.410 |           | 1304/0.323 |             | , 30 00 V |
| 150486 582 2160501 870 1245 784 45871.387 65543.221 378 750 150467.642 2181987.941 1150486 0.08 2150503 786 1245 784 45871.387 65543.415 378 655 150467.403 2181097.200 150480.782 2150392 786 1245 886 45871.587 65543.415 378 655 150467.403 2181097.200 150493.781 1245.586 45871.581 65543.415 150480.782 150435.844 1245.881 65543.415 150480.891 150486.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 1245.890 45847.192 655457.115 378 655 150480.891 150480.891 150480.891 1245.890 45847.192 655457.115 378 885 150480.891 1245.890 1243.397 45845.891 150480.891 150480.891 150480.891 150480.891 1245.890 45845.815 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 1245.890 45845.815 150480.891 150440.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150480.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 150556.891 | Brassta <sub>(</sub> |             | _1            |            | 45871 452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 379.797   | 150470.205 |             | CO.0471   |
| 150466 378   2150310.487   1245.148   45870.598   45870.598   45870.598   15045.408   15045.408   15045.408   15045.887   15046.082   15045.408   15045.887   15046.082   15045.488   15045.887   15046.082   15045.887   15046.082   15045.887   15046.082   15045.887   15046.082   15045.887   15046.082   15045.884   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   1243.381   124   | MW2-64/              |             |               |            | 15074 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L          |           | 150469.991 | 2181967.941 | 1245.74   |
| 150494 048   2180389 766   1245 897   45870.598   655454 175   378.855   150467 403   2181967 757   1180487.389   1245 588   45846.207   655454 175   378.855   150467 403   2181033.281   1180487.381   1245 588   45845.865   655454 159   378.954   150386.113   218203.281   1180417.381   1243.381   1243.284   1243.381   1244.284   1243.387   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   1243.824   | WCorba               |             | L             |            | 10011.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           | 150467,662 | 2181967.209 | 1245.89   |
| 150463.787   2150370.314   1245.586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Proce Tay            | L           | L             |            | 458/0.6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |           | 150467 403 |             | 1245.58   |
| 150413 765   2150435 846   1243 381   45845 865   655454 130   378 038   150386 585   2182034 889   150413 765   2150437 446   1243 284   45845 821   655454 130   378 038   150386 113   2182043 528   150412 971   2150437 314   2143 284   45845 821   655456 444   318 059   150380 1033   2182040 517   124415 608   1243 284   45845 821   655456 115   378 385   150380 1033   2182040 517   124415 608   1243 780   45845 821   655456 110   378 385   150380 103   2182043 052   150416 357   12445 608   1243 780   45845 821   655456 110   378 385   150444 701   2182043 052   126445 608   1244 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284   245 284    | INAM AAE             |             | L             |            | 458/0.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1          |           | 150387 380 | Ì.,         | 1243.361  |
| 150412.971         2150437.446         1243.561         45845.829         655454.739         655454.739         655454.739         655454.739         120386.113         2182035.358         1           150412.486         2150437.319         45847.339         655454.7125         378.954         150380.611         2182040.817         1           150412.486         2150445.608         1243.780         45847.339         655457.125         379.108         150380.611         2182043.052         1           150416.351         2150446.608         1243.780         45847.339         655457.115         379.885         150444.701         2182043.019         1           150416.371         2150446.506         1243.780         45846.032         655486.415         379.885         150444.701         2182043.019         1           150476.876         1250446.57         1246.286         655486.465         379.886         150444.701         2182043.019         1           150476.876         125044.286         45865.626         445.886.62         45865.62         445.886         150444.701         2182140.528         182144.701         2182140.538         182144.701         2182140.538         182144.701         2182140.500         182144.701         2182140.500         182144.701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A DOOR               | Ĺ           | L             |            | 45846.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           | 150386 585 | L           | 1243.561  |
| 150412 498         2150437 814         1243 284         45847 339         055456 444         379 059         150391 093         2182040 817           150412 498         2150443 373         1243 830         45847 339         655456 115         379 106         150390 611         2182043 052         1           150416 599         2150445 576         1243 387         4584 032         655466 11         378 389         150444 701         2182139 17         1           15047 247         215 150540 674         1246 252         4584 032         655486 445         379 38         150444 701         2182139 902         1           15047 247         215 0540 674         1246 286         4584 032         655486 445         379 38         150444 701         2182139 902         1           15047 247         2150540 674         1246 286         4584 032         655486 445         379 38         150444 701         2182139 902         1           15047 247         21505540 674         1246 249         4584 645         655480 188         379 24         150444 517         2182130 03         1           15047 241         21505540 145         1245 404         4584 641         655490 188         379 24         150444 701         2182140 56         150444 701         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PASSTA               |             | L             |            | 45845.905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           | 150386.113 | L           | 1243.284  |
| 150417.479   2150443.373   1243.629   45847.338   055457.115   379.108   150390.611   2182043.052   1150416.899   2150445.608   1243.387   45846.992   655457.115   378.985   150448.899   2182043.019   1150416.899   2150446.875   1240.387   45846.992   655486.815   379.893   150444.701   2182139.902   1150470.890   2150542.400   1246.284   45846.032   655486.845   379.893   150444.701   2182139.902   1150470.890   2150542.400   1246.284   45846.651   655489.782   379.896   150449.284   2182130.03   150473.214   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511   1246.511     | MAD AR               | L           | L             |            | 43643.621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           | 150391 093 |             | 1243.630  |
| 150416 999         2150445 608         1243.780         45846 995         655486 101         378.985         150389.964         2182043.019         1           150416 351         2150446 576         1243.387         45846 995         655486 101         379.797         150445 859         2182138.117         1           150470 247         2150540.674         1246.052         45893.679         655486 101         379.797         15044.701         2182138.902         1           150470 906         2150542.460         1246.240         45893.679         655486.182         379.843         15044.717         2182150.03         1           150470 906         2150542.286         1246.408         45883.623         655486.132         379.843         15044.517         2182150.03         1           150474 251         2150554.084         1246.408         45846.651         655480.383         379.843         15044.880         2182150.03         1           150474 251         2150554.084         1246.531         45846.651         655480.383         379.843         150447.883         2182160.03         1           150724 601         2150550.014         45846.651         655490.383         381.342         150447.880         2182180.884           150724 676 </td <td>VCORPA</td> <td></td> <td></td> <td></td> <td>45847.338</td> <td></td> <td></td> <td>150390.611</td> <td>_</td> <td>1243.790</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VCORPA               |             |               |            | 45847.338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           | 150390.611 | _           | 1243.790  |
| 150416.351   2150445.576   1243.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PASSTA               |             | L             |            | 45646.192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           | 150389.964 | _           | 1243.38   |
| 150472.247         2150540.674         1246.052         45863.03         655406.445         379.863         150444.701         2182139.902         1           150472.247         2150540.674         1246.056         45863.679         655486.445         379.863         150444.701         2182139.902         1           150470.806         2150542.460         1246.206         45863.676         655480.722         379.806         150447.867         2182150.03         1           150470.807         215054.3115         1246.531         45864.643         655490.188         379.846         150447.863         2182150.03         1           15047.276         2150554.084         1246.531         45864.643         655490.188         379.846         150447.880         2182150.03         1           15047.276         2150554.084         1246.531         45846.651         655490.383         379.846         150447.880         2182150.03         1           150724.671         2150590.742         1250590.742         45840.897         655502.014         381.342         150447.880         2182180.554         1           150724.671         2150580.466         1250.897         45845.810         655502.014         381.388         150712.82         2182182.571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAD A3               | L           | L             | Ì          | 45646.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           | 150445,859 | L           | 1246.05   |
| 150471.088         2150542.460         1246.286         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074         45803.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VCORPA               |             | _             |            | 43604.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           | 150444,701 |             | 1246.266  |
| 150470.906         2150543.115         1245.940         45065.012         45065.012         450409.284         2182150.03         1           150476.671         2150552.586         1246.406         45864.643         655490.188         379.906         15047.863         2182150.03         1           150474.251         2150554.084         1246.531         45844.643         655490.383         379.943         150447.863         2182151.526         1           150474.276         2150554.084         1246.531         45846.651         655500.383         381.342         150447.890         2182152.166         1           150726.091         2150590.445         1251.270         45840.970         655502.074         381.388         150689.271         2182187.591           150724.616         2150583.419         1250.876         45840.970         655502.074         381.287         150890.271         2182182.824           150724.65         2150583.419         1250.876         45845.810         655499.650         381.388         150712.762         2182182.571           150739.263         2150583.419         1250.876         45845.810         655499.650         381.384         150712.762         2182182.571           150739.263         2150583.419         1250.881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PASSTA               |             |               |            | 43003.072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           | 150444.517 | L           | 1245.94   |
| 150475 671         215052.586         1246,409         45803.01         655491.88         379,843         150447.863         2182151.526           15047 251         215054.084         1246.213         45844.651         655490.383         379,846         150447.890         2182152.166           150474 276         215054.024         1246.213         45844.404         655501.180         381.342         150469.702         2182187.591           150726 091         2150590.145         1251.120         45840.870         655502.074         381.388         150680.278         2182187.591           150724 666         2150593.40         1250.876         45840.870         655501.879         381.287         150680.278         2182180.854           15074.546         15074.546         655501.879         381.287         150680.271         2182180.865           15073.916         2150583.419         1250.876         45845.810         655496.650         381.333         150712.792         2182182.571           150739.161         2150585.126         1250.885         45845.419         655499.685         381.248         150712.792         2182182.571           150739.262         2150583.377         1250.881         45845.419         655499.842         381.248         150712.785 </td <td>AA2-62</td> <td></td> <td>L</td> <td></td> <td>43003.02</td> <td></td> <td></td> <td></td> <td>L.</td> <td>1246.409</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AA2-62               |             | L             |            | 43003.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |           |            | L.          | 1246.409  |
| 150474 251         2150554 084         1246 531         45804 651         655490 383         378 846         150447 890         2182152 166           150474 276         2150554 721         1246 213         45804 651         655549 383         379 846         150447 890         2182152 166           150726 091         2150590 145         1251 120         45941 404         655501 074         381 342         150699 702         2182187 591           150726 091         2150590 145         1251 120         45940 971         655501 074         381 388         150699 278         2182180 524           150724 671         2150592 440         1250 976         45945 810         655499 130         381 287         150714 157         2182180 865           150739 181         2150585 126         1251 089         45945 419         655499 650         381 287         150712 875         2182183 201           150739 283         2150585 77         1250 812         45945 419         655499 650         381 248         150712 875         2182183 201           150739 283         2150585 77         1250 812         45945 419         655499 842         381 248         150712 875         2182183 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACCOUNT              | L           | L_            |            | 45003.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |           |            | _           | 1246.53   |
| 150/72.0         2150554.721         1246.213         4594.0         4594.180         381.342         150699.702         2182187.591           150726.091         2150550.145         1251.120         4594.0 970         65550.074         381.342         150699.702         2182187.591           150724.091         2150580.078         1251.270         4594.0 971         65550.180         381.286         150699.281         2182180.852           150724.074         2150583.419         1250.838         4594.5.810         655499.650         381.287         150712.792         2182180.865           150739.181         2150585.126         1250.838         4594.5.419         655499.842         381.248         150712.875         2182183.201           150739.283         1250885.75         1250.833         4594.5.419         655499.842         381.248         150712.875         2182183.201           150739.283         150739.676         328083337         4594.5.419         655499.842         381.248         150712.875         2182183.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RASSTA               | L           |               |            | 40004.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |           | 150447.890 |             | 1246.21   |
| 150726.091         2150580.145         1251 120         43841.70         45940.971         45540.074         381.388         150680.278         2182180.524           150724.66         2150583.078         1251.270         45940.971         655502.074         381.286         150690.281         2182180.885           150724.671         2150582.440         1250.834         1250.834         45945.810         655499.130         381.287         150714.157         2182180.865           150739.181         2150583.75         1250.834         45945.810         655499.842         381.333         150712.792         2182182.571           150739.283         150739.286         1250.885.77         45945.419         655499.842         381.248         150712.875         2182183.201           150739.283.75         1250.885.77         1250.812         45945.419         655499.842         381.248         150712.875         2182183.201           150739.286         150730.875         1250.88337         45945.419         655499.842         381.248         150712.875         2182183.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WWD-62               |             |               |            | 00.00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |           | 150699.702 | _           | 1251.12   |
| 150724.666         2150593.078         1251.270         45940.870         45540.877         381.288         150699.281         2182189.884           150724.671         2150592.440         1250.976         45945.810         655501.877         361.287         150714.157         2182180.865           150740.546         2150583.419         1250.938         45945.810         655499.650         381.333         160712.792         2182182.571           150739.181         2150585.126         1250.812         45945.419         655499.842         381.248         150712.875         2182183.201           150739.263         2150585.75         1250.812         45945.419         655499.842         381.248         150712.875         2182183.201           150739.263         2150585.75         328083337         328083337         328083337         328083337         328083337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACCOPA               |             | L             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           | 150698.278 | L           | 1251.27   |
| 150724.671         2150582.440         1250.876         45945.810         655499.130         381.287         150714.157         2182180.865           150740.546         2150583.419         1250.939         45945.394         655499.650         381.333         150712.792         2182182.571           150739.181         2150585.727         1250.812         45945.419         655499.842         381.248         150712.875         2182183.201           150739.263         2150585.757         1250.812         45945.419         655499.842         381.248         150712.875         2182183.201           Conversion         3.28083337         3.28083337         45945.419         655499.842         381.248         150712.875         2182183.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PASSTA               | L           | _             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           | 150698.28  | L           | 1250.976  |
| 150740.546 2150583.419 1250.839 45845.910 655499.650 381.333 150712.792 2182182.571 150739.181 2150585.126 1251.089 45845.419 655499.842 381.248 150712.875 2182183.201 150739.263 150585.757 1250.812 45845.419 655499.842 381.248 150712.875 2182183.201 Conversion 3.28083337 5actor Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAD 66               | L           | ᆫ             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |             | 1250.93   |
| 150739.181 2150585.126 1251.089 45445.419 655499.842 381.248 150712.875 2182183.201 150739.263 2150585.757 1250.812 45845.419 655499.842 381.248 150712.875 2182183.201 Conversion 3.28083337 Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ACCOR                |             | ┡             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |           |            |             | 1251.0    |
| 150739 263 2150585.757 1250.812 45945.419 633489.642 Conversion 3.28083337 Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | POACETA              |             | 2150585.1     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            | L           | 1250.812  |
| Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WAP A                |             | 2150585.7     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           | -          | 1           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                  |             |               | 3.28083337 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |           |            |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             | Factor        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |             |               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |            |             |           |

| Topographic          | Topographic HMA-G File Fire Conft | Fire Control         |           |                     |             |                   |                |                          |           |
|----------------------|-----------------------------------|----------------------|-----------|---------------------|-------------|-------------------|----------------|--------------------------|-----------|
|                      |                                   |                      | -         |                     |             |                   | -              |                          |           |
|                      | NAD-83 Feet                       |                      | <b> </b>  | NAC AS Makers       |             |                   |                |                          |           |
| Description Northing | Northing                          | Easting              | Elevation | Northing            | Easting     | Easting Elevation | Northin        | 2 Easting                | Elevation |
|                      |                                   |                      |           |                     |             |                   |                |                          |           |
| SB 018               | 147211 123                        | 2150886 702 1288 631 | 1288 631  | 44870.043           | 655.591.571 | 386.679           | 147184.75      | 147184.752 2,182,484.119 |           |
| 2000                 | 447032 432                        | 1                    | 1270 381  | 44815.574           | 655,592,495 | 387.207           | 147006.04      | 147006.049 2,182,487.149 | 1270.361  |
| 10-00                | 4 46000 078                       | 1                    | 1273 784  | 077 770             | 1           | 388 250           | 146783.590     | 146783,596 2,182,487,440 | 1273.784  |
| 2000                 | 140003.370                        | 1                    | 4276 067  | 44687 425           |             | 388 912           | 146585.61      | 146585 615 2 182 487.746 | 1275.957  |
| 28-013               | 140011.883                        |                      | 1613.037  | 100                 | 200720      |                   |                |                          |           |
|                      |                                   |                      |           | Conversion Factor   |             |                   | NAD-27 Derived | 2                        |           |
|                      |                                   |                      |           | Meters X 3 28083337 |             |                   | Corpscon Prog  | ō                        |           |
|                      |                                   |                      | -         |                     |             |                   |                |                          |           |
|                      |                                   |                      |           | 3.28083337          |             |                   |                |                          |           |
|                      |                                   |                      |           |                     |             |                   |                |                          |           |
|                      |                                   |                      |           |                     |             |                   |                | <u> </u>                 |           |

| Coordinates in NAD 2 | 7 (Feet)                 |                            |                             |
|----------------------|--------------------------|----------------------------|-----------------------------|
|                      | · . X                    |                            |                             |
|                      |                          |                            |                             |
| SB-045               | 153257.757               |                            |                             |
| 8B-044               | 153812.059               |                            | 1                           |
| 58-042               | 154123.573               |                            | † - · — - · · · · · · · · · |
| \$B-043              | 154419.041               |                            | 1275.830                    |
| SB-019<br>SB-020     | 150737.212               |                            | 1227.435                    |
| 8B-029               | 150755,821<br>153285,911 |                            |                             |
| SB-030               | 153320.501               | 2177284.758<br>2177281 365 | 1226.929<br>1225.960        |
| 8B-031               | 153338.949               | 2177281.766                | 1226.145                    |
| SB-032               | 153340.504               | 2177302.376                | 1226.026                    |
| 8B-033               | 153343.640               | 2177322.855                | 1226 205                    |
| 8B-034               | 153341.088               | 2177348.133                | 1225.884                    |
| NWCorPad             | 153301.164               | 2177258.344                | 1227.987                    |
| BrassTag             | 153 <u>299.30</u> 7      | 2177259.879                | 1228.252                    |
| MW2-67A              | 153299.317               | 2177260.427                |                             |
| NWCorPad<br>BrassTag | 153308.454               | 2177257.848                | 1227.942                    |
| MW2-67B              | 153306.246<br>153306.771 | 2177260.227<br>2177259.941 | 1228.136                    |
| 8G-021               | 153267.920               | 2177258.977                | 1227.749<br>1227.875        |
| 8G-027               | 153478.575               | 2177253.637                | 1227.450                    |
| NWCorPad             | 153458.818               | 2177268.025                | 1227.773                    |
| BrassTag             | 153456.321               | 2177268.214                | 1227.992                    |
| MW2-68A              | 153456.977               | 2177267.817                | 1227.639                    |
| NWCorPad             | 153471.990               | 2177265.458                | 1227.737                    |
| BrassTag             | 153471.006               | 2177267.377                | 1227.801                    |
| MW2-68B              | 153470.445               | 2177267.505                | 1227.501                    |
| 58-035<br>88-041     | 153486.704<br>153435.613 | 2177283.644                | 1225.832                    |
| 8G-046               | 153377.514               | 2177169.986<br>2177145.766 | 1228.184<br>1227.352        |
| \$G-043              | 153451.811               | 2177145.265                | 1227.388                    |
| 8B-039               | 153410.174               | 2177198.420                | 1225.186                    |
| SB-040               | 153395.948               | 2177174.077                | 1225.367                    |
| 8B-036               | 153493.958               | 2177306.573                | 1225.408                    |
| 8B-037               | 153489.509               | 2177320.543                | 1225.822                    |
| 88-038               | 153489.394               | 2177346.511                | 1225.397                    |
| SG-030_              | 153561.649               | 2177249.107                | 1228.246                    |
| 8G-034<br>6G-035     | 153535.004               | 2177378.089                | 1228.528                    |
| NWCorPad             | 153503.281<br>153477.479 | 2177378.177<br>2177489.938 | 1228.755<br>1228.568        |
| BrassTag             | 153475.180               | 2177492.330                | 1228.786                    |
| MW2-86B              | 153475.491               | 2177491.726                | 1228.424                    |
| NWCorPad             | 153486.331               | 2177490.122                | 1228.458                    |
| BrassTag             | 153485.081               | 2177491.772                | 1228.601                    |
| MW2-66A              | 153484.358               | 2177491.782                | 1228.209                    |
| NWCorPad             | 148749.069               | 2186879.522                | 1295.444                    |
| TopCap<br>MW2-69     | 148747.163               | 2186881.208                | 1298.011                    |
| NWCorPad             | 148747.180<br>148654.478 | 2186881.244<br>2186731.015 | 1297.780<br>1295.503        |
| TopCap               | 148652.926               | 2186732.695                | 1297.910                    |
| MW2-61               | 148652.962               | 2186732.714                | 1297.669                    |
| 8G-011_              | 148658.094               | 2186878.134                | 1293.606                    |
| 8G-007               | 148857.198               | 2186767.383                | 1294.398                    |
| 8B-028               | 148682.056               | 2186750.834                | 1295.649                    |
| SB-026_              | 148688.959               | 2186731.291                | 1295.280                    |
| 8B-025<br>8B-024     | 148718.136               | 2186723.049                | 1295.337                    |
| 8B-023               | 148744.402<br>148747.128 | 2186718.650<br>2186749.887 | 1295.452                    |
| 8G-003               | 148765.875               | 2186766.271                | 1295.640                    |
| 8B-021               | 148763.832               | 2186704.005                | 1295.427                    |
| 8B-022               | 148740.941               | 2186693.033                | 1295.804                    |
| 8B-027               | 148681.693               | 2186692.623                | 1295.822                    |
| NWCorPad             | 148718.373               | 2186690.271                | 1295.791                    |
| Brassiag_            | 148717.508               | 2186691.074                | 1295.890                    |
| MW2-60               | 148716.863               | 2186691.012                | 1295.587                    |
| SB-014               | 146418.665               | 2185980.834                | 1311.061                    |
| 88-013<br>88-011     | 146386.651               | 2185952.828                | 1310.171                    |
| 8B-012               | 146421.474<br>146439.390 | 2185927.396<br>2185919.358 | 1310.433                    |
| 38-010               | 148515.850               | 2185941.209                | 1311.318                    |
| NWCor8ite            | 146894.980               | 2185919.921                | 1309.813                    |
| 8WCor8ite            | 146424.969               | 2185785.474                | 1308.511                    |
| 8ECor8ite            | 146279.439               | 2186076.341                | 1308.422                    |
| NECorSite            | 146548.781               | 2186209.268                | 1306.203                    |
| NWCorPad             | 150472.826               | 2181959.759                | 1246.117                    |

# APPENDIX E GEOTECHNICAL, CERTIFICATES OF ANALYSIS, CHAIN OF CUSTODY



# GEOTECHNICAL LABORATORY

409802

#### CERTIFICATE OF ANALYSIS

ROLLY: +0 CF, TL, KM 2/21/194

March 16, 1994

Karmen Deane IT Corporation 5307 Industrial Oaks Blvd. Suite 160 Austin, TX 78735

ETDC Project Number: 483500.094.04 P.O. Number: 4627-341

Job Number: 414627

This is the Certificate of Analysis for the following samples:

Client Project ID:

Number of Samples:

Tinker AFB

Date Received by Lab:

November 23, 29, & 30, 1993

Twelve (12)

Sample Type:

Soil

#### I. <u>Introduction/Case Narrative</u>

Twelve (12) soil samples were received by IT/ETDC for analyses of grain size distribution, cation exchange capacity, moisture content and permeability.

Please see Appendix A, the Sample Number Cross Reference List; Appendix B, the Analysis Results; Appendix C, the Chain of Custody and Request for Analysis Records and Appendix D, the Nonconformance/Variance report.

Reviewed and Approved:

Chanley Morgan

Project Manager, Geotechnical Services

Page 2 of 20 Karmen Deane IT Corporation March 16, 1994

Client Project ID: TINKER AFB ETDC Project No.: 483500.094.04

IT ENVIRONMENTAL TECHNOLOGY DEVELOPMENT CENTER OAK RIDGE, TN (615) 482-6497

Moutal TO CE TALLY

#### II. Analytical Results/Methodology

REFERENCES: Annual Book of ASTM Standards, Section 4, Construction, Volume 04.08, Soil and Rock; Dimension Stone; Geosynthetics. Volume 4.02, Concrete and Aggregates.

Grain Size Distribution Cation Exchange Capacity Moisture Content Permeability ASTM D422 EPA, Method 9081 ASTM D 2216 ASTM D 5084

#### III. Quality Control

Except for cation exchange capacity analysis, quality control checks such as duplicates and spikes (QC samples), are not normally applicable to geotechnical testing. This is due to the inability of obtaining samples with known characteristics, the heterogenous nature of the samples, and Quality Control procedures built-in to the analytical method.

QC measures to ensure accuracy and precision of test results include the following:

- 100% verification on all numerical results all raw data entries, transcriptions and calculations entered by lab technicians are checked, recalculated and verified. Most data calculations are performed by computer programs.
- Data validation through test reasonableness summaries of all test results for individual reports are reviewed to determine the overall reasonableness of data and to determine the presence of any data that may be considered outliers.
- Quality control procedures are built into most standardized geotechnical procedures. For example, many analyses routinely call for a re-analysis, specifying an acceptance criteria.
- Routine instrument calibration all instruments, gauges and equipment used in testing are calibrated on a routine basis. All instrument calibration follows ASTM or manufacturer guidelines.
- Maintenance of all past calibration records records and certification documents of all instruments, gauges and equipment are updated routinely and maintained in the Quality Control Coordinators Quality/Operations files.

Page 3 of 20 Karmen Deane IT Corporation March 16, 1994 Client Project ID:

ETDC Project No.:

TINKER AFB 483500.094.04

IT ENVIRONMENTAL TECHNOLOGY DEVELOPMENT CENTER OAK RIDGE, TN (615) 482-6497

Rowerd +0 (F 72, K+1)

• Use of trained personnel for conducting tests - all technicians are trained in the application of standard laboratory procedures for geotechnical analyses as well as the quality assurance measures implemented by IT.

#### IV. Data Qualification

Fine sieve and hydrometer results occasionally overlap due to organic debris, soluble salts or other contaminants contained in the sample. Data points are plotted as calculated. No attempt has been made to curve-fit the grainsize data points.

The cation exchange procedure included analysis of a blank, and duplicates. The blank value was found to be below the method detection limit of 0.05 mg/l for sodium analysis. The relative percent difference (RPD) for the duplicate samples were 2.8 and 26.8. The RPD for sample ETDC-4686 which was outside the limit is thought to be due to sample heterogeneity rather than analytical precision.

Moisture contents are calculated in accordance with ASTM D 2216. Given results are based on the sample dry weight, not on the sample wet weight as is common in analytical chemistry.

On RFA/COC No: 417423, a permeability analysis was requested for sample number B311314-02B. There was an insufficient sample amount to perform requested analysis. Sample was obtained from tube marked as duplicate B311314-02A to perform permeability analysis.

The constant-head permeability test is based on the quantity of water flowing through the soil specimen versus time under essentially equilibrium conditions. ASTM D 5084, paragraph 8.5.3, states that equilibrium conditions are indicated by four consecutive permeation results not varying by more than 25% of the average of the tests. Porous soils containing appreciable amounts of silt normally saturate quickly and establish equilibrium in a few test runs of short duration. Soils containing high amounts of clays generally require longer saturation periods at higher confining pressures, and require much longer permeation periods at higher hydraulic gradients. Results are reported based on the average of the last four consecutive tests meeting the requirements of equilibrium conditions.

Page 4 of 20 Karmen Deane IT Corporation March 16, 1994

Client Project ID: TINKER AFB ETDC Project No.: 483500.094.04

IT ENVIRONMENTAL TECHNOLOGY DEVELOPMENT CENTER OAK RIDGE, TN (615) 482-6497

Routed to OF TEX

Three permeability samples did not establish equilibrium conditions as defined by ASTM D 5084 before February 18, 1994, and were removed from testing in accordance with the memorandum dated February 9, 1994. The given results for sample numbers ETDC-4685, ETDC-4688, and ETDC-4692 are based on the average of three test runs, not four, as indicated in the ASTM reference. We feel that the final results would not have been significantly different had the samples been allowed to run until all the requirements of ASTM D 5084 had been met. These three samples approached the lower limit of permeability for most naturally occurring soils.

Appendix A

Page 5 of 20 Karmen Deane IT Corporation March 16, 1994

Client Project ID: TINKER ETDC Project No.: 483500.

TINKER AFB 483500.094.04 IT ENVIRONMENTAL TECHNOLOGY DEVELOPMENT CENTER OAK RIDGE, TN (615) 482-6497

Round - CF To 100

#### CROSS-REFERENCE LIST

| ETDC SAMPLE NO. | CLIENT SAMPLE NO. |
|-----------------|-------------------|
| ETDC-4676       |                   |
| ETDC-4677       |                   |
| ETDC-4678       |                   |
| ETDC-4679       |                   |
| ETDC-4680       |                   |
| ETDC-4681       |                   |
| ETDC-4684       | B311282-05A       |
| ETDC-4685       | B311282-05B       |
| ETDC-4690       | B311314-01A       |
| ETDC-4691       | B311314-01B       |
| ETDC-4692       | B311314-02A       |
| ETDC-4693       | B311314-02B       |

Appendix B

Page 6 of 20 Karmen Deane IT Corporation March 16, 1994

Client Project ID: ETDC Project No.:

TINKER AFB 483500.094.04 IT ENVIRONMENTAL TECHNOLOGY DEVELOPMENT CENTER OAK RIDGE, TN (615) 482-6497

#### PARTICLE SIZE ANALYSIS **ASTM D 422**

Roward to (F) Tags

Project Name:

Tinker AFB

Client No.

B311255-05A

Project Number: 483500.094.04

ETDC No. ETDC-4676

Specific Gravity 2.6500

Assumed

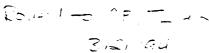
Moisture Content = 10.7%

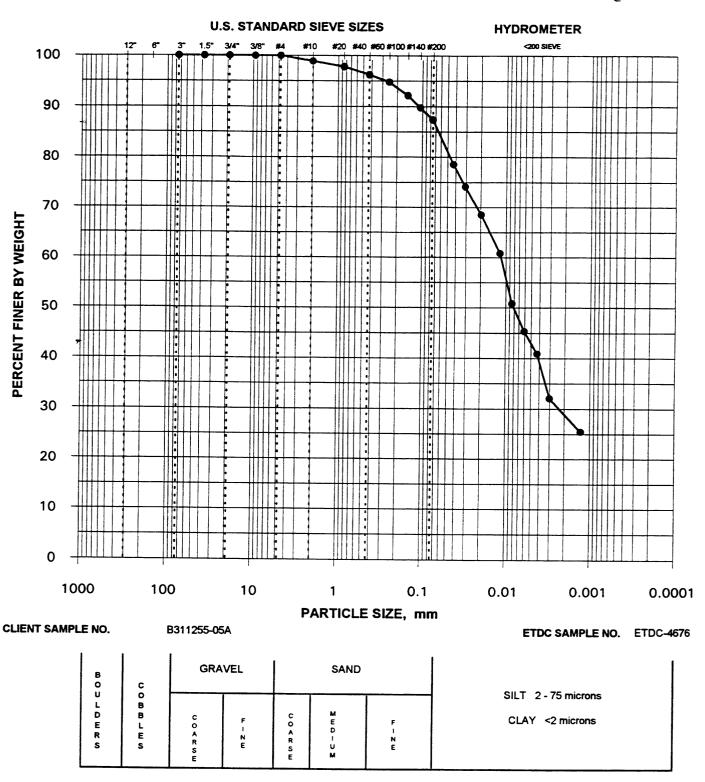
#### SIEVE ANALYSIS

|   | Sieve  | Diameter | Percent |
|---|--------|----------|---------|
| С | No.    | mm       | Finer   |
| Ö | 3"     | 75.000   | 100.0%  |
| Α | 1.5"   | 37.500   | 100.0%  |
| R | 0.75"  | 19.000   | 100.0%  |
| S | 0.375" | 9.500    | 100.0%  |
| E | #4     | 4.750    | 100.0%  |
|   | #10    | 2.000    | 98.8%   |

|     | Sieve | Diameter | Percent |
|-----|-------|----------|---------|
|     | No.   | mm       | Finer   |
| F   | #20   | 0.850    | 97.8%   |
| - 1 | #40   | 0.425    | 96.2%   |
| N   | #60   | 0.250    | 94.8%   |
| Ε   | #100  | 0.149    | 92.2%   |
|     | #140  | 0.106    | 89.7%   |
|     | #200  | 0.075    | 87.3%   |

#### HYDROMETER ANALYSIS


|        | Diameter | Percent |
|--------|----------|---------|
|        | mm       | Finer   |
| н      |          |         |
| Y      | 0.04243  | 78.5%   |
| D      | 0.03065  | 74.1%   |
| R      | 0.01978  | 68.6%   |
| О<br>М | 0.01176  | 60.8%   |
| E      | 0.00848  | 50.9%   |
| Т      | 0.00603  | 45.3%   |
| E      | 0.00426  | 40.9%   |
| R      | 0.00300  | 32.1%   |
|        | 0.00128  | 25.4%   |
|        |          |         |


Page 7 of 20 Karmen Deane IT Corporation March 16, 1994

Client Project ID: TINKER AFB ETDC Project No.: 483500.094.04

IT ENVIRONMENTAL TECHNOLOGY DEVELOPMENT CENTER OAK RIDGE, TN (615) 482-6497

## **Tinker AFB**





Page 12 of 20 Karmen Deane IT Corporation March 16, 1994

Client Project ID: ETDC Project No.:

TINKER AFB 483500.094.04

IT ENVIRONMENTAL TECHNOLOGY DEVELOPMENT CENTER OAK RIDGE, TN (615) 482-6497

### PARTICLE SIZE ANALYSIS **ASTM D 422**

Routed to CF, Tagen 3/21 0

Project Name:

Tinker AFB

Client No.

B311282-05A

Project Number: 483500.094.04

ETDC No. ETDC-4684

Specific Gravity 2.6500

**Assumed** 

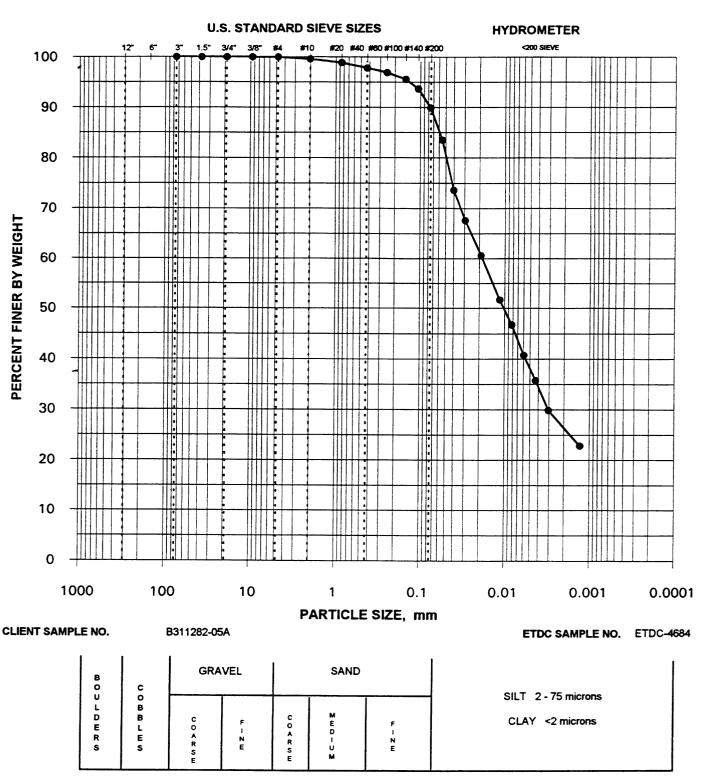
Moisture Content = 9.4%

#### SIEVE ANALYSIS

|        | Sieve  | Diameter | Percent |
|--------|--------|----------|---------|
| С      | No.    | mm       | Finer   |
| Ō      | 3*     | 75.000   | 100.0%  |
| Α      | 1.5*   | 37.500   | 100.0%  |
| R      | 0.75"  | 19.000   | 100.0%  |
| S<br>E | 0.375* | 9.500    | 100.0%  |
| E      | #4     | 4.750    | 99.9%   |
|        | #10    | 2.000    | 99.6%   |

|   | Sieve | Diameter | Percent |
|---|-------|----------|---------|
|   | No.   | mm       | Finer   |
| F | #20   | 0.850    | 98.9%   |
|   | #40   | 0.425    | 97.8%   |
| N | #60   | 0.250    | 96.9%   |
| E | #100  | 0.149    | 95.6%   |
|   | #140  | 0.106    | 93.7%   |
|   | #200  | 0.075    | 89.9%   |

#### HYDROMETER ANALYSIS


|               | Diameter | Percent |
|---------------|----------|---------|
|               | mm       | Finer   |
| н             | 0.05460  | 83.5%   |
| Υ             | 0.04040  | 73.6%   |
| D             | 0.02933  | 67.6%   |
| R             | 0.01912  | 60.6%   |
| 0<br><b>M</b> | 0.01146  | 51.7%   |
| E             | 0.00823  | 46.7%   |
| Т             | 0.00594  | 40.8%   |
| E             | 0.00428  | 35.8%   |
| R             | 0.00303  | 29.8%   |
|               | 0.00128  | 22.9%   |
|               |          |         |

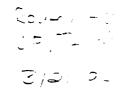
IT ENVIRONMENTAL TECHNOLOGY DEVELOPMENT CENTER OAK RIDGE, TN (615) 482-6497

Client Project ID: TINKER AFB ETDC Project No.:

483500.094.04

#### Routed to CF 7 15 **Tinker AFB** 3/21-91




Page 18 of 20 Karmen Deane IT Corporation March 16, 1994

Client Project ID: ETDC Project No.:

TINKER AFB 483500.094.04

IT ENVIRONMENTAL TECHNOLOGY DEVELOPMENT CENTER OAK RIDGE, TN (615) 482-6497

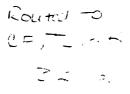
# MOISTURE CONTENT ASTM D 2216



PROJECT NAME:

TINKER AFB

PROJECT NUMBER:


483500.094.04

| ETDC SAMPLE NO. | CLIENT SAMPLE NO. | MOISTURE CONTENT |
|-----------------|-------------------|------------------|
| ETDC-4676       | B311255-05A       | 10.7%            |
| ETDC-4678       | B311256-05A       | 8.5%             |
| ETDC4680        | B311256-06A       | 9.6%             |
| ETDC-4684       | B311282-05A       | 9.4%             |
| ETDC-4690       | B311314-01A       | 12.2%            |
| ETDC-4692       | B311314-01A       | 12.9%            |
|                 |                   |                  |
|                 |                   |                  |

Page 19 of 20 Karmen Deane IT Corporation March 16, 1994

Client Project ID: TINKER AFB ETDC Project No.: 483500.094.04 IT ENVIRONMENTAL TECHNOLOGY DEVELOPMENT CENTER OAK RIDGE, TN (615) 482-6497

# **CATION EXCHANGE CAPACITY** EPA SW-846 **METHOD 9081**

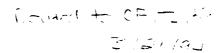


PROJECT NAME: TINKER AFB

PROJECT NUMBER:

483500.094.04

| ETDC<br>SAMPLE<br>NUMBER | CLIENT<br>SAMPLE<br>NUMBER | WEIGHT<br>OF SAMPLE,<br>GRAMS | SODIUM  CONCENTRATION,  MG/L | CATION EXCHANGE  CAPACITY.  MEQ/100 GRAMS | RPD<br>% |
|--------------------------|----------------------------|-------------------------------|------------------------------|-------------------------------------------|----------|
| ETDC-4676                | B311255-05A                | 6.00                          | 328.0                        | 23.78                                     |          |
| FTDC 4670                | 2011050 054                |                               |                              | F 61                                      |          |
| ETDC-4678                | B311256-05A                | 6.02                          | 77.6                         | 5.61                                      |          |
| ETDC-4678DUP.            | B311256-05A                | 6.05                          | 80.2                         | 5.77                                      | 2.8      |
| ETDC-4680                | B311256-06A                | 6.05                          | 122.0                        | 8.77                                      |          |
|                          |                            |                               |                              |                                           |          |
| ETDC-4684                | B311282-05A                | 6.09                          | 231.0                        | 16.50                                     |          |
|                          |                            |                               |                              |                                           |          |
| ETDC-4690                | B311314-01A                | 6.08                          | 338.0                        | 24.18                                     |          |
|                          |                            |                               |                              |                                           |          |
| ETDC-4692                | B311314-02A                | 6.18                          | 274.0                        | 19.29                                     |          |
|                          |                            |                               |                              |                                           |          |
|                          |                            |                               |                              |                                           |          |
|                          |                            |                               |                              |                                           |          |
|                          |                            |                               |                              |                                           |          |
|                          |                            |                               |                              |                                           |          |
|                          |                            |                               |                              |                                           |          |
|                          |                            |                               |                              |                                           |          |
|                          |                            |                               |                              |                                           |          |
|                          |                            |                               |                              |                                           |          |


<sup>\*</sup>RPD = RELATIVE PERCENT DIFFERENCE FOR ORIGINAL & DUPLICATE SAMPLES

Page 20 of 20 Karmen Deane IT Corporation March 16, 1994

Client Project ID: TI ETDC Project No.: 48

TINKER AFB 483500.094.04

IT ENVIRONMENTAL TECHNOLOGY DEVELOPMENT CENTER OAK RIDGE, TN (615) 482-6497



#### PERMEABILITY RESULTS

| ETDC SAMPLE<br>NO. | CLIENT SAMPLE<br>NO. | LENGTH/<br>DIAMETER/<br>WEIGHT         | COEFF. OF<br>PERMEABILITY |
|--------------------|----------------------|----------------------------------------|---------------------------|
| ETDC-4677          | B311255-05B          | 2.547 cm/<br>3.464 cm/<br>49.16 grams  | 3.2 E-9 cm/s              |
| ETDC-4679          | B311256-05B          | 4.752 cm/<br>3.556 cm/<br>83.51 grams  | 2.3 E-6 cm/s              |
| ETDC-4681          | B311256-06B          | 4.214 cm/<br>3.585 cm/<br>85.36 grams  | 9.2 E-7 cm/s              |
| ETDC-4685          | B311282-05B          | 5.318 cm/<br>3.522 cm/<br>107.14 grams | 2.9 E-9 cm/s              |
| ETDC-4691          | B311314-01B          | 4.844 cm/<br>3.494 cm/<br>103.65 grams | 2.6 E-9 cm/s              |
| ETDC-4692          | B311314-02A          | 3.979 cm/<br>3.490 cm/<br>81.88 grams  | 2.9 E-9 cm/s              |

14/10/8 Yellow: Field copy \*See back of form for scedial instructions White: To accompany samples (DICE Disposal 22 23.63 1630 ITAS Austin Austin Reference Document No. FTNC OKA 676 Powder 10 CF, TL 4677 4678 4679 4680 Archive ETDC **V**4681 Date: Time: Date: Time: Date: Time: Condition on 21 ETDC / ETDC ETOC ETDC Karnen Report to: 10 77.45 Disposal by Lab 💪 Page 1 of S Bill to:5 ঠ CEC. A. GRATIN, MOTS. CEC. A. GRATH MOTS. CEC. A GRAIN MOTS.G Project Specific (specify): Requested Testing  $^{20}$ Sample Disposal: 25 1- FOL M Return to Client Program V. Perm 11 PERM ONE CONTAINER PER LINE Project Contact/Phone 12512 892 668 4 B. Leaman 1. Received by 28 ANALYSIS REGULST AND **CHAIN OF CUSTODY RECORD\*** FTOC 2. Received by(Signature/Affiliation) 3. Received by (Signature/Affiliation) Samples Shipment Date 7 11-22-93 (Signature/Affiliation) Carrier/Waybill No. 13 Fed X **Pre-** 19 servative **¬**′ Lab Destination 8 Lab Contact 9 Unknown Date/Time <sup>16</sup> Container <sup>17</sup> Sample <sup>18</sup> QC Level: 27 Volume 22.9 7 700 بک > Steeve Poison B 5/कि% Type ) Date: 7 Time: Time: Date: Time: Date: 11-18-83 11-18-9 Collected 6-61-11 0906 **>** Skin Irritant Deane 8311255 Client Project Name/No. 17, nke 1500 Description/Type 4627 Sample 15 Possible Hazard Identification: 24 50,0 Project Manager 4 Farner Turnaround Time Required: 26 Purchase Order No. 6 سُرُ الْ Flammable 📋 35427 35428 263A 2-63A INTL. ATIONAL TECHNOLOGY CORPORATION  $\rightarrow$ Special Instructions: 23 Profit Center No. 3 Required Report Date 11 Sample Team Members 2 1. Relinquished by <sup>28</sup>/ Rush, B31125505A B 2. Relinquished by (Signature/Affiliation) 3. Relinquished by (Signature/Affiliation) -06A 8311256 25A -05B 068 Sample 14 Comments: 29 Non-hazard (Signature/Affiliation) Number Normal (

| IN'. ATIONAL TECHNOLOGY CORPORATION 7,4/1282 Project Name/No. 1 33/1282 Sample Team Members 2 Clica + Profit Center No. 3 4627 Project Manager 4 (4/2/2) Project Manager 4 (4/2/2) Purchase Order No. 6 (6/1) (6) Required Report Date 11 12/14/2) | 7.7/10,5001<br>B311282<br>Client<br>4627<br>164,me Deane<br>Will Follow |                | ANALYSIS REQ. ST AND CHAIN OF CUSTODY RECORD Samples Shipment Date 7 1/~ 23~93  Lab Destination 8 \$\overline{L}79C\$  Lab Contact 9  Project Contact/Phone 12(\$12) 892- Carrier/Waybill No. 13\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline{L}3-\overline | S REQ. ST /<br>SUSTODY REC<br>SUSTODY REC<br>Postination 8 E70C<br>stination 8 E70C<br>(Sontact 9)<br>Contact 9<br>(YPhone 12(5/2)<br>(aybill No. 13 & J- & | #80<br>ST AND<br>RECOR<br>11-23-93<br>[70c<br>(512) 892<br>(512) 892 | 3500.0°                  | Reference 1999 1 Bill to:5 Bill to:10 | Reference Document No. Page 1 of 1778 Aughn  Bill to:5 17785 Aughn  Port to:10 2785 Aughn  Comen Pens | near No.         | 4 1 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|
| Sample <sup>14</sup> Number Desci                                                                                                                                                                                                                  | Sample <sup>15</sup><br>Description/Type                                | 16<br>d        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample 18 p                                                                                                                                                 |                                                                      | <b>7</b> 5               | i <b>ng</b> 20                        | Condition on                                                                                          | 21               | Disposal <sup>22</sup><br>lecord No.    |
| <del>ه</del><br>ال                                                                                                                                                                                                                                 |                                                                         | 08/5           | Sleve #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * Juc                                                                                                                                                       | CEC<br>CEC                                                           | -A MOEST-G               | .6                                    | ر EIDC                                                                                                | ETDC / 4684      |                                         |
| -                                                                                                                                                                                                                                                  | 7542852                                                                 | 0818           | Sleve x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X) Je                                                                                                                                                       | V                                                                    | 6/3                      |                                       | ETDC W                                                                                                | 4685             |                                         |
|                                                                                                                                                                                                                                                    |                                                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             |                                                                      |                          |                                       |                                                                                                       |                  |                                         |
|                                                                                                                                                                                                                                                    |                                                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             |                                                                      |                          |                                       |                                                                                                       |                  |                                         |
|                                                                                                                                                                                                                                                    |                                                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                           | (                                                                    |                          |                                       |                                                                                                       |                  |                                         |
| Special Instructions: 23 Possible Hazard Identification:                                                                                                                                                                                           | ation: 24                                                               |                | Poison B i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inknown (L)                                                                                                                                                 |                                                                      | Sample Disposal:         | 25                                    | Disposal by Lab                                                                                       | Archive          | (mos)                                   |
| Turnaround Time Required: 26                                                                                                                                                                                                                       | ed: <sup>26</sup>                                                       |                | 1 OC L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _evel: <sup>27</sup><br>  .  <b></b>                                                                                                                        | III Pro                                                              | ject Specific (specify): | pecify);                              |                                                                                                       |                  |                                         |
| 1. Relinquished by 28                                                                                                                                                                                                                              | 11/200                                                                  | Date:<br>Time: | 17-23-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.                                                                                                                                                          | 1. Received by 28 (Signature/Affiliation)                            | by 28                    | ah-                                   | 17                                                                                                    | Date: /<br>Time: | 1235                                    |
| 2. Relinquished by (Signature/Affiliation)                                                                                                                                                                                                         |                                                                         | Date:<br>Time: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sign.                                                                                                                                                       | 2. Received by (Signature/Affiliation)                               | by C                     |                                       |                                                                                                       | Date:<br>Time:   |                                         |
| 3. Relinquished by (Signature/Affiliation)                                                                                                                                                                                                         |                                                                         | Date:<br>Time: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sign                                                                                                                                                        | 3. Received by (Signature/Affiliation)                               | by                       |                                       |                                                                                                       | Date:<br>Time:   |                                         |
| Comments: <sup>29</sup>                                                                                                                                                                                                                            |                                                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                             |                                                                      |                          |                                       |                                                                                                       |                  |                                         |